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Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability

to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic

Therapy (aPDT). 

curcumin  drug delivery systems  antimicrobial agents  microbial drug resistance  viruses

bacteria  fungi  photochemotherapy

1. Introduction

The global changes arising from globalization and climate change have a profound impact on human health,

including infectious diseases . The increased mobility of people, urbanization, greenhouse-gas emissions,

pollution, deforestation, global warming, loss of sea ice, sea-level rise, extreme weather events with droughts and

flood, etc., have all contributed to affect the transmission, prevalence, and spread of existing infections, such as

vector-borne diseases, and the emergence of new pathogens  . In some cases, these infections have resulted

in epidemics such as dengue and pandemics such as COVID-19, which the world is currently facing .

Notwithstanding the existence of anti-infective medications, other current concerns are the drug resistance arising

from the misuse of antimicrobial agents and the emergence of multidrug-resistant species . These problems are

a challenge for humanity, especially when considering that the development of new drugs demands time and

money. Thus, the repurposing of existing medications and alternative therapies, such as natural substances, has

been investigated .

Curcumin (CUR) is a yellow dye (diferuloylmethane—a natural polyphenol) found in turmeric (Curcuma longa),

which is a plant native to India and Southeast Asia. Beyond its culinary use as food flavoring and coloring, CUR

also has a potential application in medicine due to its therapeutic properties, which include antioxidant, anticancer,

anti-inflammatory, and antimicrobial effects . CUR is not toxic and, according to the Food and Drug

Administration, it is “Generally Recognized as Safe” . The literature shows a plethora of studies reporting the

biological and pharmacological features of CUR on health. Comprehensive reviews are available on the anticancer

, anti-inflammatory , and antimicrobial  effects of CUR.

Nonetheless, CUR is not soluble in water, unstable in solutions, and shows low bioavailability, poor absorption, and

rapid elimination from the body . For these reasons, organic solvents such as ethanol, methanol, acetone, and

dimethyl sulfoxide (DMSO) have been used to solubilize CUR . These drawbacks hinder the in vivo use of CUR
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as a therapeutic agent. Thus, some approaches have been used to overcome the problems of CUR, such as the

use of adjuvants and drug delivery systems. Piperine, a substance derived from black pepper, and lecithin, a

phospholipid, have been associated with CUR to improve its bioavailability by blocking the metabolism of CUR and

enhancing its gastrointestinal absorption . Additionally, drug delivery systems have been used to solubilize CUR

and protect it from degradation until it reaches the target tissue, where CUR is sustainably released .

Nanotechnology has been a promising field in medicine (nanomedicine). Nanoscale structures show intrinsic

physical and chemical properties, which have been exploited as diagnostic and therapeutic tools . The

present study reviews the drug delivery systems (DDS) used for CUR, aiming at its antimicrobial effect. Although

comprehensive reviews about the antimicrobial effect of CUR (encapsulated or not) are found elsewhere 

, they describe only the antibacterial and antifungal activities of CUR in DDSs . Our review summarizes the

DDSs used for CUR as an antiviral, antibacterial, and antifungal agent, encompassing different nanosystems

(colloids and metals) and the relevant issues of antimicrobial resistance and the emergence of new pathogens.

2. Free CUR

The broad-spectrum activity of CUR as an antibacterial, antifungal, and antivirus agent was reviewed previously 

. Thus, this section reviews recent studies not covered by these reviews about the antimicrobial activity of free

(non-encapsulated) CUR (Table 1) before reporting the DDS used for CUR.

Table 1. In vitro and in vivo studies using free CUR and curcuminoids as antimicrobial.
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Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/Ultrasonic
Parameters Reference

DMSO
(0.4%)

ZIKV
Cell infection

IC
5.62–16.57

µM
-

>DGEV >IC

N/R
HPVA

Cell infection Viral survival 0.015 mg/mL -
Tulane V

N/R KSPV Infected cells EC Up to 6.68 µM -

Aqueous
Piper

nigrum
seed

extract

SARS-CoV-2 Cell infection
IC  Plaque

reduction
0.4 µg/mL -

DMSO
(<0.4%)

SARS-CoV-1 Cell infection
Inhibiton of

viral
replication

20 µM -

50
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Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/Ultrasonic
Parameters Reference

N/R SARS-CoV In vitro
Viral

inhibition
23.5 µM -

N/R SARS-CoV In vitro
papain-like
inhibition

5.7 µM -

DMSO (1
w/v)

S. aureus
Planktonic

Inhibition
zone MIC

600 and
-

E. coli 400 µg/mL

DMSO MRSA Planktonic
MIC
FICI

15.5 µg/mL -

N/R

S. aureus

Planktonic Colony count 100 µg/mL 8 or 20 J/cmMSSA

MRSA

DMSO
(10%)

S. aureus Biofilm aPDT
20, 40, and

80 µM
5.28 J/cm

DMSO VRSA
Biofilm/animal infection

model
MIC
MBC

156.25 µg/mL 20 J/cm

N/R S. aureus Animal infection model aPDT 78 µg/mL 60 J/cm

DMSO S. aureus Infected fruit
Survival
fraction

100 nM 1.5 and 9 J/cm

N/R
S. aureus

Planktonic PDI 40 and 80 µM 15 J/cm
E. coli

Tween 80
(0.5%)

S. aureus Planktonic CFU/mL
300 and 500

µM
0.03–0.05

W/cm

N/R S. aureus Biofilm Confocal
microscope

N/R 170 µmol m  s

DMSO
(0.5%)

S. aureus Biofilm
SDT

aPDT
SPDT

80 µM

100 Hz
15 and 70 J/cm
100 Hz, 15 and

70 J/cm

DMSO E. coli Planktonic
MIC

Inhibition
zone

110, 220 and
330 µg/mL

-
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Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/Ultrasonic
Parameters Reference

DMSO E. coli Planktonic OD
8,16, 32, and

64 µg/mL
-

N/R
S. dysenteriae

Planktonic MIC/MBC
256 and

-
C. jejuni 512 µg/mL

Edible
alcohol

E. coli Planktonic aPDT
5, 10, and 20

µM
3.6 J/cm

DMSO H. pylori Planktonic biofilm
MIC
MBC
aPDT

50 µg/mL 10 mW/cm

DMSO P. aeruginosa Biofilm
aPDT

CFU/mL
N/R 5 and 10 J/cm

DMSO
Imipenem-resistant

A. baumannii Planktonic aPDT
25, 50, 100,
and 200 µM

5.4 J/cm

DMSO
(2%)

P. aeruginosa, A.
baumannii, K.

pneumoniae, E. coli, E.
faecalis

Planktonic MIC/FICI
128-256
µg/mL

-

N/R
C. difficile, C. sticklandii,

B. fragilis, P. bryantii Planktonic
Viable cell

number
10 µg/mL -

N/R
B. subtillis, E. coli, S.

carnosus, M. smegmatis Planktonic MIC/MBC Up to 25 µM -

N/R

MRSA

Planktonic/animal
infection model

MIC

4–16 μg/mL

-MSSA 2–8 μg/mL

E. coli 8–32 μg/mL

N/R
E. faecalis, S. aureus, B.
subtillis, P. aeruginosa,

E. coli
Planktonic MIC 156 μg/mL -

DMSO
(0.5%)

A. hydrophila, E. coli
E. faecalis, K.

pneumoniae, P.
aeruginosa, S. aureus,

C. albicans

Planktonic
MIC/MBC/
FICI/aPDT

37.5–150
µg/mL

N/C

N/R E. faecalis Infection model CFU/mL 1 µg/mL -

600nm
[38]

[39]

2 [40]

2 [41]

2 [42]

2 [43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]



Antimicrobial Activity of Curcumin | Encyclopedia.pub

https://encyclopedia.pub/entry/12312 5/37

2.1. Antiviral Activity

The antiviral activity of CUR has been described against enveloped and non-enveloped DNA and RNA viruses,

such as HIV, Zika, chikungunya, dengue, influenza, hepatitis, respiratory syncytial viruses, herpesviruses,

papillomavirus, arboviruses, and, noroviruses . The action mechanism of CUR involves the inhibition of

viral attachmentand penetration into the host cell and interference with viral replication machinery and the host cell

signaling pathways used for viral replication. Moreover, CUR works as a virucidal substance, acting on the viral

envelope or proteins . CUR in 0.4%vol/vol DMSO was able to inhibit several strains of the Zika virus,

including those causing human epidemics, inhibiting the viral attachment to the host cell . The inhibitory effect

was potentiated when CUR was combined with gossypol, which is another natural product. CUR also inhibited

human strains of the dengue virus . The combination of CUR with heat treatment reduced the time and

temperature needed for inactivating the foodborne enteric virus (hepatitis A virus and Tulane virus—a cultivable

surrogate of the human norovirus) . CUR was able to inhibit the lytic replication of Kaposi’s sarcoma-associated

herpesvirus (KSHV) as well as reduce its pathogenesis (neoangiogenesis and cell invasionof KSHV-infected

mesenchymal stem cell from the periodontal ligament) .

