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Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to

absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy

(aPDT). 
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1. Introduction

The global changes arising from globalization and climate change have a profound impact on human health, including

infectious diseases . The increased mobility of people, urbanization, greenhouse-gas emissions, pollution,

deforestation, global warming, loss of sea ice, sea-level rise, extreme weather events with droughts and flood, etc., have

all contributed to affect the transmission, prevalence, and spread of existing infections, such as vector-borne diseases,

and the emergence of new pathogens  . In some cases, these infections have resulted in epidemics such as dengue

and pandemics such as COVID-19, which the world is currently facing .

Notwithstanding the existence of anti-infective medications, other current concerns are the drug resistance arising from

the misuse of antimicrobial agents and the emergence of multidrug-resistant species . These problems are a challenge

for humanity, especially when considering that the development of new drugs demands time and money. Thus, the

repurposing of existing medications and alternative therapies, such as natural substances, has been investigated .

Curcumin (CUR) is a yellow dye (diferuloylmethane—a natural polyphenol) found in turmeric (Curcuma longa), which is a

plant native to India and Southeast Asia. Beyond its culinary use as food flavoring and coloring, CUR also has a potential

application in medicine due to its therapeutic properties, which include antioxidant, anticancer, anti-inflammatory, and

antimicrobial effects . CUR is not toxic and, according to the Food and Drug Administration, it is “Generally Recognized

as Safe” . The literature shows a plethora of studies reporting the biological and pharmacological features of CUR on

health. Comprehensive reviews are available on the anticancer , anti-inflammatory , and antimicrobial  effects of

CUR.

Nonetheless, CUR is not soluble in water, unstable in solutions, and shows low bioavailability, poor absorption, and rapid

elimination from the body . For these reasons, organic solvents such as ethanol, methanol, acetone, and dimethyl

sulfoxide (DMSO) have been used to solubilize CUR . These drawbacks hinder the in vivo use of CUR as a therapeutic

agent. Thus, some approaches have been used to overcome the problems of CUR, such as the use of adjuvants and

drug delivery systems. Piperine, a substance derived from black pepper, and lecithin, a phospholipid, have been

associated with CUR to improve its bioavailability by blocking the metabolism of CUR and enhancing its gastrointestinal

absorption . Additionally, drug delivery systems have been used to solubilize CUR and protect it from degradation until

it reaches the target tissue, where CUR is sustainably released .

Nanotechnology has been a promising field in medicine (nanomedicine). Nanoscale structures show intrinsic physical and

chemical properties, which have been exploited as diagnostic and therapeutic tools . The present study reviews the

drug delivery systems (DDS) used for CUR, aiming at its antimicrobial effect. Although comprehensive reviews about the

antimicrobial effect of CUR (encapsulated or not) are found elsewhere , they describe only the antibacterial

and antifungal activities of CUR in DDSs . Our review summarizes the DDSs used for CUR as an antiviral, antibacterial,

and antifungal agent, encompassing different nanosystems (colloids and metals) and the relevant issues of antimicrobial

resistance and the emergence of new pathogens.

2. Free CUR

The broad-spectrum activity of CUR as an antibacterial, antifungal, and antivirus agent was reviewed previously .

Thus, this section reviews recent studies not covered by these reviews about the antimicrobial activity of free (non-

encapsulated) CUR (Table 1) before reporting the DDS used for CUR.

Table 1. In vitro and in vivo studies using free CUR and curcuminoids as antimicrobial.
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Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/U
Parame

DMSO (0.4%)
ZIKV

Cell infection
IC

5.62–16.57 µM
>DGEV >IC

N/R
HPVA

Cell infection Viral survival 0.015 mg/mL
Tulane V

N/R KSPV Infected cells EC Up to 6.68 µM

Aqueous Piper
nigrum seed

extract
SARS-CoV-2 Cell infection IC  Plaque

reduction 0.4 µg/mL

DMSO (<0.4%) SARS-CoV-1 Cell infection Inhibiton of viral
replication 20 µM

N/R SARS-CoV In vitro Viral inhibition 23.5 µM

N/R SARS-CoV In vitro papain-like
inhibition 5.7 µM

DMSO (1 w/v)
S. aureus

Planktonic Inhibition zone
MIC

600 and

E. coli 400 µg/mL

DMSO MRSA Planktonic MIC
FICI 15.5 µg/mL

N/R

S. aureus

Planktonic Colony count 100 µg/mL 8 oMSSA

MRSA

DMSO (10%) S. aureus Biofilm aPDT 20, 40, and 80 µM 5.

DMSO VRSA Biofilm/animal infection model MIC
MBC 156.25 µg/mL 2

N/R S. aureus Animal infection model aPDT 78 µg/mL 6

DMSO S. aureus Infected fruit Survival fraction 100 nM 1.5 a

N/R
S. aureus

Planktonic PDI 40 and 80 µM 1
E. coli

Tween 80
(0.5%) S. aureus Planktonic CFU/mL 300 and 500 µM 0.03–

N/R S. aureus Biofilm Confocal
microscope N/R 170 

DMSO (0.5%) S. aureus Biofilm
SDT

aPDT
SPDT

80 µM
15 an

100 H

DMSO E. coli Planktonic MIC
Inhibition zone

110, 220 and 330
µg/mL

DMSO E. coli Planktonic OD 8,16, 32, and 64
µg/mL

N/R
S. dysenteriae

Planktonic MIC/MBC
256 and

C. jejuni 512 µg/mL

Edible alcohol E. coli Planktonic aPDT 5, 10, and 20 µM 3

DMSO H. pylori Planktonic biofilm
MIC
MBC
aPDT

50 µg/mL 10

DMSO P. aeruginosa Biofilm aPDT
CFU/mL N/R 5 an

DMSO Imipenem-resistant
A. baumannii Planktonic aPDT 25, 50, 100, and

200 µM 5

50

90

50

50

600nm



Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/U
Parame

DMSO (2%) P. aeruginosa, A. baumannii, K.
pneumoniae, E. coli, E. faecalis Planktonic MIC/FICI 128-256 µg/mL

N/R C. difficile, C. sticklandii, B. fragilis,
P. bryantii Planktonic Viable cell

number 10 µg/mL

N/R B. subtillis, E. coli, S. carnosus, M.
smegmatis Planktonic MIC/MBC Up to 25 µM

N/R

MRSA

Planktonic/animal infection model MIC

4–16 μg/mL

MSSA 2–8 μg/mL

E. coli 8–32 μg/mL

N/R E. faecalis, S. aureus, B. subtillis,
P. aeruginosa, E. coli Planktonic MIC 156 μg/mL

