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The natural killer (NK) cells of the immune system identify and remove stressed, infected, or cancerous cells in the

body. This anti-tumor functionality has been harnessed through promising cell-based therapies that involve the

isolation, expansion, activation, and delivery of NK cells for the treatment of several cancers.

NK cell dysfunction  NK cell plasticity  TGFβ

1. Primary NK Cell Sources

To date, therapies that aim to harness the anti-tumor function of NK cells have involved either the adoptive transfer

of ex vivo expanded NK cells, with or without genetic modification , or the promotion of in vivo NK cell

activation through the administration of recombinant proteins, such as interleukin-15 (IL-15) superagonists . For

cell-based approaches, several sources have been explored, including primary NK cells from autologous or

allogeneic peripheral blood, apheresis products, or umbilical cord blood (UCB) (Figure 1). Primary NK cells

comprise only 10% of all lymphocytes in peripheral blood, limiting the number of cells that can be harvested for

therapeutic applications and necessitating extensive purification methods, such as the magnetic depletion of

undesired cell types . NK cells are comparatively enriched in UCB, comprising 15–30% of total lymphocytes, but

are immature and may be less cytotoxic compared to other sources .
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Figure 1. Current NK cell therapies. Schematic showing the current use of NK cell therapies, starting with source,

expansion, and activation, then demonstrating the recently developed alternative approaches. Figure created with

BioRender.

Alternatively, NK cells can be safely generated from CD34  hematopoietic progenitors, induced pluripotent stem

cells (iPSC), or embryonic stem cells . While iPSC-derived NK cells offer a potentially infinite source of

homogenously differentiated NK cells and can be functionally enhanced by genetic modification with relative ease,

few groups have successfully created functional NK cells from this cellular source . Woan and colleagues

reported the use of a clonal iPSC-NK cell line, engineered to express both a high-affinity, non-cleavable version of

the CD16a Fc receptor and a membrane-bound IL-15/IL-15 receptor-α fusion protein . These cells demonstrated

potent anti-tumor activity in vitro, as well as in myeloma and acute myeloid leukemia (AML) xenograft models.

Clinical trials are currently underway . The use of UCB-derived CD34  cells as a source for NK cell therapies is

also being explored by Deverra Therapeutics, through their non-engineered product DVX201 .

2. Immortalized NK Cell Lines

Immortalized NK cell lines also offer an alternative to primary NK cells, as they can be cultured indefinitely and are

amenable to genetic manipulation. Several NK cell lines have been explored for therapeutic use, including NKL,

NKG, NK-YS, YT, YTS, NK-92 cells, and high-affinity NK cells (haNKs). Originally isolated from an individual with

non-Hodgkin’s lymphoma, NK-92 cells display high levels of anti-tumor cytotoxicity more consistently and

reproducibly than other cell lines , are easily expandable to the clinical grade levels required for treatment ,

+
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and have been used in recent clinical trials in patients with advanced, treatment-refractory malignancies .

HaNKs are NK-92 cells that have been engineered to express a high-affinity CD16 receptor for increased ADCC

and endogenous production of IL-2 to maintain cytotoxic function . While advantageous, the clinical

application of these cells is not without limitation. NK-92 cells must be irradiated to protect from malignant

expansion, potentially limiting their in vivo efficacy and persistence.

3. NK Cell Expansion and Activation

Regardless of their source, NK cells must be expanded to generate sufficient numbers of highly functional cells for

therapeutic applications (Figure 1). Clinical scale expansion can be achieved using mitotically inactivated feeder

cells, such as peripheral blood mononuclear cells (PBMCs), K562 or Jurkat cells, with or without genetic

modification . Relative to freshly isolated NK cells, expanded populations adopt an activated phenotype

with increased expression of activating receptors NKG2D, NKG2C, NKp30, NKp44, DNAM-1 and key effector

molecules, such as TRAIL, FasL and granzymes .

NK cells have also been successfully expanded in feeder-free systems using cell culture flasks, bags, or

bioreactors in the presence of high doses of cytokines, such as IL-15 and IL-21 , cytokine-conjugated

magnetic beads , or plasma membrane-derived particles . However, these methods typically yield lower

cell numbers than what is achieved with feeder cell-based expansion. More recently, advanced systems involving

dissolvable polymer-based microspheres  or streamlined expansion protocols  have allowed for improved

yields and the incorporation of nonviral genome editing into feeder-free expansion systems.