While the antiviral effect of CUR has been experimentally demonstrated, the effect of CUR against the new severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, has been predicted by

in silico studies using computational techniques, such as molecular docking . These in silico

studies showed the binding affinity of CUR to the spike protein of SARS-CoV-2 and the human receptors of the

host cell, which could inhibit the viral infection into the human cells. The targets to which CUR may bind are the

viral non-structural protein 9 (Nsp9)  and 15 (Nsp15) , main proteases of SARS-CoV-2 (important for viral

Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/Ultrasonic
Parameters Reference

Commercial
solution

E. faecalis Biofilm aPDT 1.5 g/mL 20.1 J/cm

Ethanol
99%

A. hydrophila, V.
parahaemolyticus Planktonic aPDT/SDT Up to 15 mg/L N/C

DMSO
(10%)

E. faecalis Biofilm MIC/MBC 120 mg/mL -

N/R S. mutans Planktonic aPDT 10 g/100cc N/C

DMSO:
ethyl

alcohol
S. mutans, S. pyogenes Planktonic aPDT 3 mg/mL 28.8 J/cm

DMSO
(0.8%)

Caries isolated Biofilm aPDT 600 µg/mL 75 J/cm

DMSO S. mutans, C. albicans Biofilm single/dual MBEC 0.5 mM -

DMSO
(0.05 M)

A.
actinomycetemcomitans Planktonic aPDT 40 µg/mL 300–420 J/cm

DMSO
(<1%)

P. gingivalis, A.
actinomycetemcomitans Planktonic aPDT 20 µg/mL

6, 12 or 18
J/cm

DMSO
(0.5%)

P. gingivalis, A.
actinomycetemcomitans,
C. rectus, E. corrodens,

F. nucleatum, P.
intermedia, P. micra, T.
denticola, T. forsythis

Biofilm aPDT 100 mg/L -

N/R Subgingival plaque Biofilm aPDT 100 µg/mL 30 J/cm

DMSO P. gingivalis Planktonic MIC 12.5 µg/mL -

Ethanol:
DMSO
(99.9%:
0.1%)

Periodontal pocket - aPDT 100 mg/mL 7.69 J/cm

Tween 80

Streptococcus spp,
Staphylococcus spp,

Enterobacteriaceae, C.
albicans

Clinical trail aPDT 0.75 mg/mL 20.1 J/cm

Sodium
hydroxide:

C. albicans, C.
parapsilosis, C.

Planktonic/biofilm MIC 0.1–0.5
mg/mL

-
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replication) , receptor-binding domains (RBD) of the viral spike protein [76,78,82], human cell receptors

angiotensin-converting enzyme2 (ACE2) , and glucose-regulating protein 78 (GRP78) , as well as the

RBD/ACE complex . Nevertheless, a virtual screening evaluated the interaction between potential functional

foods and the main protease of SARS-CoV-2 and found that CUR showed lower docking affinity than flavonoids,

vitamin, and β-sitosterol . Omics approaches have been studied to identify infection pathways and propose

drugs that could target these pathways. Thus, an integrative multiomics (interactome, proteome, transcriptome,

andbibliome) analysis identified biological processes and SARS-CoV-2 infection pathways and proposed CUR as a

potential prophylactic agent for blocking the SARS-CoV-2 infection .Although most investigations have

evaluated the potential of CUR against SARS-CoV-2 by computational simulations, an in vitro study showed that

an immunomodulatory herbal extract composed of CUR and piperine presented a virucidal effect (viral inhibitionof

up to 92%) on SARS-CoV-2 . Other in vitro studies showed the ability of CUR to inhibit its viral predecessor—

the SARS-CoV-1 . CUR in DMSO (<0.4%) inhibited by 25–50% the cytopathogenic effect of SARS-CoV-1 on

Vero E6 cells and by 50% the viral replication and 3CL protease (main protease) . Another study used CUR as a

positive control for 3CL protease inhibition . CUR also inhibited the papain-like protease, which is another

protease used for SARS-CoV replication .

2.2. Antibacterial Activity

The antibacterial effect of CUR has been demonstrated against Gram-positive and Gram-negative species,

including strains responsible for human infections and showing antibiotic resistance . CUR also inhibits

bacterial biofilms, which are communities of cells embedded in a self-produced polymeric matrix tolerant to

antimicrobial treatments . The antibacterial mechanism of action of CUR involves damage to the cell

wall or cell membrane, interference on cellular processes by targeting DNA and proteins, and inhibition of bacterial

quorum sensing (communication process mediated by biochemical signals that regulate cell density and microbial

behavior) . Moreover, CUR affected the L-tryptophan metabolism in Staphylococcus aureus (Gram-positive) but

not in Escherichia coli (Gram-negative), produced lipid peroxidation, and increased DNA fragmentation in both

bacteria . These results, along with the increased levels of total thiol and antioxidant capacity observed after

bacterial cells were treated with CUR, suggested that oxidative stress may be the mechanism of antibacterial

action of CUR .Therefore, these multiple targets make CUR an interesting option for antibiotic-resistant strains.

CUR is effective in killing methicillin-resistant S. aureus (MRSA), which is a concerning pathogen responsible for

nosocomial and community-associated infections . CUR and another polyphenol, quercetin, inhibited the growth

of MRSA and their combinationwas synergistic . Moreover, CUR absorbs blue light (400–500 nm) and is used as

anatural photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT) . CUR-mediated aPDT reduced

the viability of reference strain of S. aureus and clinical isolates of methicillin-sensitive S. aureus (MSSA) and

MRSA by 4 log , while CUR alone reduced their survival by 2 log  . The aPDT mediated by CUR in 10%

DMSO reduced the biofilm viability of S. aureus and MRSA by 3 and 2 log , respectively, and their

metabolicactivity by 94% and 89%, respectively . The antibiofilm activity of CUR-mediated aPDT was also

observed against clinical isolates of vancomycin-resistant S. aureus (VRSA),with reductions of 3.05 log  in biofilm

viability, 67.73% in biofilm biomass, and 47.94% in biofilm matrix . Additionally, aPDT resulted in the eradication

Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/Ultrasonic
Parameters Reference

PBS glabrata, C.dubliniensis

N/R C. albicans, S. aureus Planktonic
Biofilm

MIC/Biofilm
percentag

200 µg/mL -

N/R C. albicans Biofilm aPDT 1.5 g/mL 20.1 J/cm

DMSO
(10%)

C. albicans Biofilm aPDT
20, 40, 60
and 80 µM

2.64, 5.28, 7.92,
10.56, and 13.2

J/cm

DMSO
(1%)

C. albicans Biofilm aPDT
40 and 80

mM
37.5 and 50

J/cm

N/R C. albicans Biofilm aPDT 100 µM 10 J/cm

DMSO
(2.5%)

Fluconazole-resistant C.
albicans

Planktonic/biofilm/infection
model

MIC/
aPDT

40 µM 5.28 J/cm

Fluconazole-susceptible
C. albicans 80 µM 40.3 J/cm

DMSO
C. albicans, F.

oxysporum, A. flavus, A.
niger, C. neoformans

Planktonic MIC
137.5–200

μg/mL
-
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of VRSA in a rat model of skin infection . The association of CUR-mediated aPDT with artificial skin resulted in a

4.14 log  reduction in S. aureus from infected wounds in rats .

The combination of CUR and another natural PS, hypocrellin B, increased the photoinactivation of S. aureus

compared with the photodynamic effect of each PS alone . Bacterial cells showed alteration in their membrane

integrity and the dual-PS-mediatedaPDT also decontaminated apples with S. aureus . The CUR-mediated aPDT

was also effective in decontaminating food, reducing the number of S. aureus recovered from meatand fruit .

Compared to another natural PS, aloe-emodin, CUR was less effective inphotokilling S. aureus and E. coli .