DMSO (0.5%)
A. hydrophila, E. coli

E. faecalis, K. pneumoniae, P.
aeruginosa, S. aureus, C. albicans

Planktonic MIC/MBC/
FICI/aPDT 37.5–150 µg/mL

N/R E. faecalis Infection model CFU/mL 1 µg/mL

Commercial
solution E. faecalis Biofilm aPDT 1.5 g/mL 20

Ethanol 99% A. hydrophila, V. parahaemolyticus Planktonic aPDT/SDT Up to 15 mg/L

DMSO (10%) E. faecalis Biofilm MIC/MBC 120 mg/mL

N/R S. mutans Planktonic aPDT 10 g/100cc

DMSO: ethyl
alcohol S. mutans, S. pyogenes Planktonic aPDT 3 mg/mL 28

DMSO (0.8%) Caries isolated Biofilm aPDT 600 µg/mL 7

DMSO S. mutans, C. albicans Biofilm single/dual MBEC 0.5 mM

DMSO (0.05 M) A. actinomycetemcomitans Planktonic aPDT 40 µg/mL 300–

DMSO (<1%) P. gingivalis, A.
actinomycetemcomitans Planktonic aPDT 20 µg/mL 6, 12 

DMSO (0.5%)

P. gingivalis, A.
actinomycetemcomitans, C. rectus,

E. corrodens, F. nucleatum, P.
intermedia, P. micra, T. denticola, T.

forsythis

Biofilm aPDT 100 mg/L

N/R Subgingival plaque Biofilm aPDT 100 µg/mL 3

DMSO P. gingivalis Planktonic MIC 12.5 µg/mL

Ethanol: DMSO
(99.9%: 0.1%) Periodontal pocket - aPDT 100 mg/mL 7.

Tween 80
Streptococcus spp,

Staphylococcus spp,
Enterobacteriaceae, C. albicans

Clinical trail aPDT 0.75 mg/mL 20

Sodium
hydroxide:

PBS

C. albicans, C. parapsilosis, C.
glabrata, C.dubliniensis Planktonic/biofilm MIC 0.1–0.5 mg/mL

N/R C. albicans, S. aureus Planktonic
Biofilm

MIC/Biofilm
percentag 200 µg/mL

N/R C. albicans Biofilm aPDT 1.5 g/mL 20

DMSO (10%) C. albicans Biofilm aPDT 20, 40, 60 and 80
µM

2.64
10.56, a

DMSO (1%) C. albicans Biofilm aPDT 40 and 80 mM 37.5 a

N/R C. albicans Biofilm aPDT 100 µM 1



Solvent Microorganism Culture Antimicrobial
Method

CUR
Concentration

Light/U
Parame

DMSO (2.5%)

Fluconazole-resistant C. albicans

Planktonic/biofilm/infection model MIC/
aPDT

40 µM 5.

Fluconazole-susceptible C.
albicans 80 µM 40

DMSO C. albicans, F. oxysporum, A.
flavus, A. niger, C. neoformans Planktonic MIC 137.5–200 μg/mL

2.1. Antiviral Activity

The antiviral activity of CUR has been described against enveloped and non-enveloped DNA and RNA viruses, such as

HIV, Zika, chikungunya, dengue, influenza, hepatitis, respiratory syncytial viruses, herpesviruses, papillomavirus,

arboviruses, and, noroviruses . The action mechanism of CUR involves the inhibition of viral attachmentand

penetration into the host cell and interference with viral replication machinery and the host cell signaling pathways used

for viral replication. Moreover, CUR works as a virucidal substance, acting on the viral envelope or proteins . CUR

in 0.4%vol/vol DMSO was able to inhibit several strains of the Zika virus, including those causing human epidemics,

inhibiting the viral attachment to the host cell . The inhibitory effect was potentiated when CUR was combined with

gossypol, which is another natural product. CUR also inhibited human strains of the dengue virus . The combination of

CUR with heat treatment reduced the time and temperature needed for inactivating the foodborne enteric virus (hepatitis A

virus and Tulane virus—a cultivable surrogate of the human norovirus) . CUR was able to inhibit the lytic replication of

Kaposi’s sarcoma-associated herpesvirus (KSHV) as well as reduce its pathogenesis (neoangiogenesis and cell

invasionof KSHV-infected mesenchymal stem cell from the periodontal ligament) .

While the antiviral effect of CUR has been experimentally demonstrated, the effect of CUR against the new severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, has been predicted by in silico

studies using computational techniques, such as molecular docking . These in silico studies

showed the binding affinity of CUR to the spike protein of SARS-CoV-2 and the human receptors of the host cell, which

could inhibit the viral infection into the human cells. The targets to which CUR may bind are the viral non-structural protein

9 (Nsp9)  and 15 (Nsp15) , main proteases of SARS-CoV-2 (important for viral replication) , receptor-binding

domains (RBD) of the viral spike protein [76,78,82], human cell receptors angiotensin-converting enzyme2 (ACE2) ,

and glucose-regulating protein 78 (GRP78) , as well as the RBD/ACE complex . Nevertheless, a virtual screening

evaluated the interaction between potential functional foods and the main protease of SARS-CoV-2 and found that CUR

showed lower docking affinity than flavonoids, vitamin, and β-sitosterol . Omics approaches have been studied to

identify infection pathways and propose drugs that could target these pathways. Thus, an integrative multiomics

(interactome, proteome, transcriptome, andbibliome) analysis identified biological processes and SARS-CoV-2 infection

pathways and proposed CUR as a potential prophylactic agent for blocking the SARS-CoV-2 infection .Although most

investigations have evaluated the potential of CUR against SARS-CoV-2 by computational simulations, an in vitro study

showed that an immunomodulatory herbal extract composed of CUR and piperine presented a virucidal effect (viral

inhibitionof up to 92%) on SARS-CoV-2 . Other in vitro studies showed the ability of CUR to inhibit its viral predecessor

—the SARS-CoV-1 . CUR in DMSO (<0.4%) inhibited by 25–50% the cytopathogenic effect of SARS-CoV-1 on Vero

E6 cells and by 50% the viral replication and 3CL protease (main protease) . Another study used CUR as a positive

control for 3CL protease inhibition . CUR also inhibited the papain-like protease, which is another protease used for

SARS-CoV replication .

2.2. Antibacterial Activity

The antibacterial effect of CUR has been demonstrated against Gram-positive and Gram-negative species, including

strains responsible for human infections and showing antibiotic resistance . CUR also inhibits bacterial

biofilms, which are communities of cells embedded in a self-produced polymeric matrix tolerant to antimicrobial treatments

. The antibacterial mechanism of action of CUR involves damage to the cell wall or cell membrane,

interference on cellular processes by targeting DNA and proteins, and inhibition of bacterial quorum sensing

(communication process mediated by biochemical signals that regulate cell density and microbial behavior) . Moreover,

CUR affected the L-tryptophan metabolism in Staphylococcus aureus (Gram-positive) but not in Escherichia coli (Gram-

negative), produced lipid peroxidation, and increased DNA fragmentation in both bacteria . These results, along with

the increased levels of total thiol and antioxidant capacity observed after bacterial cells were treated with CUR, suggested

that oxidative stress may be the mechanism of antibacterial action of CUR .Therefore, these multiple targets make

CUR an interesting option for antibiotic-resistant strains. CUR is effective in killing methicillin-resistant S. aureus (MRSA),

which is a concerning pathogen responsible for nosocomial and community-associated infections . CUR and another

polyphenol, quercetin, inhibited the growth of MRSA and their combinationwas synergistic . Moreover, CUR absorbs

blue light (400–500 nm) and is used as anatural photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT) .