Although growing evidence supports the safety and efficacy of the majority of these expansion techniques , ex

vivo NK cell expansion introduces the potential for senescence and exhaustion , resulting in the need for

expanded NK cells to be activated or “primed” with cytokines like IL-2, IL-12, IL-15, and IL-18 to achieve maximal

efficacy on tumors . These cytokines, along with IL-21 and type I interferons, are central to the maturation,

activation and survival of NK cells. IL-2 is critical to NK activation, can rejuvenate exhausted NK cells, and restores

or preserves their cytotoxic potential in response to various stressors or following exposure to multiple myeloma 

. Similarly, the stimulation of NK cells with various combinations of IL-2, IL-12, IL-15 and IL-18 increases the

production of critical effector cytokines like IFNγ, IL-8, and TNF-α , enhances the responsiveness of the cells to

the integrin, LFA-1, and improves subsequent receptor stimulation .
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Figure 1. Current NK cell therapies. Schematic showing the current use of NK cell therapies, starting with source,

expansion, and activation, then demonstrating the recently developed alternative approaches. Figure created with

BioRender.

4. Alternative Approaches for NK Cell Activation

In addition to cytokine-based approaches, genetic manipulations, such as transgenic expression of the Chimeric

Antigen Receptor (CAR), have also been explored as a means to enhance NK cell activation for therapeutic

applications (Figure 1) . CAR is a recombinant protein that can be introduced into cytotoxic lymphocytes to

enable tumor antigen recognition and trigger activation . CAR expression allows NK cells to specifically target

cancer cells through recognition of tumor associated antigens. The generation of CAR-NK cells involves

transducing isolated NK cells with CAR-encoding genes and expanding these cells prior to adoptive transfer into

the patient . Recently, UCB-derived CAR-NK cells were used to treat patients with relapsed or refractory CD19

cancers, resulting in complete remission in the majority of patients without significant toxic effects . Multiple

clinical trials are currently underway , and ongoing studies are investigating the use of CAR-NK cells for the

treatment of non-malignant targets, such as HIV-infected cells .

Despite these advantages, the complex CAR-NK cell manufacturing process is hindered by inefficient transduction

methods , as well as the poor in vivo persistence shared by many NK cell therapy platforms. The personalized

approach required for CAR-NK cells is also extremely expensive, time consuming, and difficult to apply large-scale.

These limitations, which are not exclusive to CAR-NK approaches (Table 1), demonstrate a clear need for effective
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“off-the-shelf” therapies. One such approach is bi- and tri-specific antibodies (BiKEs and TriKEs), which trigger

ADCC by binding both CD16 on NK cells and specific tumor antigens, creating a connection-like bridge between

these cells and allowing for NK cell activation . TriKEs have also been modified to incorporate cytokines like IL-

15 to increase in vivo persistence and activation of NK cells . In vitro, TriKEs have demonstrated enhanced NK

cell activation and killing of both AML cell lines and patient-derived AML blasts . A clinical trial in the treatment of

high-risk hematological malignancies is currently underway .

Table 1. Advantages and Limitations to Current NK Cell Therapies.

[51]

[52]

[53]

[54]

 Advantages Limitations

Source

Peripheral Blood
NK Cells

Reliable source of CD34 progenitor cells 
NK cells make up only ~10% of all
lymphocytes in peripheral blood

High expression of CD16+
Extensive purification is required to

reduce contamination 

Clinical studies have shown success with
these cells after extensive enrichment and

purification 

Isolating large amounts of PB NK cells is
difficult 

Cryopreservation has been shown to
reduce cytotoxicity 

Umbilical Cord
NK Cells

Greater abundance than PB NK cells (15–
30% of total lymphocytes) 

UCB NK cells are immature
Fewer contaminating T cells in UCB than
PB, reducing the risk of graft-versus-host

disease 

Associated with good tolerance
May have reduced cytotoxic function 

Minimal graft-vs-host-disease or toxicity 

Induced
Pluripotent NK

Cell

Easily genetically modified Limited clinical success to date

High availability Complex differentiation steps

Ability to generate multiple doses from a
single healthy donor Safety concerns regarding toxicity

Commercial NK
Cell Lines

Easy to obtain
Must undergo irradiation to prevent

malignant expansion, which could limit
persistence.

Highly cytotoxic

Easily expandable 
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The NK cell engager platform (ANKET) has also been investigated as a means to harness NK cells as next-

generation cancer immunotherapies. These NK cell engagers link a monoclonal antibody targeting the activating

NK cell receptor NKp46 (or NKp30), an Fc fragment to promote ADCC via CD16, and an antibody targeting a tumor

associated antigen, to enable the tumor-localized activation of host NK cells . Work with these engagers has

shown promise in targeting various cancer cell lines . Recently, Demaria and colleagues reported a

tetraspecific CD20-ANKET, which engages NKp46, CD16a, the beta chain of the IL-2 receptor, and a tumor

associated antigen to induce preferential NK cell activation and target cell killing . This tetraspecific CD20-

ANKET induced the local control of tumors in non-human primates, without significant adverse side effects .
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