Three-dimensional _cages fabricated with CURand resin monomer (pentaerythritol triacrylate) polymerized by

infrared light were usedto entrap and kill S. aureus. Irradiation of µcages for 10 min with visible light resulted in a

bacteria mortality rate of 95% . Following the principles of aPDT, SonodynamicTherapy (SDT) associates a PS

(also called sonosensitizer) with ultrasound (US) instead of light for the treatment of deeper lesions and infections,

where light cannot reach .Both aPDT and SDT mediated by CUR, as well as the combination of both (SPDT,

when the PS is activated by light and US simultaneously), reduced the viability of S. aureus biofilmS. SPDT

promoted the highest reduction (3.48 log ), which was potentiated when CUR was combined with sodium dodecyl

sulfate (7.43 log ) . Regarding Gram-negative species, CUR alone was not able to inhibit the growth of an

Enterotoxigenic E. coli, which is a strain that causes severe diarrhea and is resistant to antibiotics . However,

synergism was observed between CUR at 330 µg/mL and antibiotics (Ceftazidime, Amoxicillin/Clavulanic acid,

Cefotaxime, and Ampicillin) . CUR did not affect the growth of enteroaggregative (EAEC) and enteropathogenic

(EPEC) diarrheagenic E. coli but inhibited the secretion and release of their virulence factors, Pet,and EspC, which

are toxins produced by these strains . Conversely, CUR alone and with ampicillin inhibited the growth of other

species that caused diarrhea—Shigella dysenteriae and Campylobacter jejuni, including multidrug-resistant strains

. The aPDT mediated byCUR and light reduced the viability of E. coli by 3.5 log, increased membrane

permeabilityof bacteria, and decontaminated oysters . CUR-mediated aPDT reduced the viability of Helicobacter

pylori and its virulence factors (motility, urease production, adhesion toerythrocytes, and biofilm formation) . On

Pseudomonas aeruginosa, aPDT potentiated the inhibitory effect of CUR, inhibited biofilm formation and matrix

production, reduced biofilm thickness, and downregulated quorum sensing genes . The photoinactivation of

imipenem-resistant Acinetobacter baumannii reduced bacterial viability by 97.5% and shotgun proteomics analysis

identified 70 carbonylated proteins modified after CUR mediated aPDT related to the membrane, translation, and

response to oxidative stress .CUR inhibited the growth of antibiotic-resistant P. aeruginosa, A. baumannii, and

Klebsiella pneumoniae isolated from burn wound infections and showed synergism with meropenem . On

gastrointestinal bacteria of human and bovine origin, CUR inhibited Firmicutes (Clostridioides difficile and

Acetoanaerobium (Clostridium) sticklandii) but did not affect Bacteroidetes (Bacteroides fragilis and Prevotella

bryantii) . CUR was conjugated to triphenyl phosphonium resulting in a compound named Mitocurcumin, which

inhibited the growth of Bacillus subtilis, E. coli, Staphylococcus carnosus, and Mycobacterium smegmatis, and

induced morphological changes in B. subtilis . Seventeen synthesized monocarbonyl curcuminoids showed high

antibacterial activity against MSSA and MRSA and moderate activity against E. coli . The four most effective

curcuminoids were bacteriostatic at low concentrations and bactericidal at high concentrations against MRSA,

which showed membrane damage. In an ex vivo mammalian co-culture infection model,two curcuminoids
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decreased the viability of MSSA internalized in the fibroblasts . One of thirteen synthesized curcuminoids, 3,30-

dihydroxycurcumin, showed antibacterial activity against S. aureus, B. subtilis, Enterococcus faecalis, and

Mycobacterium tuberculosis, and produced membrane damage on B. subtilis . Nonetheless, all the synthesized

curcuminoids were not effective against Gram-negative species (P. aeruginosa and E. coli) . CUR analogs

(monocurcuminoids, MC) were synthesized and showed higher, lower, or similar antimicrobial activity than CUR

against Aeromonas hydrophila, E. coli, E. faecalis, K. pneumoniae, P. aeruginosa, S. aureus, and the yeast

Candida albicans . Two MC and turmeric powder presented synergism against A. hydrophila, P. aeruginosa, and

C. albicans. When aPDT was performed with UV light, two MC-mediated aPDT decreased the growth of E.

faecalis, E. coli, and S. aureus, while aPDT with another MC and CUR increased the growth of A. hydrophila, E.

faecalis, S. aureus, C. albicans, and P. aeruginosa . CUR was more effective than other natural biomolecules

(quercetin and resveratrol) in inhibiting thegrowth of E. faecalis in spermatozoa from rabbits, but less effective than

antibiotics . CUR-mediated aPDT also reduced the viability of E. faecalis biofilms grown in bovine bone cavities

for 14 days by 1.92 log  . The aPDT and the combination of a nanobubble solution and the US reduced the

viability of the aquatic pathogens Aeromonas hydrophila and Vibrio parahaemolyticus .

CUR and aPDT have been used for dental infections and oral diseases. The Curcuma longa extract decreased the

viability of 3-week-old E. faecalis biofilms formed on the root canal surface of human teeth . The aPDT mediated

by CUR and continuous laser irradiationeradicated planktonic cultures of Streptococcus mutans, which is the main

etiologic factor of dental caries . A formulation of syrup with curcuminoids and 30% sucrose wasused as a PS in

aPDT, which reduced the viability of S. mutans, Streptococcus pyogenes, and aclinical isolate from a patient with

pharyngotonsillitis . Microbial samples from carious dentin were grown as microcosm biofilm and submitted to

CUR-mediated aPDT, which reduced the vitality of 3-   and 5-day-old biofilms . CUR alone decreased the

biomass and the viability of mono- and dual-species biofilms of S. mutans and C. albicans, as well as the

production of biofilm matrix and the expression of genes related to glucosyltransferaseand quorum sensing of S.

mutans, and the adherence of C. albicans .The therapeutic effect of CUR on periodontal diseases was

extensively investigated in animal models and clinical trials, which were reviewed . Beyond its antibacterial

activity, CUR-mediated aPDT also produced a bystander effect (behavior change of cellsexposed to treated target

cells) on the periodontal pathogen Aggregatibacter actinomycetemcomitans, reducing its survival, metabolic

activity, and the production of quorum sensing molecule . The aPDT with CUR decreased the growth of both A.

actinomycetemcomitans and Porphyromonas gingivalis, which is another pathogenic periodontal bacterium

.Antimicrobial photothermal treatment promoted higher reduction than CUR-mediated aPDT in the viability of

mixed biofilms of periodontal pathogens (P. gingivalis, A. actinomycetemcomitans, Campylobacter rectus, Eikenella

corrodens, Fusobacterium nucleatum, Prevotella intermedia, Parvimonas micra, Treponema denticola, and

Tannerella forsythia) grown on a titanium surface inside artificial periodontal pockets . The aPDT mediated by

different PS (methylene blue, CUR, and chlorin e6) eradicated the planktonic growth and reducedthe biofilm

viability of metronidazole-resistant bacteria from the subgingival plaque .CUR alone inhibited the growth of P.

gingivalis and CUR in gel was biocompatible when evaluated subcutaneously in rats .

A randomized clinical trial showed that CUR-mediated aPDT associated with scaling and root planing improved the

clinical attachment level gain of periodontal pockets in type-2 diabetic patients after three and six months . The
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aPDT with CUR and LED applied in the mouth of 30 patients with acquired immune deficiency syndrome (AIDS)

reduced the counts of Streptococcus spp., Staphylococcus spp., and total microorganismsfrom saliva, but not the

number of Enterobacteriaceae and Candida spp. . Additionally,there was no reduction in patients with CD8

lymphocytes lower than 25% .

2.3. Antifungal Activity

The antifungal activity of CUR has been demonstrated mostly against Candida spp. by many in vitro and few in

vivo studies . CUR inhibited the growth of a reference strainand a clinical isolate of C. albicans, as well as

reference strains of Candida parapsilosis, Candida glabrata, and Candida dubliniensis . When biofilms of both

C. albicans strains were evaluated, CUR reduced only the viability of the standard strain in a concentration-

dependent effect, while the antifungal fluconazole did not inhibit the viability of either strain . CUR and 2-

aminobenzimidazole (2-ABI) inhibited the growth and adhesion of C. albicans and S. aureus to medical-grade

silicone . The combination of CUR and 2-ABI enhanced the inhibition of biofilm formation and reduced the

viability of 48 h-old single and dual-species biofilms . The aPDT mediated by CUR reduced the survival of 14-

day-old biofilm of C. albicans in bone cavities, confirmed by fluorescence spectroscopy . CUR-mediated aPDT

reduced the metabolic activity of biofilms of C. albicans reference strain and clinical isolates from the oral cavity of

patients with HIV and lichen planus . Moreover, genes related to hyphae and biofilm formation were

downregulated . The aPDT mediatedby CUR and another PS, Photodithazine®, also resulted in the

downregulation of genes involved in adhesion and oxidative stress response in C. albicans biofilms . CUR alone

and CUR-mediated aPDT, combined or not with an antibody-derived killer decapeptide,reduced the metabolic

activity of an 18 h biofilm of C. albicans . CUR showed synergism with fluconazole and CUR-mediated aPDT

inhibited the planktonic growth and reduced the biofilm viability of fluconazole-resistant C. albicans . CUR-

mediated aPDT also increased the survival of Galleria mellonella infected with fluconazole-susceptible C. albicans,

but did not affect the survival of larvae infected with fluconazole-resistant strain . A library of 2-chloroquinoline

incorporated monocarbonyl curcuminoids (MACs) was synthetized and most of the MACs exhibited strong or

moderate antifungal activity compared with miconazole against C. albicans, Fusarium oxysporum, Aspergillus

flavus, Aspergillus niger, and Cryptococcus neoformans . To suggest a possible antifungal mechanism, a

moleculardocking analysis showed that MACs had binding affinity to sterol 14α-demethylase(CYP51), leading to

impaired fungal growth .