CUR-mediated aPDT reduced the viability of reference strain of S. aureus and clinical isolates of methicillin-sensitive S.
aureus (MSSA) and MRSA by 4 log , while CUR alone reduced their survival by 2 log  . The aPDT mediated by CUR

in 10% DMSO reduced the biofilm viability of S. aureus and MRSA by 3 and 2 log , respectively, and their

metabolicactivity by 94% and 89%, respectively . The antibiofilm activity of CUR-mediated aPDT was also observed
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against clinical isolates of vancomycin-resistant S. aureus (VRSA),with reductions of 3.05 log  in biofilm viability, 67.73%

in biofilm biomass, and 47.94% in biofilm matrix . Additionally, aPDT resulted in the eradication of VRSA in a rat model

of skin infection . The association of CUR-mediated aPDT with artificial skin resulted in a 4.14 log  reduction in S.
aureus from infected wounds in rats .

The combination of CUR and another natural PS, hypocrellin B, increased the photoinactivation of S. aureus compared

with the photodynamic effect of each PS alone . Bacterial cells showed alteration in their membrane integrity and the

dual-PS-mediatedaPDT also decontaminated apples with S. aureus . The CUR-mediated aPDT was also effective in

decontaminating food, reducing the number of S. aureus recovered from meatand fruit . Compared to another natural

PS, aloe-emodin, CUR was less effective inphotokilling S. aureus and E. coli . Three-dimensional _cages fabricated

with CURand resin monomer (pentaerythritol triacrylate) polymerized by infrared light were usedto entrap and kill S.

aureus. Irradiation of µcages for 10 min with visible light resulted in a bacteria mortality rate of 95% . Following the

principles of aPDT, SonodynamicTherapy (SDT) associates a PS (also called sonosensitizer) with ultrasound (US) instead

of light for the treatment of deeper lesions and infections, where light cannot reach .Both aPDT and SDT mediated by

CUR, as well as the combination of both (SPDT, when the PS is activated by light and US simultaneously), reduced the

viability of S. aureus biofilmS. SPDT promoted the highest reduction (3.48 log ), which was potentiated when CUR was

combined with sodium dodecyl sulfate (7.43 log ) . Regarding Gram-negative species, CUR alone was not able to

inhibit the growth of an Enterotoxigenic E. coli, which is a strain that causes severe diarrhea and is resistant to antibiotics

. However, synergism was observed between CUR at 330 µg/mL and antibiotics (Ceftazidime, Amoxicillin/Clavulanic

acid, Cefotaxime, and Ampicillin) . CUR did not affect the growth of enteroaggregative (EAEC) and enteropathogenic

(EPEC) diarrheagenic E. coli but inhibited the secretion and release of their virulence factors, Pet,and EspC, which are

toxins produced by these strains . Conversely, CUR alone and with ampicillin inhibited the growth of other species that

caused diarrhea—Shigella dysenteriae and Campylobacter jejuni, including multidrug-resistant strains . The aPDT

mediated byCUR and light reduced the viability of E. coli by 3.5 log, increased membrane permeabilityof bacteria, and

decontaminated oysters . CUR-mediated aPDT reduced the viability of Helicobacter pylori and its virulence factors

(motility, urease production, adhesion toerythrocytes, and biofilm formation) . On Pseudomonas aeruginosa, aPDT

potentiated the inhibitory effect of CUR, inhibited biofilm formation and matrix production, reduced biofilm thickness, and

downregulated quorum sensing genes . The photoinactivation of imipenem-resistant Acinetobacter baumannii reduced

bacterial viability by 97.5% and shotgun proteomics analysis identified 70 carbonylated proteins modified after CUR

mediated aPDT related to the membrane, translation, and response to oxidative stress .CUR inhibited the growth of

antibiotic-resistant P. aeruginosa, A. baumannii, and Klebsiella pneumoniae isolated from burn wound infections and

showed synergism with meropenem . On gastrointestinal bacteria of human and bovine origin, CUR inhibited

Firmicutes (Clostridioides difficile and Acetoanaerobium (Clostridium) sticklandii) but did not affect Bacteroidetes

(Bacteroides fragilis and Prevotella bryantii) . CUR was conjugated to triphenyl phosphonium resulting in a compound

named Mitocurcumin, which inhibited the growth of Bacillus subtilis, E. coli, Staphylococcus carnosus, and Mycobacterium
smegmatis, and induced morphological changes in B. subtilis . Seventeen synthesized monocarbonyl curcuminoids

showed high antibacterial activity against MSSA and MRSA and moderate activity against E. coli . The four most

effective curcuminoids were bacteriostatic at low concentrations and bactericidal at high concentrations against MRSA,

which showed membrane damage. In an ex vivo mammalian co-culture infection model,two curcuminoids decreased the

viability of MSSA internalized in the fibroblasts . One of thirteen synthesized curcuminoids, 3,30-dihydroxycurcumin,

showed antibacterial activity against S. aureus, B. subtilis, Enterococcus faecalis, and Mycobacterium tuberculosis, and

produced membrane damage on B. subtilis . Nonetheless, all the synthesized curcuminoids were not effective against

Gram-negative species (P. aeruginosa and E. coli) . CUR analogs (monocurcuminoids, MC) were synthesized and

showed higher, lower, or similar antimicrobial activity than CUR against Aeromonas hydrophila, E. coli, E. faecalis, K.
pneumoniae, P. aeruginosa, S. aureus, and the yeast Candida albicans . Two MC and turmeric powder presented

synergism against A. hydrophila, P. aeruginosa, and C. albicans. When aPDT was performed with UV light, two MC-

mediated aPDT decreased the growth of E. faecalis, E. coli, and S. aureus, while aPDT with another MC and CUR

increased the growth of A. hydrophila, E. faecalis, S. aureus, C. albicans, and P. aeruginosa . CUR was more effective

than other natural biomolecules (quercetin and resveratrol) in inhibiting thegrowth of E. faecalis in spermatozoa from

rabbits, but less effective than antibiotics . CUR-mediated aPDT also reduced the viability of E. faecalis biofilms grown

in bovine bone cavities for 14 days by 1.92 log  . The aPDT and the combination of a nanobubble solution and the US

reduced the viability of the aquatic pathogens Aeromonas hydrophila and Vibrio parahaemolyticus .

CUR and aPDT have been used for dental infections and oral diseases. The Curcuma longa extract decreased the

viability of 3-week-old E. faecalis biofilms formed on the root canal surface of human teeth . The aPDT mediated by

CUR and continuous laser irradiationeradicated planktonic cultures of Streptococcus mutans, which is the main etiologic

factor of dental caries . A formulation of syrup with curcuminoids and 30% sucrose wasused as a PS in aPDT, which

reduced the viability of S. mutans, Streptococcus pyogenes, and aclinical isolate from a patient with pharyngotonsillitis .

Microbial samples from carious dentin were grown as microcosm biofilm and submitted to CUR-mediated aPDT, which

reduced the vitality of 3-  and 5-day-old biofilms . CUR alone decreased the biomass and the viability of mono- and

dual-species biofilms of S. mutans and C. albicans, as well as the production of biofilm matrix and the expression of

genes related to glucosyltransferaseand quorum sensing of S. mutans, and the adherence of C. albicans .The

therapeutic effect of CUR on periodontal diseases was extensively investigated in animal models and clinical trials, which

were reviewed . Beyond its antibacterial activity, CUR-mediated aPDT also produced a bystander effect (behavior

10
[30]

[30]
10

[31]

[32]

[32]

[33]

[34]

[35]

[88]

10

10
[36]

[37]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[47]

[48]

[48]

[49]

[49]

[50]

10
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[89]



change of cellsexposed to treated target cells) on the periodontal pathogen Aggregatibacter actinomycetemcomitans,

reducing its survival, metabolic activity, and the production of quorum sensing molecule . The aPDT with CUR

decreased the growth of both A. actinomycetemcomitans and Porphyromonas gingivalis, which is another pathogenic

periodontal bacterium .Antimicrobial photothermal treatment promoted higher reduction than CUR-mediated aPDT in

the viability of mixed biofilms of periodontal pathogens (P. gingivalis, A. actinomycetemcomitans, Campylobacter rectus,

Eikenella corrodens, Fusobacterium nucleatum, Prevotella intermedia, Parvimonas micra, Treponema denticola, and

Tannerella forsythia) grown on a titanium surface inside artificial periodontal pockets . The aPDT mediated by different

PS (methylene blue, CUR, and chlorin e6) eradicated the planktonic growth and reducedthe biofilm viability of

metronidazole-resistant bacteria from the subgingival plaque .CUR alone inhibited the growth of P. gingivalis and CUR

in gel was biocompatible when evaluated subcutaneously in rats .

A randomized clinical trial showed that CUR-mediated aPDT associated with scaling and root planing improved the clinical

attachment level gain of periodontal pockets in type-2 diabetic patients after three and six months . The aPDT with

CUR and LED applied in the mouth of 30 patients with acquired immune deficiency syndrome (AIDS) reduced the counts

of Streptococcus spp., Staphylococcus spp., and total microorganismsfrom saliva, but not the number of

Enterobacteriaceae and Candida spp. . Additionally,there was no reduction in patients with CD8 lymphocytes lower

than 25% .

2.3. Antifungal Activity

The antifungal activity of CUR has been demonstrated mostly against Candida spp. by many in vitro and few in vivo

studies . CUR inhibited the growth of a reference strainand a clinical isolate of C. albicans, as well as reference strains

of Candida parapsilosis, Candida glabrata, and Candida dubliniensis . When biofilms of both C. albicans strains were

evaluated, CUR reduced only the viability of the standard strain in a concentration-dependent effect, while the antifungal

fluconazole did not inhibit the viability of either strain . CUR and 2-aminobenzimidazole (2-ABI) inhibited the growth and

adhesion of C. albicans and S. aureus to medical-grade silicone . The combination of CUR and 2-ABI enhanced the

inhibition of biofilm formation and reduced the viability of 48 h-old single and dual-species biofilms . The aPDT

mediated by CUR reduced the survival of 14-day-old biofilm of C. albicans in bone cavities, confirmed by fluorescence

spectroscopy . CUR-mediated aPDT reduced the metabolic activity of biofilms of C. albicans reference strain and

clinical isolates from the oral cavity of patients with HIV and lichen planus . Moreover, genes related to hyphae and

biofilm formation were downregulated . The aPDT mediatedby CUR and another PS, Photodithazine®, also resulted in

the downregulation of genes involved in adhesion and oxidative stress response in C. albicans biofilms . CUR alone

and CUR-mediated aPDT, combined or not with an antibody-derived killer decapeptide,reduced the metabolic activity of

an 18 h biofilm of C. albicans . CUR showed synergism with fluconazole and CUR-mediated aPDT inhibited the

planktonic growth and reduced the biofilm viability of fluconazole-resistant C. albicans . CUR-mediated aPDT also

increased the survival of Galleria mellonella infected with fluconazole-susceptible C. albicans, but did not affect the

survival of larvae infected with fluconazole-resistant strain . A library of 2-chloroquinoline incorporated monocarbonyl

curcuminoids (MACs) was synthetized and most of the MACs exhibited strong or moderate antifungal activity compared

with miconazole against C. albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, and Cryptococcus
neoformans . To suggest a possible antifungal mechanism, a moleculardocking analysis showed that MACs had

binding affinity to sterol 14α-demethylase(CYP51), leading to impaired fungal growth .

3. Curcumin in DDSs (Colloidal, Metal, and Hybrid Nanosystems)

3.1. CUR in Micelles

Micelles are aggregates of surfactants or block polymers self-assembled in water solution. They are used as DDSs and

formed by a hydrophilic domain named corona and a hydrophobic domain called core (Figure 1) , which stays in

contact with hydrophobic drugs such as CUR 91]. Micelles have low toxicity, biocompatibility, and sustained release,

which makes them an attractive DDS to carry CUR and to be used in medical applications 91]. Antimicrobial studies with

CUR-loaded micelles are summarized in Table 2.

Figure 1. Schematic representation of: (A) an amphiphilic molecule and (B) an assembled micelle.