3. Curcumin in DDSs (Colloidal, Metal, and Hybrid
Nanosystems)

3.1. CUR in Micelles

Micelles are aggregates of surfactants or block polymers self-assembled in water solution. They are used as DDSs

and formed by a hydrophilic domain named corona and a hydrophobic domain called core (Figure 1) , which

stays in contact with hydrophobic drugs such as CUR 91]. Micelles have low toxicity, biocompatibility, and

[64]

[64]

[90]

[65]

[65]

[66]

[66]

[67]

[68]

[68]

[69]

[70]

[71]

[71]

[72]

[72]

[91]
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sustained release, which makes them an attractive DDS to carry CUR and to be used in medical applications 91].

Antimicrobial studies with CUR-loaded micelles are summarized in Table 2.

Figure 1. Schematic representation of: (A) an amphiphilic molecule and (B) an assembled micelle.

Table 2. Antimicrobial studies performed with CUR in micelles.

3.2. CUR in Liposomes

[

Type of
Micelles

[CUR]
FormulationMicroorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference

Mixed
polymer
micelles

1000 ppm
E. coli, S.
aureus, A.

niger
Planktonic MIC

350 and 275
µg/mL

-

PCL-b-
PAsp

and Ag
2 mg/mL

P. aeruginosa,
S. aureus Planktonic OD 8–500 µg/mL -

mPEG-
OA

1:10 P. aeruginosa Planktonic MIC 400 µg/mL -

PEG-
PCL

10 mg C. albicans Planktonic MIC 256 µg/mL -

PEG-PE 50 mM S. mutans Planktonic SACT 50 mM 1.56 W/cm

DAPMA,
SPD,
SPM

0.32
mg/mL

P. aeruginosa Planktonic
OD  and

aPDT

250, 500 nM,
1 µM and 50,

100 nM
18 and 30 J/cm

P123 0.5% w/V S. aureus Planktonic aPDT 7.80 μmol/L 6.5 J/cm

PCL-b-
PHMG-
b-PCL,
STES

10 mg
S. aureus,E.

coli Planktonic MIC
16 and 32
μg/mL *

-

CUR-
PLGA-
DEX

1 mg/mL
P. fluorescens,

P. putida
Planktonic

biofilm
OD

antibiofilm
0.625–5
mg/mL

-

[92]

600nm
[93]

[94]

[95]

2 [96]

600nm 2 [97]

2 [98]

[99]

600nm [100]
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Liposomes are biodegradable and biocompatible systems, which consist of hydrophobic and hydrophilic groups

(Figure 2) . The hydrophobic layer is mainly composed of phospholipids and cholesterol molecules. This lipid-

based carrier is suitable for administering water-insoluble drugs, such as CUR . Liposomes are classified into

three groups: single unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles . Drugs

encapsulated in liposomes are protected from chemical degradation and show increased drug solubility .

Additionally, liposomes have advantageous properties such as better penetration into the skin, deposition, anti-

melanoma, and antimicrobial activity . Antimicrobial studies with CUR-loaded liposomes are summarized in

Table 3.

Figure

2. Schematic representation of the liposome structure.

Table 3. Antimicrobial studies performed with CUR in liposomes and solid lipid nanoparticles (SLN).

Type of
Liposomes or
SLN

[CUR]
FormulationMicroorganismType of

Culture
Antimicrobial
Method

Antimicrobial
[CUR] Reference

Lecithin and
cholesterol 0.5 mg/mL

A. sobria, C.
violaceum, A.
tumefaciens

Planktonic
biofilm

MIC,
antibiofilm

420, 400, and
460 μg/mL       

PCNL 60.65 ±
1.68 µg/µl

B. subtilis, K.
pneumoniae,
C. violaceum,

E. coli, M.
smegmatis, A.

niger, C.
albicans, F.
oxysporum

Planktonic
Disk

diffusion
assay

N/R

Phosphocolines 100:1 M S. aureus Planktonic MIC 7 μg/mL

PLGA:
triglycerides:

F68

0.8 mg/mL E. coli, S.
typhimurium,
P. aeruginosa,
S. aureus, B.
sonorensis,

Planktonic MIC 75 and 100
μg/mL

3.11. CUR in Films, Hydrogels, and Other Nanomaterials

Antimicrobial studies with CUR in films, hydrogels, and other nanomaterials are summarized in Table 11.

Table 11. Antimicrobial studies performed with CUR in films, hydrogels, and other nanomaterials.

[101]

[102]

[103]

[101]

[102]

[104]

[105]

[106]

[107]

Type of
Material

[CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference

CuR-SiNPs 20 mg
S. aureus, P.
aeruginosa

Planktonic,
Biofilm

aPDT
50 μg/mL, 1

mg/mL
20 J/cm

CUR-HNT-DX 10 mg
S. marcescens,

E. coli

Planktonic,
Infection
model

Grown
inhibition,
Confocal

microscopy

Up to 0.5
mg/mL

-

Exosomes N/R HIV-1 infection -
Flow

cytometry
N/R -

Electrospun
nanofibers

100 mg/mL
Actinomyces

naeslundii Biofilm aPDT
2.5 and 5

mg/mL
1200 mW/cm

Ga NFCD-GO
NF

0.1 mol B. cereus, E. coli Planktonic
Zone of

inhibition, MIC
Up to 63.25

µg/mL
-

2 [210]

[211]

[212]

2 [213]

[214]
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Type of
Liposomes or
SLN

[CUR]
FormulationMicroorganismType of

Culture
Antimicrobial
Method

Antimicrobial
[CUR] Reference

Lecithin and
cholesterol 0.5 mg/mL

A. sobria, C.
violaceum, A.
tumefaciens

Planktonic
biofilm

MIC,
antibiofilm

420, 400, and
460 μg/mL       

B.
licheniformis

Soya lecithin
and menthol 0.5 mg/mL MRSA Planktonic,

Biolfim

MIC,
microscopy,

biomass

10 and 125
µg/mL

CurSLN 60 mg/500
mg lipid

S. aureus, S.
mutans, V.

streptococci,
L.

acidophilus,
E. coli, C.
albicans

Planktonic MIC, MBC
0.09375–3
and 1.5–6

mg/mL

[CUR]: CUR concentration. N/R: not reported.

3.3. CUR in Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLN, Figure 3, Table 3) are a modern type of lipid-based carrier composed by solid

biodegradable lipids and spherical solid lipid particles. SLNs are water colloidal or aqueous surfactant solution

systems . SLNs have advantages such as biocompatibility, biodegradability, greater drug absorption, and drug

retention , thus they are an interesting system to carry CUR . Currently, SLNs have become popular

because they are used as carriers for COVID-19 vaccines based on RNA vaccine technology (Moderna and

Pfizer–BioNTech).

[CUR]: CUR concentration. -: not performed. N/R: not reported. N/C: not clear

4. Conclusions and Future Perspectives

CUR has a broad-spectrum antimicrobial activity against viruses, bacteria, and fungi, including resistant and

emergent pathogens. However, some species such as Gram-negative bacteria are less susceptible to CUR and

aPDT. For those, the combination of CUR with antibiotics has been suggested, especially for antibiotic-resistant

strains . CUR showed synergism with polymyxin and protection against the side effects of polymyxin treatment,

nephrotoxicity, and neurotoxicity . Nonetheless, the evaluation of synergism requires accurate methods to study

drug interaction, considering potential differences between the dose–response relationship of individual drugs and

avoiding over- or under-estimation of interactions. For example, while the time–kill curve of C. jejuni treated with

both cinnamon oil and ZnO NPs resulted in the over-estimation of synergism between the antimicrobials, the

fractional inhibitory concentration index (FICI) method showed no synergism but only an additive effect . The

FICI method was not able to detect the synergism between binary combinations of antimicrobials (cinnamon oil,

ZnO NPs, and CUR encapsulated in starch) at sub-MIC, which resulted in the non-turbidity of C. jejuni. In turn,

mathematical modeling using isobolograms and median-effect curves showed synergism when CUR in starch was

combined with other antimicrobials against C. jejuni, with bacterial reductions of 3 log for the binary combination

and over 8 log for the tertiary combination. The mathematical modeling suggested that CUR in starch was the main

antimicrobial responsible for the synergistic interaction .

In addition to the antimicrobial evaluation, in vitro and in vivo studies have demonstrated the cytocompatibility and

biocompatibility of CUR in DDSs ,  suggesting that CUR-

loaded DDSs might be safe. Although a plethora of DDSs has been developed to circumvent the hydrophobicity,

instability in solution, and low bioavailability of CUR, several studies are still performed with free CUR dissolved in

organic solvents 

. Furthermore, compared to several in

vitro investigations, few in vivo studies using animal infection models and scarce clinical trials have been reported.

A randomized clinical trial showed that aPDT mediated by free CUR improved gingivitis in adolescents under fixed

orthodontic treatment but did not reduce dental plaque accumulation after 1 month . Clinical improvements after

CUR-mediated aPDT were also observed for periodontal diseases, although few studies have evaluated the

microbiological parameters . Therefore, the improvement of clinical parameters might be due to the anti-

[104]

[108]

[109]

[102]

[18][102] [14]

Multinanofibers-
film

1, 2.5, and 5
mg/mL

S. aureusE. coli Planktonic
UFC/mL,
Confocal

microscopy
1 mg/mL -

Nanofibers
scaffolds

4.0 wt%
S. aureus

Pseudomonassp.
Planktonic Colony count N/R ,-

Nanofibrous
scaffold

5% S. aureus, E. coli Planktonic Colony count 20 mg -

Nanofibers
5 and
10%wt

S. aureusE. coli Planktonic OD
Up to 212.5

µg/mL
-

CSDG 1 w/w S. aureus, E. coli
Planktonic,
Infection
model

Colony count,
Microscopy

N/R -

Gelatin film
0, 0.25, 0.5,
1.0, and 1.5

wt%

E. coli, L.
monocytogenes Planktonic UFC/mL

0.25 and 1.5
wt%

-

ZnO-CMC film
0.5 and 1.0

wt%
E. coli, L.

monocytogenes Planktonic UFC/mL 1 wt% -

Pectin film 40 mg
E. coli, L.

monocytogenes Planktonic UFC/mL N/R -

Edible film 0.4% (w/v) E. coli, B. subtilis Planktonic
Zone of

inhibition
1% wt. -

[215]

[216]

[217]

600nm
[218]

[219]

[220]

[221]

[222]

[223]

[220]

[224]

[225]

[225]

[108][113][114][115][118][121][144][145][152][156][168][185][192][202][209]
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Figure 3. Schematic representation of solid lipid

nanoparticle.

3.4. CUR in Nanoemulsions

Nanoemulsions (NE) are thermodynamically stable dispersions of oil and water (Figure 4) . They are formed by

a phospholipid monolayer composed of a surfactant and co-surfactant, which are important for nanoemulsion

stabilization . This system has thermodynamic stability and high solubilization characteristics, with improved

drug release kinetics . NE systems can be manufactured through emulsification, which can control the size of

the drops and increase the drug solubility and efficacy. Moreover, the main disadvantage of NE is the high amount

of surfactants in the formulation, which can lead to a potential toxic effect . Antimicrobials studies with CUR-

loaded NE are summarized in Table 4.

Figure 4. Schematic diagram of oil-in-water nanoemulsion (A) and water-in-oil nanoemulsion (B), stabilized by

surfactants.

inflammatory effect of CUR/aPDT instead of their in vivo antimicrobial activity. Nonetheless, randomized clinical

trials evaluating CUR in DDSs against infections are required.

As a note on the future use of CUR, the incorporation of CUR in DDS and other pharmaceutical formulations allows

its clinical use especially as an adjuvant agent to conventional antimicrobial agents. Such a combination can be an

important weapon in the battle against resistant strains and emergent pathogens. The use of stimuli-responsive (or

smart) DDS can also improve CUR delivery and its therapeutic effect on the target tissue. The combination of

polymeric and metallic carriers may also enhance the therapeutic activity of CUR. Nonetheless, the degradation of

DDS and its clearance from the body are other issues that require further investigation . The evidence produced

so far about the antimicrobial activity of CUR in DDSs supports future in vivo and clinical studies, which may pave

the way for industrial production.
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6, 7, or 8 glucose units, which are denominated α-CD, β-CD, and γ-CD, respectively . Although the entire

CD molecule is soluble in water, the interior is relatively non-polar and creates a hydrophobic microenvironment.

Therefore, CDs are cup-shaped, hollow structures with an outer hydrophilic layer and an internal hydrophobic

cavity (Figure 5) . They can sequester insoluble compounds within their hydrophobic cavity, resulting in better

solubility and consequently better chemical and enzymatic stability . Due to the cavity size, β-CD forms

appropriate inclusion complexes with molecules with aromatic rings , such as CUR . Antimicrobial studies

with CUR in CDs are summarized in Table 5.

Figure 5. Schematic representation of CUR in CD.

Table 5. Antimicrobial studies performed with CUR in CDs.
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[CUR]: CUR concentration. -: not performed. N/R: not reported.

3.6. CUR in Chitosan

Chitin is a natural polysaccharide commonly found in the exoskeleton of marine crustaceans such as shrimps,

prawns, lobsters, and crabs. Chitosan (CS) derives from the acetylation of chitin and has a linear structure of D-

glucosamine (deacetylated monomer) linked to N-acetyl-D-glucosamine (acetylated monomer) through β-1,4

bonds . The main advantages that make CS a promising drug carrier include biocompatibility, biodegradability,

non-toxicity, controlled release system, mucoadhesive properties, and low cost . Moreover, CS is soluble in

aqueous solutions and is the only pseudo-natural polymer with a positive charge (cationic) , which can interact

with negatively-charged DNA, membranes of microbial cells, and biofilm matrix . Antimicrobial studies with CUR

in CS are summarized in Table 6.

Table 6. Antimicrobial studies performed with CUR in CS.

effectiveness against susceptible and methicillin-resistant Staphylococcus aureus biofilms.
Photodiagnosis and Photodynamic Therapy 2020, 30, 101760, 10.1016/j.pdpdt.2020.101760.

30. Farheen Akhtar; Asad U. Khan; Lama Misba; Kafil Akhtar; Asif Ali; Antimicrobial and antibiofilm
photodynamic therapy against vancomycin resistant Staphylococcus aureus (VRSA) induced
infection in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics 2021,
160, 65-76, 10.1016/j.ejpb.2021.01.012.

31. Fernanda Rossi Paolillo; Phamilla Gracielli Sousa Rodrigues; Vanderlei Salvador Bagnato;
Fernanda Alves; Layla Pires; Adalberto Vieira Corazza; The effect of combined curcumin-
mediated photodynamic therapy and artificial skin on Staphylococcus aureus–infected wounds in
rats. Lasers in Medical Science 2020, 20, 1-8, 10.1007/s10103-020-03160-6.

32. Yali Li; Yi Xu; Qiaoming Liao; Mengmeng Xie; Han Tao; Hui‐Li Wang; Synergistic effect of
hypocrellin B and curcumin on photodynamic inactivation of Staphylococcus aureus. Microbial
Biotechnology 2021, 14, 692-707, 10.1111/1751-7915.13734.

33. Thaila Quatrini Corrêa; Kate Cristina Blanco; Érica Boer Garcia; Shirly Marleny Lara Perez;
Daniel José Chianfrone; Vinicius Sigari Morais; Vanderlei Salvador Bagnato; Effects of ultraviolet
light and curcumin-mediated photodynamic inactivation on microbiological food safety: A study in
meat and fruit. Photodiagnosis and Photodynamic Therapy 2020, 30, 101678, 10.1016/j.pdpdt.20
20.101678.

34. Truong Dang Le; Pimonpan Phasupan; Loc Thai Nguyen; Antimicrobial photodynamic efficacy of
selected natural photosensitizers against food pathogens: Impacts and interrelationship of
process parameters. Photodiagnosis and Photodynamic Therapy 2020, 32, 102024, 10.1016/j.pd
pdt.2020.102024.

35. Davy-Louis Versace; Gabriela Moran; Mehdi Belqat; Arnaud Spangenberg; Rachel Meallet-
Renault; Samir Abbad-Andaloussi; Vlasta Brezova; Jean-Pierre Malval; Highly Virulent
Bactericidal Effects of Curcumin-Based μ-Cages Fabricated by Two-Photon Polymerization. ACS
Applied Materials & Interfaces 2020, 12, 5050-5057, 10.1021/acsami.9b18693.