Table 2. Antimicrobial studies performed with CUR in micelles.
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Type of
Micelles

[CUR]
Formulation Microorganism Type of

Culture
Antimicrobial
Method

Antimicrobial
[CUR]

Light/Ultrasonic
Parameters Refe

Mixed
polymer
micelles

1000 ppm E. coli, S. aureus, A.
niger Planktonic MIC 350 and 275

µg/mL -

PCL-b-
PAsp and

Ag
2 mg/mL P. aeruginosa, S.

aureus Planktonic OD 8–500 µg/mL -

mPEG-OA 1:10 P. aeruginosa Planktonic MIC 400 µg/mL -

PEG-PCL 10 mg C. albicans Planktonic MIC 256 µg/mL -

PEG-PE 50 mM S. mutans Planktonic SACT 50 mM 1.56 W/cm

DAPMA,
SPD, SPM 0.32 mg/mL P. aeruginosa Planktonic OD  and aPDT 250, 500 nM, 1 µM

and 50, 100 nM 18 and 30 J/cm

P123 0.5% w/V S. aureus Planktonic aPDT 7.80 μmol/L 6.5 J/cm

PCL-b-
PHMG-b-

PCL, STES
10 mg S. aureus,E. coli Planktonic MIC 16 and 32 μg/mL * -

CUR-
PLGA-DEX 1 mg/mL P. fluorescens, P.

putida
Planktonic

biofilm
OD

antibiofilm 0.625–5 mg/mL -

3.2. CUR in Liposomes

Liposomes are biodegradable and biocompatible systems, which consist of hydrophobic and hydrophilic groups (Figure 2)

. The hydrophobic layer is mainly composed of phospholipids and cholesterol molecules. This lipid-based carrier is

suitable for administering water-insoluble drugs, such as CUR . Liposomes are classified into three groups: single

unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles . Drugs encapsulated in liposomes are

protected from chemical degradation and show increased drug solubility . Additionally, liposomes have advantageous

properties such as better penetration into the skin, deposition, anti-melanoma, and antimicrobial activity . Antimicrobial

studies with CUR-loaded liposomes are summarized in Table 3.

Figure 2. Schematic

representation of the liposome structure.

Table 3. Antimicrobial studies performed with CUR in liposomes and solid lipid nanoparticles (SLN).

Type of
Liposomes or
SLN

[CUR]
Formulation Microorganism Type of

Culture
Antimicrobial
Method

Antimicrobial
[CUR] Reference

Lecithin and
cholesterol 0.5 mg/mL

A. sobria, C.
violaceum, A.
tumefaciens

Planktonic
biofilm

MIC,
antibiofilm

420, 400, and
460 μg/mL

      

PCNL 60.65 ± 1.68
µg/µl

B. subtilis, K.
pneumoniae, C.

violaceum, E. coli, M.
smegmatis, A. niger,

C. albicans, F.
oxysporum

Planktonic Disk diffusion
assay N/R

Phosphocolines 100:1 M S. aureus Planktonic MIC 7 μg/mL

PLGA:
triglycerides: F68 0.8 mg/mL

E. coli, S.
typhimurium, P.

aeruginosa, S. aureus,
B. sonorensis, B.

licheniformis

Planktonic MIC 75 and 100
μg/mL

Soya lecithin and
menthol 0.5 mg/mL MRSA Planktonic,

Biolfim

MIC,
microscopy,

biomass

10 and 125
µg/mL

600nm

2

600nm
2

2

600nm
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Type of
Liposomes or
SLN

[CUR]
Formulation Microorganism Type of

Culture
Antimicrobial
Method

Antimicrobial
[CUR] Reference

Lecithin and
cholesterol 0.5 mg/mL

A. sobria, C.
violaceum, A.
tumefaciens

Planktonic
biofilm

MIC,
antibiofilm

420, 400, and
460 μg/mL       

CurSLN 60 mg/500
mg lipid

S. aureus, S. mutans,
V. streptococci, L.

acidophilus, E. coli, C.
albicans

Planktonic MIC, MBC 0.09375–3 and
1.5–6 mg/mL

[CUR]: CUR concentration. N/R: not reported.

3.3. CUR in Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLN, Figure 3, Table 3) are a modern type of lipid-based carrier composed by solid

biodegradable lipids and spherical solid lipid particles. SLNs are water colloidal or aqueous surfactant solution systems

. SLNs have advantages such as biocompatibility, biodegradability, greater drug absorption, and drug retention ,

thus they are an interesting system to carry CUR . Currently, SLNs have become popular because they are used as

carriers for COVID-19 vaccines based on RNA vaccine technology (Moderna and Pfizer–BioNTech).

Figure 3. Schematic representation of solid lipid nanoparticle.

3.4. CUR in Nanoemulsions

Nanoemulsions (NE) are thermodynamically stable dispersions of oil and water (Figure 4) . They are formed by a

phospholipid monolayer composed of a surfactant and co-surfactant, which are important for nanoemulsion stabilization

. This system has thermodynamic stability and high solubilization characteristics, with improved drug release

kinetics . NE systems can be manufactured through emulsification, which can control the size of the drops and

increase the drug solubility and efficacy. Moreover, the main disadvantage of NE is the high amount of surfactants in the

formulation, which can lead to a potential toxic effect . Antimicrobials studies with CUR-loaded NE are summarized in

Table 4.

Figure 4. Schematic

diagram of oil-in-water nanoemulsion (A) and water-in-oil nanoemulsion (B), stabilized by surfactants.

Table 4. Antimicrobial studies performed with curcumin/curcuminoid in emulsions.

Type of

Emulsion

[CUR]
Formulation Microorganisms Type of

culture
Antimicrobial

method 
Antimicrobial

Concentration 
Light/Ultrasonic

Paramet Reference 

THC ME 5% HIV-1 Cell
infection IC 0.9357 μM -

[104]

[109]

[102] [18][102]

[14]

[110]

[110][111]

[112]

[111]

50
[113]



CUR-NE N/R HPV - aPDT 80 µM 50 J/cm

CUR-NE N/R DENV-1 to 4 Cell
infection Cell viability 1, 5, 10 µg/mL -

P60-CUR 4 mg/L E. coli Planktonic OD595 nm N/R -

PE:CUR 0.566
mg/mL

S. aureus, S.
epidermidis, S.

faecalis, C.
albicans, E. coli

Planktonic Inhibition
zone 1 mg/mL* -

cu-SEDDS 1%

E. aureus, E.
coli, P.

aeruginosa, K.
pneumonia 

Planktonic MIC 45–62 µg/mL -

CUR:NE in
microbeads 0.5 mg/mL

E. coli, S.
typhmerium,Y.

enterocolitica, P.
aeruginosa, S,

aureus, B.
cereus, L.

monocytogenes

Planktonic Inhibition
zone

90 and 180
mg/mL* -

Lignin
sulfomethylated 0.3 mg/mL S. aureus Planktonic OD600 nm 2.4 mg/mL* -

C14-
EDA/GM/WC14-

MEDA/GM/W
N/R C. albicans Planktonic,

biofilm 

Microdilution
assay,

antibiofilm

100 µg/mL, 20
µg -

[CUR]: CUR concentration. -: not performed. N/R: not reported. *: formulation concentration.

3.5. CUR in Cyclodextrin

Cyclodextrins (CDs) have revolutionized the pharmaceutical industry in recent years . CDs consist of three naturally

occurring oligosaccharides in a cyclic structure produced from starch . The natural CDs have their

nomenclature system and their chemical structure based on the number of glucose residues in their structure: 6, 7, or 8

glucose units, which are denominated α-CD, β-CD, and γ-CD, respectively . Although the entire CD molecule is

soluble in water, the interior is relatively non-polar and creates a hydrophobic microenvironment. Therefore, CDs are cup-

shaped, hollow structures with an outer hydrophilic layer and an internal hydrophobic cavity (Figure 5) . They can

sequester insoluble compounds within their hydrophobic cavity, resulting in better solubility and consequently better

chemical and enzymatic stability . Due to the cavity size, β-CD forms appropriate inclusion complexes with molecules

with aromatic rings , such as CUR . Antimicrobial studies with CUR in CDs are summarized in Table 5.