36. Fernanda Alves; Gabriela Gomes Guimarães; Natália Mayumi Inada; Sebastião Pratavieira;
Vanderlei Salvador Bagnato; Cristina Kurachi; Strategies to Improve the Antimicrobial Efficacy of
Photodynamic, Sonodynamic, and Sonophotodynamic Therapies. Lasers in Surgery and
Medicine 2021, null, 1-9, 10.1002/lsm.23383.

37. Rangel-Castañeda Itzia Azucena; Cruz-Lozano José Roberto; Zermeño-Ruiz Martin; Cortes-
Zarate Rafael; Hernández-Hernández Leonardo; Tapia-Pastrana Gabriela; Castillo-Romero
Araceli; Drug Susceptibility Testing and Synergistic Antibacterial Activity of Curcumin with
Antibiotics against Enterotoxigenic Escherichia coli. Antibiotics 2019, 8, 43, 10.3390/antibiotics80
20043.

β-CD or γ-CD in
CS

0.06 mM
E. coli, S.

aureus Planktonic
MIC, Zone of

inhibition
64 and 32

µg/mL
-

γ-CD 25 mg/L T. rubrum Planktonic MIC, aPDT N/R 45 J/cm

hydroxypropyl-
β-CD

1:1

B. subtillis, S.
aureus, S.

pyrogenes, P.
aeruginosa, C.

difficile, C.
butyricum, L.

monocytogenes,
E. faecalis, E.

coli, K.
pneumoniae, P.

mirabilis, S.
typhimurium, E.

aerogens, C.
kusei, C.
albicans

Planktonic
Inhibition

zone
25 mg/mL -

methyl-β-CD 20 mM E. coli Planktonic
MIC, MBC,

aPDT
500, 90 µM 9 J/cm

[136]

2 [137]

[138]

2 [139]

[140]

[140][141]

[142]

[143]

Type ofCS [CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR] Reference

PEG-CS
4.4%, 5
mg/mL

MRSA, P.
aeruginosa

Planktonic,
Animal
model

OD ,
CFU

5 and 10
mg/mL *

600nm [144]
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[CUR]: CUR concentration. N/R: not reported. N/C: not clear. *: formulation concentration.

3.7. CUR in Other Polymeric DDS

Antimicrobial studies with CUR loaded in other polymeric DDSs are summarized in Table 7.

Table 7. Antimicrobial studies performed with curcumin in polymeric drug delivery systems.

38. Javier I. Sanchez-Villamil; Fernando Navarro-Garcia; Araceli Castillo-Romero; Filiberto Gutiérrez-
Gutiérrez; Daniel Tapia; Gabriela Tapia-Pastrana; Curcumin Blocks Cytotoxicity of
Enteroaggregative and Enteropathogenic Escherichia coli by Blocking Pet and EspC Proteolytic
Release From Bacterial Outer Membrane. Frontiers in Cellular and Infection Microbiology 2019, 9,
334, 10.3389/fcimb.2019.00334.

39. Sawsan Kareem; Suhad Saad Mahmood; Nada Hindi; Effects of Curcumin and Silymarin on the
Shigella dysenteriae and Campylobacter jejuni In vitro. Journal of Gastrointestinal Cancer 2019,
51, 824-828, 10.1007/s12029-019-00301-1.

40. Yuan Gao; Juan Wu; Zhaojie Li; Xu Zhang; Na Lu; Changhu Xue; Albert Wingnang Leung;
Chuanshan Xu; Qingjuan Tang; Curcumin-mediated photodynamic inactivation (PDI) against
DH5α contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters.
Photodiagnosis and Photodynamic Therapy 2019, 26, 244-251, 10.1016/j.pdpdt.2019.04.002.

41. Homa Darmani; Ehda A.M. Smadi; Sereen M.B. Bataineh; Blue light emitting diodes enhance the
antivirulence effects of Curcumin against Helicobacter pylori. Journal of Medical Microbiology
2020, 69, 617-624, 10.1099/jmm.0.001168.

42. Hayder Abdulrahman; Lama Misba; Shabbir Ahmad; Asad U. Khan; Curcumin induced
photodynamic therapy mediated suppression of quorum sensing pathway of Pseudomonas
aeruginosa: An approach to inhibit biofilm in vitro. Photodiagnosis and Photodynamic Therapy
2020, 30, 101645, 10.1016/j.pdpdt.2019.101645.

43. Kai‐Chih Chang; Ya‐Yun Cheng; Meng‐Jiun Lai; Anren Hu; Identification of carbonylated proteins
in a bactericidal process induced by curcumin with blue light irradiation on imipenem‐resistant
Acinetobacter baumannii. Rapid Communications in Mass Spectrometry 2019, 34, e8548, 10.100
2/rcm.8548.

44. Javad Yasbolaghi Sharahi; Zahra Aliakbar Ahovan; Donya Taghizadeh Maleki; Zahra Riahi Rad;
Zohreh Riahi Rad; Mehdi Goudarzi; Aref Shariati; Narjess Bostanghadiri; Elham Abbasi; Ali
Hashemi; et al. In vitro antibacterial activity of curcumin-meropenem combination against
extensively drug-resistant (XDR) bacteria isolated from burn wound infections.. Avicenna J
Phytomed 2020, 10, 3-10.

45. Jourdan E. Lakes; Christopher I. Richards; Michael D. Flythe; Inhibition of Bacteroidetes and
Firmicutes by select phytochemicals. Anaerobe 2020, 61, 102145-102145, 10.1016/j.anaerobe.20
19.102145.

46. Shweta Kumari; Sundarraj Jayakumar; Gagan D. Gupta; Subhash C. Bihani; Deepak Sharma;
Vijay Kumar Kutala; Santosh K. Sandur; Vinay Kumar; Antibacterial activity of new structural class
of semisynthetic molecule, triphenyl-phosphonium conjugated diarylheptanoid. Free Radical
Biology and Medicine 2019, 143, 140-145, 10.1016/j.freeradbiomed.2019.08.003.

CCS
microspheres

12.27
mg/mL, 1

mol

S. aureus, E.
coli Planktonic

Zone of
inhibition, MIC

N/R

CS
nanoparticles

1.06 mg/mL S. mutans Planktonic,
Biofilm

MIC 0.114 mg/mL

CS-CMS-MMT
0.0004–
0.004 g

S. mutans Planktonic,
Biofilm

MIC 0.101 mg/mL

CS-GP-CUR
148.09 ±
5.01 µg

S. aureus Planktonic

Zone of
inhibition,

tissue
bacteria count

N/C

PVA-CS-CUR N/C

E. coli, P.
aeruginosa, S.

aureus, B.
subtilis

Planktonic
Zone of

inhibition
N/R

PVA-CS-CUR
10, 20, 30

mg

P. multocida, S.
aureus, E. coli,

B. subtilis
Planktonic

Zone of
inhibition

10, 20, 30 mg

CS NPs 2, 4, 8, 16%
C. albicans, S.

aureus
Planktonic,

Biofilm
MIC, Colony

count
400 mg/mL

CS NPs 4 mg/mL HCV-4 N/R
Antiviral
assay

15 µg/mL

CS/milk protein
nanocomposites

100 mg PVY
Plant

infection
Antiviral
activity

500, 1000,
1500 mg/100

mL

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Type of
Polymeric

DDS

[CUR]
Formulation Microorganism Type of Culture Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference

PEG 400γ-CD
and PEG + β-

CD
0.18%

E. faecalis, E.
coli Planktonic

CFU/mL
aPDT

N/R
9.7 J/cm 29

J/cm

2 

2
[154]
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47. Prince Kumar; Shamseer Kulangara Kandi; Kasturi Mukhopadhyay; Diwan S. Rawat; Gagandeep;
Synthesis of novel monocarbonyl curcuminoids, evaluation of their efficacy against MRSA,
including ex vivo infection model and their mechanistic studies. European Journal of Medicinal
Chemistry 2020, 195, 112276, 10.1016/j.ejmech.2020.112276.

48. Carlos R. Polaquini; Luana G. Morão; Ana C. Nazaré; Guilherme S. Torrezan; Guilherme Dilarri;
Lúcia B. Cavalca; Débora L. Campos; Isabel Silva; Jesse Augusto Pereira; Dirk-Jan Scheffers; et
al.Cristiane DuqueFernando PavanHenrique FerreiraLuis O. Regasini Antibacterial activity of 3,3′-
dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorganic Chemistry 2019,
90, 103031, 10.1016/j.bioorg.2019.103031.