Figure 5. Schematic representation of CUR in CD.

Table 5. Antimicrobial studies performed with CUR in CDs.

Type of CD [CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference

PEG-based β-
CD or γ-CD 10 µM E. coli, E.

faecalis Planktonic aPDT 10 µM 4.8, 29 J/cm

HPMC-
stabilized

hydroxypro
pyl-β-CD

7.64 × 10
M

E. coli Planktonic aPDT 10, 25 µM 5, 14, 28 J/cm

methyl-β-CD
hyaluronic acid

HPMC

7.64 × 10
M

E. faecalis, E.
coli Planktonic aPDT 0.5–25 µM 11, 16, 32 J/cm

carboxymethyl-
β-CD 20 µM E. coli Planktonic aPDT

0.7 ± 0.1 to
4.1 ± 1.6

 nmole cm
1050 ± 250 lx

hydrogel with
CUR in

hydroxypropyl-
β-CD

15.8 mg/mL S. aureus Planktonic Inhibition
zone 2% (w/v) -
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α- and β-CD 1 mol/L E. coli, S.
aureus Planktonic MIC, OD600

nm
0.25 and 0.31

mg/mL -

β-CD or γ-CD
in CS 0.06 mM E. coli, S.

aureus Planktonic MIC, Zone of
inhibition

64 and 32
µg/mL -

γ-CD 25 mg/L T. rubrum Planktonic MIC, aPDT N/R 45 J/cm

hydroxypropyl-
β-CD 1:1

B. subtillis, S.
aureus, S.

pyrogenes, P.
aeruginosa, C.

difficile, C.
butyricum, L.

monocytogenes,
E. faecalis, E.

coli, K.
pneumoniae, P.

mirabilis, S.
typhimurium, E.

aerogens, C.
kusei, C.
albicans

Planktonic Inhibition
zone 25 mg/mL -

methyl-β-CD 20 mM E. coli Planktonic MIC, MBC,
aPDT 500, 90 µM 9 J/cm

[CUR]: CUR concentration. -: not performed. N/R: not reported.

3.6. CUR in Chitosan

Chitin is a natural polysaccharide commonly found in the exoskeleton of marine crustaceans such as shrimps, prawns,

lobsters, and crabs. Chitosan (CS) derives from the acetylation of chitin and has a linear structure of D-glucosamine

(deacetylated monomer) linked to N-acetyl-D-glucosamine (acetylated monomer) through β-1,4 bonds . The main

advantages that make CS a promising drug carrier include biocompatibility, biodegradability, non-toxicity, controlled

release system, mucoadhesive properties, and low cost . Moreover, CS is soluble in aqueous solutions and is the

only pseudo-natural polymer with a positive charge (cationic) , which can interact with negatively-charged DNA,

membranes of microbial cells, and biofilm matrix . Antimicrobial studies with CUR in CS are summarized in Table 6.

Table 6. Antimicrobial studies performed with CUR in CS.

Type ofCS [CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR] Reference

PEG-CS 4.4%, 5
mg/mL

MRSA, P.
aeruginosa

Planktonic,
Animal
model

OD , CFU 5 and 10
mg/mL *

CCS microspheres 12.27 mg/mL,
1 mol S. aureus, E. coli Planktonic Zone of

inhibition, MIC N/R

CS nanoparticles 1.06 mg/mL S. mutans Planktonic,
Biofilm MIC 0.114 mg/mL

CS-CMS-MMT 0.0004–0.004
g S. mutans Planktonic,

Biofilm MIC 0.101 mg/mL

CS-GP-CUR 148.09 ± 5.01
µg S. aureus Planktonic

Zone of
inhibition,

tissue bacteria
count

N/C

PVA-CS-CUR N/C

E. coli, P.
aeruginosa, S.

aureus, B.
subtilis

Planktonic Zone of
inhibition N/R

PVA-CS-CUR 10, 20, 30 mg
P. multocida, S.

aureus, E. coli, B.
subtilis

Planktonic Zone of
inhibition 10, 20, 30 mg

CS NPs 2, 4, 8, 16% C. albicans, S.
aureus

Planktonic,
Biofilm

MIC, Colony
count 400 mg/mL

CS NPs 4 mg/mL HCV-4 N/R Antiviral assay 15 µg/mL

CS/milk protein
nanocomposites 100 mg PVY Plant

infection
Antiviral
activity

500, 1000, 1500
mg/100 mL

[CUR]: CUR concentration. N/R: not reported. N/C: not clear. *: formulation concentration.
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3.7. CUR in Other Polymeric DDS

Antimicrobial studies with CUR loaded in other polymeric DDSs are summarized in Table 7.

Table 7. Antimicrobial studies performed with curcumin in polymeric drug delivery systems.

Type of
Polymeric

DDS

[CUR]
Formulation Microorganism Type of Culture Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference

PEG 400γ-CD
and PEG + β-

CD
0.18% E. faecalis, E.

coli Planktonic CFU/mL
aPDT N/R

9.7 J/cm 29
J/cm

CUR-NP
without
polymer

100 mg

S. aureus, B.
subtillis, E. coli,
P. aeruginosa,
P. notatum, A.

niger

Planktonic
MIC

Inhibition
zone

100 mg, 0.27
mmol -

CUR-NP
without
polymer

100 mg
M. lutues, S.

aureus, E. coli,
P. aeruginosa

Planktonic MBC N/R -

Mixed polymer
NP 5 mM E. coli Planktonic MIC 400–500 μM -

CTABTween
20Sodium

dodecylsulfate
100 mg/mL L.

monicytogenes Planktonic Inhibition
zone N/R -

PLA/dextran
sulfate 4 mg/mL

MRSA, C.
albicans, S.

mutans

Planktonic/mono-
and –mixed

biofilm
aPDT 260 μM 43.2 J/cm

PLA/dextran
sulfate 0.4% C. albicans Animal model aPDT 260 μM 37.5 J/cm

Nanocurcumin N/R
P. aeruginosa
(isolates) and

standard strain
Planktonic MIC 128 µg/mL -

PLGA 5 mg

S.
saprophyticus
subsp. Bovis,

E. coli

Planktonic aPDT 50 µg/mL 13.2 J/cm

Eudragit L-100 N/C L.
monocytogenes Planktonic

Animal
model

infection
N/R -

nCUR N/R S. mutans PlanktonicBiofilm Inhibition
zoneaPDT N/R 300–420 J/cm

nCUR
combined with

indocyanine
100 mg E. faecalis Biofilm Metabolic

activity N/R 500 mW/cm

PVAc-CUR-
PET-PVDC 0.02 g S. aureus, S.

tiphimurium Planktonic aPDT N/R
24, 48, and 72

J/cm

MOA.CUR-
PLGA-NP Up to 10% S. mutans Biofilm aPDT 7% wt 45 J/cm

CS- β-CD N/C S. aureus, E.
coli Planktonic Colony count Up to 0.03% -

[CUR]: CUR concentration. -: not performed. N/R: not reported. N/C: not clear.

3.8. CUR with Metallic Nanoparticles

Metal complexation plays an important role in the therapeutic properties of CUR. The β-diketone moiety in the CUR

chemical structure enables it to form complexes with metal ions . A previous review summarized the antimicrobial

activity of CUR and curcuminoid complexes with metals, such as boron, Ca , Cd , Cr , Co , Cu , Fe , Ga , Hg ,

In , Mn , Ni , Pd , Sn , Y , and Zn  against viruses, bacteria, and fungi . Metals have also been combined with

polymers to improve the biological effects of CUR and to be used as films, hydrogels, dressings, and other

pharmaceutical formulations . In this context, silver NPs (AgNPs) have been extensively used due to their

antimicrobial activity (Figure 6) . Antimicrobial studies with CUR complexes with metals are summarized in Table 8.
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Figure 6. Schematic representation of CUR in silver nanoparticles.

Table 8. Antimicrobial studies performed with CUR complexes with metallic NPs.

Type of Metallic
Material

[CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR] Reference

CUR-AgNPs 20 mg/mL
P. aeruginosa, E.
coli, B. subtilis,

S. aureus
Planktonic MIC 20 mg/mL

Ag-CUR-
nanoconjugates 0.1 mM

E. coli,
Salmonella spp.,
Fusarium spp., S.

aureus

Planktonic Zone of
Inhibition 0.1 mM

AgCURNPs 500 mg P. aeruginosaS.
aureus Biofilm CLSM SEM Up to 400

μg/mL

AgNPs 7 mg E. coli Planktonic Turbidimetric
Assay 0.005 µM

cAgNPs 7 mg E. coliB. subtilis Planktonic MIC, CFU/mL 7 mg

Ru II complex 0.092 g

E. coli, S. aureus,
K. pneumoniae,
A. baumannii, P.

aeruginosa,
Enterococcus sp.

Plakntonic MIC/FICI >64 µg/mL

SCMC SNCF
nanocomposites

with CUR
0.25 mg/mL E. coli Planktonic Disc Method

Count Method 2 mg/mL

CSCL CUR-AgNP 0.092 g E. coli, B. subtilis Planktonic Zone of
Inhibition 10 and 20 μM

nSnH 10% S. aureus, E. coli. Planktonic CFU/mL N/R

Nanocomposite of
CUR and ZnO NPs N/C

S. epidermidis, S.
hemolyticus, S.
saprophyticus

Planktonic Zone of
Inhibition

1000, 750, 500,
250 μg/mL

Thermo-responsive
hydrogels N/C S. aureusP.

aeruginosaE. coli Planktonic MIC 400 μg/mL

CUR-AgNPs 5 mg/mL

C. albicans, C.
glabrata, C.

tropicalis, C.
parapsilosis, C.
krusei, C. kefyr

Planktonic Zone of
Inhibition, MIC 32.2–250 μg/mL

Gel-CUR-Ag 20 mg P. aeruginosa, S.
aureus Planktonic MIC, MBC 20 mg

HGZ-CUR N/C S. aureus, T.
rubrum Planktonic Zone of

Inhibition N/C

CHG-ZnO-CUR N/C S. aureus, T.
rubrum Planktonic Zone of

Inhibition N/C

Copper (II) oxide
NPs 1 g E. faecalis, P.

aeruginosa Planktonic
Zone of

Inhibition
CFU/mL

1 mg/mL

OA-Ag-C 1 g P. aeruginosa, S.
aureus Planktonic OD 2.5 mg/mL

Ag-NP-β-CD-BC 0.79 g P. aeruginosa, S.
aureus, C. auris Planktonic Zone of

Inhibition N/R

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

600nm
[189]

[190]



Cotton fabrics
coated ZnO-NP 2.71 × 10  M S. aureus, E. coli Planktonic Bacterial Count N/R

CS-ZnO-CUR 0.2 g S. aureus, E. coli Planktonic MIC, MBC Up to 50 μg/mL

CUR-TiO  -CS 100–300 mg S. aureus, E. coli
Planktonic

Animal
infection

MIC 10 mg

CUR-Au-NPs 1 mg/mL

E. coli, B.
subtilis, S.
aureus, P.

aeruginosa

Planktonic Zone of
Inhibition

100, 200, 300
μg/mL

[CUR]: CUR concentration. N/R: not reported. N/C: not clear.

3.9. CUR in Mesoporous Particles

Porous materials are structures with ordered pores ranging from nanometer to micrometers, which are classified as

microporous (less 2 nm), mesoporous (from 2 up to 50 nm), and macroporous (above 50 nm) . Porous materials can

be synthesized using carbon, silica, and metal oxides . Mesoporous silica nanoparticles (MSN, Figure 7) are inorganic

scaffolds , which seemed ideal carriers for hydrophobic drugs due to their well-defined structure, large specific surface

area, and versatile chemistry for functionalization . The pore size and volume and the surface area, as well as the

surface functionalization of the mesoporous material, determine the drug load and release . Moreover, mesoporous

materials can be modified or functionalized to control drug release under environmental stimuli, such as pH, temperature,

or light. These stimuli-responsive DDS, or smart DDS, prevent undesirable drug release before reaching the target tissue

(“zero premature release”) . Antimicrobial studies with CUR in porous DDSs are summarized in Table 9.

Figure 7. Schematic representation of a porous particle.

Table 9. Antimicrobial studies performed with CUR in porous DDSs.

Porous DDS [CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference

Cu-SNP/Ag 1.0 mmol E. coli Planktonic aPDT N/R 72 J/cm

Bionanocomposite
silica/chitosan 100 mg E. coli, S.

aureus Planktonic Zone of
inhibition N/R -

NCIP 1 mg HIV-1 Transfected
cells

Immuno
fluorescent

staining
5–8 mg/mL -

Lollipop-like MSN 30 mg L E. coli, S.
aureus Planktonic OD N/R -

SBA-15/PDA/Ag 2 mg E. coli, S.
aureus Planktonic CFU/mL 50 mM -

[CUR]: CUR concentration. -: not performed. N/R: not reported.

3.10. CUR in Quantum Dots

Quantum dots (QDs) are semiconductor particles at nanosize (up to 10 nm) with electrical and photoluminescence

properties of biotechnological and biomedical applications, such as bioimaging and DDS . Carbon dots are divided

into carbon QD and graphene QD and are produced by top-down and bottom-up methods using bulk carbon material and

molecular precursors, respectively . Antimicrobial studies with CUR in QDs are summarized in Table 10.