49. Milena Mattes Cerveira; Helena Silveira Vianna; Edila Maria Kickhofel Ferrer; Bruno Nunes da
Rosa; Claudio Martin Pereira de Pereira; Matheus Dellaméa Baldissera; Leonardo Quintana
Soares Lopes; Virginia Cielo Rech; Janice Luehring Giongo; Rodrigo De Almeida Vaucher; et al.
Bioprospection of novel synthetic monocurcuminoids: Antioxidant, antimicrobial, and in vitro
cytotoxic activities. Biomedicine & Pharmacotherapy 2020, 133, 111052, 10.1016/j.biopha.2020.1
11052.

50. Michal Duracka; Norbert Lukac; Miroslava Kacaniova; Attila Kantor; Lukas Hleba; Lubomir
Ondruska; Eva Tvrda; Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced
Bacteriospermia by Enterococcus Faecalis in Rabbit Semen. Molecules 2019, 24, 4329, 10.3390/
molecules24234329.

51. Marisol Porto Rocha; Mariana Sousa Santos; Paôlla Layanna Fernandes Rodrigues; Thalita
Santos Dantas Araújo; Janeide Muritiba de Oliveira; Luciano Pereira Rosa; Vanderlei Salvador
Bagnato; Francine Cristina da Silva; Photodynamic therapy with curcumin in the reduction of
enterococcus faecalis biofilm in bone cavity: rMicrobiological and spectral fluorescense analysis.
Photodiagnosis and Photodynamic Therapy 2021, 33, 102084, 10.1016/j.pdpdt.2020.102084.

52. Shamil Rafeeq; Setareh Shiroodi; Michael H. Schwarz; Nitin Nitin; Reza Ovissipour; Inactivation
of Aeromonas hydrophila and Vibrio parahaemolyticus by Curcumin-Mediated Photosensitization
and Nanobubble-Ultrasonication Approaches. Foods 2020, 9, 1306, 10.3390/foods9091306.

53. Sivadas Ganapathy; Shan Sainudeen; Veena S Nair; Mohammad Zarbah; Anshad Mohamed
Abdulla; Chawre Mustufa Najeeb; Can herbal extracts serve as antibacterial root canal irrigating
solutions? Antimicrobial efficacy of Tylophora indica, Curcumin longa, Phyllanthus amarus, and
sodium hypochlorite on Enterococcus faecalis biofilms formed on tooth substrate: In vitro study.
Journal of Pharmacy And Bioallied Sciences 2019, 12, 423-S429, 10.4103/jpbs.jpbs_127_20.

54. Arash Azizi; Parastoo Shohrati; Mehdi Goudarzi; Shirin Lawaf; Arash Rahimi; Comparison of the
effect of photodynamic therapy with curcumin and methylene Blue on streptococcus mutans
bacterial colonies. Photodiagnosis and Photodynamic Therapy 2019, 27, 203-209, 10.1016/j.pdpd
t.2019.06.002.

CUR-NP
without
polymer

100 mg

S. aureus, B.
subtillis, E. coli,
P. aeruginosa,
P. notatum, A.

niger

Planktonic
MIC Inhibition

zone
100 mg, 0.27

mmol
-

CUR-NP
without
polymer

100 mg
M. lutues, S.

aureus, E. coli,
P. aeruginosa

Planktonic MBC N/R -

Mixed
polymer NP

5 mM E. coli Planktonic MIC 400–500 μM -

CTABTween
20Sodium

dodecylsulfate
100 mg/mL

L.
monicytogenes Planktonic

Inhibition
zone

N/R -

PLA/dextran
sulfate

4 mg/mL
MRSA, C.

albicans, S.
mutans

Planktonic/mono-
and –mixed

biofilm
aPDT 260 μM 43.2 J/cm

PLA/dextran
sulfate

0.4% C. albicans Animal model aPDT 260 μM 37.5 J/cm

Nanocurcumin N/R
P. aeruginosa
(isolates) and

standard strain
Planktonic MIC 128 µg/mL -

PLGA 5 mg

S.
saprophyticus
subsp. Bovis,

E. coli

Planktonic aPDT 50 µg/mL 13.2 J/cm

Eudragit L-
100

N/C
L.

monocytogenes Planktonic
Animal model

infection
N/R -

nCUR N/R S. mutans PlanktonicBiofilm
Inhibition

zoneaPDT
N/R 300–420 J/cm

nCUR
combined with
indocyanine

100 mg E. faecalis Biofilm
Metabolic

activity
N/R 500 mW/cm

PVAc-CUR-
PET-PVDC

0.02 g
S. aureus, S.
tiphimurium Planktonic aPDT N/R

24, 48, and 72
J/cm

MOA.CUR-
PLGA-NP

Up to 10% S. mutans Biofilm aPDT 7% wt 45 J/cm

CS- β-CD N/C
S. aureus, E.

coli Planktonic Colony count Up to 0.03% -
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[156]

[157]

[158]

2 [159]

2 [160]

[161]

2 [162]

[163]

2 [164]

2 [165]

2
[166]
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[CUR]: CUR concentration. -: not performed. N/R: not reported. N/C: not clear.

3.8. CUR with Metallic Nanoparticles

Metal complexation plays an important role in the therapeutic properties of CUR. The β-diketone moiety in the CUR

chemical structure enables it to form complexes with metal ions . A previous review summarized the

antimicrobial activity of CUR and curcuminoid complexes with metals, such as boron, Ca , Cd , Cr , Co , Cu ,

Fe , Ga , Hg , In , Mn , Ni , Pd , Sn , Y , and Zn  against viruses, bacteria, and fungi . Metals have

also been combined with polymers to improve the biological effects of CUR and to be used as films, hydrogels,

dressings, and other pharmaceutical formulations . In this context, silver NPs (AgNPs) have been

extensively used due to their antimicrobial activity (Figure 6) . Antimicrobial studies with CUR complexes with

metals are summarized in Table 8.

Figure 6. Schematic representation of CUR in silver nanoparticles.

Table 8. Antimicrobial studies performed with CUR complexes with metallic NPs.

55. Jennifer Machado Soares; Karoliny Oliveira Ozias Silva; Natalia Mayumi Inada; Vanderlei
Salvador Bagnato; Kate Cristina Blanco; Optimization for microbial incorporation and efficiency of
photodynamic therapy using variation on curcumin formulation. Photodiagnosis and
Photodynamic Therapy 2020, 29, 101652, 10.1016/j.pdpdt.2020.101652.

56. Daniela Alejandra Cusicanqui Méndez; Eliezer Gutierrez; Giuliana Campos Chaves Lamarque;
Veridiana Lopes Rizzato; Marília Afonso Rabelo Buzalaf; Maria Aparecida Andrade Moreira
Machado; Thiago Cruvinel; The effectiveness of curcumin-mediated antimicrobial photodynamic
therapy depends on pre-irradiation and biofilm growth times. Photodiagnosis and Photodynamic
Therapy 2019, 27, 474-480, 10.1016/j.pdpdt.2019.07.011.

57. Xinlong Li; Luoping Yin; Gordon Ramage; Bingchun Li; Ye Tao; Qinghui Zhi; Huancai Lin; Yan
Zhou; Assessing the impact of curcumin on dual‐species biofilms formed by Streptococcus
mutans and Candida albicans. MicrobiologyOpen 2019, 8, e937, 10.1002/mbo3.937.

58. Marzie Mahdizade-Ari; Maryam Pourhajibagher; Abbas Bahador; Changes of microbial cell
survival, metabolic activity, efflux capacity, and quorum sensing ability of Aggregatibacter
actinomycetemcomitans due to antimicrobial photodynamic therapy-induced bystander effects.
Photodiagnosis and Photodynamic Therapy 2019, 26, 287-294, 10.1016/j.pdpdt.2019.04.021.

59. Hui Pan; Dongqing Wang; Fengqiu Zhang; In vitro antimicrobial effect of curcumin-based
photodynamic therapy on Porphyromonas gingivalis and Aggregatibacter
actinomycetemcomitans. Photodiagnosis and Photodynamic Therapy 2020, 32, 102055, 10.1016/
j.pdpdt.2020.102055.

60. Sarah Böcher; Johannes-Simon Wenzler; Wolfgang Falk; Andreas Braun; Comparison of different
laser-based photochemical systems for periodontal treatment. Photodiagnosis and Photodynamic
Therapy 2019, 27, 433-439, 10.1016/j.pdpdt.2019.06.009.

61. Lucas Henrique De Paula Zago; Sarah Raquel de Annunzio; Kleber Thiago de Oliveira; Paula
Aboud Barbugli; Belen Retamal Valdes; Magda Feres; Carla Raquel Fontana; Antimicrobial
photodynamic therapy against metronidazole-resistant dental plaque bactéria. Journal of
Photochemistry and Photobiology B: Biology 2020, 209, 111903, 10.1016/j.jphotobiol.2020.11190
3.

62. Aram Mohammed Sha; Balkees Taha Garib; Aram Sha; Antibacterial Effect of Curcumin against
Clinically Isolated Porphyromonas gingivalis and Connective Tissue Reactions to Curcumin Gel in
the Subcutaneous Tissue of Rats.. BioMed Research International 2019, 2019, 6810936-14, 10.1
155/2019/6810936.

63. Camila Ayumi Ivanaga; Daniela Maria Janjacomo Miessi; Marta Aparecida Alberton Nuernberg;
Marina Módolo Claudio; Valdir Gouveia Garcia; Leticia Helena Theodoro; Antimicrobial
photodynamic therapy (aPDT) with curcumin and LED, as an enhancement to scaling and root
planing in the treatment of residual pockets in diabetic patients: A randomized and controlled split-
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2+ 2+ 3+ 2+ 2+

3+ 3+ 2+ 3+ 2+ 2+ 2+ 2+ 3+ 2+ [169]

[170][171]
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Type of
Metallic
Material

[CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR] Reference

CUR-AgNPs 20 mg/mL

P. aeruginosa,
E. coli, B.
subtilis, S.

aureus

Planktonic MIC 20 mg/mL

Ag-CUR-
nanoconjugates

0.1 mM E. coli,
Salmonella

Planktonic Zone of
Inhibition

0.1 mM

[173]
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mouth clinical trial. Photodiagnosis and Photodynamic Therapy 2019, 27, 388-395, 10.1016/j.pdp
dt.2019.07.005.

64. Francine Cristina Da Silva; Luciano Pereira Rosa; Gabriel Pinto De Oliveira Santos; Natália
Mayumi Inada; Kate Cristina Blanco; Thalita Santos Dantas Araújo; Vanderlei Salvador Bagnato;
Total mouth photodynamic therapy mediated by blue led and curcumin in individuals with AIDS.
Expert Review of Anti-infective Therapy 2020, 18, 689-696, 10.1080/14787210.2020.1756774.

65. Veena S Narayanan; Sunil Muddaiah; R Shashidara; U S Sudheendra; N C Deepthi; Lakshman
Samaranayake; Variable antifungal activity of curcumin against planktonic and biofilm phase of
different candida species.. Indian Journal of Dental Research 2019, 31, 145-148, 10.4103/ijdr.IJD
R_521_17.

66. Yulong Tan; Matthias Leonhard; Doris Moser; Su Ma; Berit Schneider-Stickler; Antibiofilm efficacy
of curcumin in combination with 2-aminobenzimidazole against single- and mixed-species biofilms
of Candida albicans and Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces 2019,
174, 28-34, 10.1016/j.colsurfb.2018.10.079.

67. Francine Cristina da Silva; Paôlla Layanna Fernandes Rodrigues; Thalita Santos Dantas Araújo;
Mariana Sousa Santos; Janeide Muritiba de Oliveira; Luciano Pereira Rosa; Gabriel Pinto De
Oliveira Santos; Bruno Pereira de Araújo; Vanderlei Salvador Bagnato; Fluorescence
spectroscopy of Candida albicans biofilms in bone cavities treated with photodynamic therapy
using blue LED (450 nm) and curcumin. Photodiagnosis and Photodynamic Therapy 2019, 26,
366-370, 10.1016/j.pdpdt.2019.05.002.

68. Jing Ma; Hang Shi; Hongying Sun; Jiyang Li; Yu Bai; Antifungal effect of photodynamic therapy
mediated by curcumin on Candida albicans biofilms in vitro. Photodiagnosis and Photodynamic
Therapy 2019, 27, 280-287, 10.1016/j.pdpdt.2019.06.015.

69. Cláudia Carolina Jordão; Tábata Viana de Sousa; Marlise Inêz Klein; Luana Mendonça Dias; Ana
Cláudia Pavarina; Juliana Cabrini Carmello; Antimicrobial photodynamic therapy reduces gene
expression of Candida albicans in biofilms. Photodiagnosis and Photodynamic Therapy 2020, 31,
101825, 10.1016/j.pdpdt.2020.101825.

70. Elisabetta Merigo; Marlène Chevalier; Stefania Conti; Tecla Ciociola; Carlo Fornaini; Maddalena
Manfredi; Paolo Vescovi; Alain Doglio; Antimicrobial effect on Candida albicans biofilm by
application of different wavelengths and dyes and the synthetic killer decapeptide KP. LASER
THERAPY 2018, 28, 180-186, 10.5978/islsm.28_19-OR-14.

71. Yuliana Vega-Chacón; Maria Carolina de Albuquerque; Ana Cláudia Pavarina; Gustavo Henrique
Goldman; Ewerton Garcia De Oliveira Mima; Verapamil inhibits efflux pumps in Candida albicans,
exhibits synergism with fluconazole, and increases survival of Galleria mellonella. Virulence 2020,
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spp., Fusarium
spp., S. aureus

AgCURNPs 500 mg
P. aeruginosaS.

aureus Biofilm CLSM SEM
Up to 400

μg/mL

AgNPs 7 mg E. coli Planktonic
Turbidimetric

Assay
0.005 µM

cAgNPs 7 mg E. coliB. subtilis Planktonic MIC, CFU/mL 7 mg

Ru II complex 0.092 g

E. coli, S.
aureus, K.

pneumoniae, A.
baumannii, P.
aeruginosa,

Enterococcus
sp.

Plakntonic MIC/FICI >64 µg/mL

SCMC SNCF
nanocomposites

with CUR
0.25 mg/mL E. coli Planktonic

Disc Method
Count Method

2 mg/mL

CSCL CUR-
AgNP

0.092 g
E. coli, B.

subtilis Planktonic
Zone of

Inhibition
10 and 20 μM

nSnH 10%
S. aureus, E.

coli. Planktonic CFU/mL N/R

Nanocomposite
of CUR and

ZnO NPs
N/C

S. epidermidis,
S. hemolyticus,

S.
saprophyticus

Planktonic
Zone of

Inhibition

1000, 750,
500, 250
μg/mL

Thermo-
responsive
hydrogels

N/C
S. aureusP.

aeruginosaE.
coli

Planktonic MIC 400 μg/mL

CUR-AgNPs 5 mg/mL

C. albicans, C.
glabrata, C.
tropicalis, C.

parapsilosis, C.
krusei, C. kefyr

Planktonic
Zone of

Inhibition, MIC
32.2–250

μg/mL

Gel-CUR-Ag 20 mg
P. aeruginosa,

S. aureus Planktonic MIC, MBC 20 mg

HGZ-CUR N/C
S. aureus, T.

rubrum Planktonic
Zone of

Inhibition
N/C

CHG-ZnO-CUR N/C
S. aureus, T.

rubrum Planktonic
Zone of

Inhibition
N/C
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[CUR]: CUR concentration. N/R: not reported. N/C: not clear.

3.9. CUR in Mesoporous Particles

Porous materials are structures with ordered pores ranging from nanometer to micrometers, which are classified as

microporous (less 2 nm), mesoporous (from 2 up to 50 nm), and macroporous (above 50 nm) . Porous

materials can be synthesized using carbon, silica, and metal oxides . Mesoporous silica nanoparticles (MSN,

Figure 7) are inorganic scaffolds , which seemed ideal carriers for hydrophobic drugs due to their well-defined

structure, large specific surface area, and versatile chemistry for functionalization . The pore size and volume

and the surface area, as well as the surface functionalization of the mesoporous material, determine the drug load

and release . Moreover, mesoporous materials can be modified or functionalized to control drug release under

environmental stimuli, such as pH, temperature, or light. These stimuli-responsive DDS, or smart DDS, prevent

undesirable drug release before reaching the target tissue (“zero premature release”) . Antimicrobial studies

with CUR in porous DDSs are summarized in Table 9.
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Figure 7. Schematic representation of a porous particle.

Table 9. Antimicrobial studies performed with CUR in porous DDSs.

[CUR]: CUR concentration. -: not performed. N/R: not reported.

3.10. CUR in Quantum Dots

Quantum dots (QDs) are semiconductor particles at nanosize (up to 10 nm) with electrical and photoluminescence

properties of biotechnological and biomedical applications, such as bioimaging and DDS . Carbon dots are

divided into carbon QD and graphene QD and are produced by top-down and bottom-up methods using bulk

carbon material and molecular precursors, respectively . Antimicrobial studies with CUR in QDs are

summarized in Table 10.

Table 10. Antimicrobial studies performed with CUR in quantum dots (QDs).
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