Table 10. Antimicrobial studies performed with CUR in quantum dots (QDs).

Type of
Material

[CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference
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CUR-
cQDs 0.6

S. aureus
MRSA

E. faecalis
E. coli

K. pneumoniae
P. aeruginosa

Planktonic
Biofilm

Grown
inhibition
Biomass

evaluation
Confocal

microscopy

3.91–
7.825 µg/mL -

CUR-
cQDs 200 mg EV-71

Cell
infection
Animal

infection

MIC
Plaque assay

TC IC50
assay

Western blot
PCR

5 µg/mL -

CUR-
MQD 2:1 wt%

K. pneumoniae
P. aeruginosa

S. aureus
Planktonic

MIC
MBC

Confocal
microscopy

Fluorescence
microscopy

Flow
cytometry

<0.00625–
0.125 µg/mL -

CUR-
GQDs N/C

A.
actinomycetemcomitans

P. gingivalis
P. intermedia

Mixed
biofilm aPDT 100 µg/mL 60–80 J/cm2

3.11. CUR in Films, Hydrogels, and Other Nanomaterials

Antimicrobial studies with CUR in films, hydrogels, and other nanomaterials are summarized in Table 11.

Table 11. Antimicrobial studies performed with CUR in films, hydrogels, and other nanomaterials.

Type of Material [CUR]
Formulation Microorganism Type of

Culture
Antimicrobial

Method
Antimicrobial

[CUR]
Light/Ultrasonic

Parameters Reference

CuR-SiNPs 20 mg S. aureus, P.
aeruginosa

Planktonic,
Biofilm aPDT 50 μg/mL, 1

mg/mL
20 J/cm

CUR-HNT-DX 10 mg S. marcescens,
E. coli

Planktonic,
Infection

model

Grown
inhibition,
Confocal

microscopy

Up to 0.5
mg/mL -

Exosomes N/R HIV-1 infection - Flow
cytometry N/R -

Electrospun
nanofibers 100 mg/mL Actinomyces

naeslundii Biofilm aPDT 2.5 and 5
mg/mL

1200 mW/cm

Ga NFCD-GO
NF 0.1 mol B. cereus, E. coli Planktonic

Zone of
inhibition,

MIC

Up to 63.25
µg/mL -

Multinanofibers-
film

1, 2.5, and 5
mg/mL S. aureusE. coli Planktonic

UFC/mL,
Confocal

microscopy
1 mg/mL -

Nanofibers
scaffolds 4.0 wt% S. aureus

Pseudomonassp. Planktonic Colony count N/R ,-

Nanofibrous
scaffold 5% S. aureus, E. coli Planktonic Colony count 20 mg -

Nanofibers 5 and
10%wt S. aureusE. coli Planktonic OD Up to 212.5

µg/mL -

CSDG 1 w/w S. aureus, E. coli
Planktonic,

Infection
model

Colony
count,

Microscopy
N/R -

Gelatin film
0, 0.25, 0.5,
1.0, and 1.5

wt%

E. coli, L.
monocytogenes Planktonic UFC/mL 0.25 and 1.5

wt% -

ZnO-CMC film 0.5 and 1.0
wt%

E. coli, L.
monocytogenes Planktonic UFC/mL 1 wt% -

Pectin film 40 mg E. coli, L.
monocytogenes Planktonic UFC/mL N/R -

Edible film 0.4% (w/v) E. coli, B. subtilis Planktonic Zone of
inhibition 1% wt. -

[CUR]: CUR concentration. -: not performed. N/R: not reported. N/C: not clear
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4. Conclusions and Future Perspectives

CUR has a broad-spectrum antimicrobial activity against viruses, bacteria, and fungi, including resistant and emergent

pathogens. However, some species such as Gram-negative bacteria are less susceptible to CUR and aPDT. For those,

the combination of CUR with antibiotics has been suggested, especially for antibiotic-resistant strains . CUR showed

synergism with polymyxin and protection against the side effects of polymyxin treatment, nephrotoxicity, and neurotoxicity

. Nonetheless, the evaluation of synergism requires accurate methods to study drug interaction, considering potential

differences between the dose–response relationship of individual drugs and avoiding over- or under-estimation of

interactions. For example, while the time–kill curve of C. jejuni treated with both cinnamon oil and ZnO NPs resulted in the

over-estimation of synergism between the antimicrobials, the fractional inhibitory concentration index (FICI) method

showed no synergism but only an additive effect . The FICI method was not able to detect the synergism between

binary combinations of antimicrobials (cinnamon oil, ZnO NPs, and CUR encapsulated in starch) at sub-MIC, which

resulted in the non-turbidity of C. jejuni. In turn, mathematical modeling using isobolograms and median-effect curves

showed synergism when CUR in starch was combined with other antimicrobials against C. jejuni, with bacterial reductions

of 3 log for the binary combination and over 8 log for the tertiary combination. The mathematical modeling suggested that

CUR in starch was the main antimicrobial responsible for the synergistic interaction .

In addition to the antimicrobial evaluation, in vitro and in vivo studies have demonstrated the cytocompatibility and

biocompatibility of CUR in DDSs , suggesting that CUR-loaded

DDSs might be safe. Although a plethora of DDSs has been developed to circumvent the hydrophobicity, instability in

solution, and low bioavailability of CUR, several studies are still performed with free CUR dissolved in organic solvents 

. Furthermore, compared to several in vitro investigations, few in vivo studies

using animal infection models and scarce clinical trials have been reported. A randomized clinical trial showed that aPDT

mediated by free CUR improved gingivitis in adolescents under fixed orthodontic treatment but did not reduce dental

plaque accumulation after 1 month . Clinical improvements after CUR-mediated aPDT were also observed for

periodontal diseases, although few studies have evaluated the microbiological parameters . Therefore, the

improvement of clinical parameters might be due to the anti-inflammatory effect of CUR/aPDT instead of their in vivo

antimicrobial activity. Nonetheless, randomized clinical trials evaluating CUR in DDSs against infections are required.

As a note on the future use of CUR, the incorporation of CUR in DDS and other pharmaceutical formulations allows its

clinical use especially as an adjuvant agent to conventional antimicrobial agents. Such a combination can be an important

weapon in the battle against resistant strains and emergent pathogens. The use of stimuli-responsive (or smart) DDS can

also improve CUR delivery and its therapeutic effect on the target tissue. The combination of polymeric and metallic

carriers may also enhance the therapeutic activity of CUR. Nonetheless, the degradation of DDS and its clearance from

the body are other issues that require further investigation . The evidence produced so far about the antimicrobial

activity of CUR in DDSs supports future in vivo and clinical studies, which may pave the way for industrial production.
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