
Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 1/15

Cyber-Physical Systems with Process-
Oriented Paradigm
Subjects: Computer Science, Software Engineering | Computer Science, Hardware & Architecture

Contributor: Vladimir E. Zyubin , Natalia O. Garanina , Igor S. Anureev , Sergey M. Staroletov

Process Oriented Programming (POP) is a programming paradigm based on the concept of "processes" that

determine the response (outputs) of a reactive system based on events (states of internal and external variables,

timeouts). A process-oriented program is a set of interacting processes that can change their behavior (reaction to

events), start and stop other processes, and be executed in parallel. The languages created within the framework

of POP (e.g. Reflex, IndustrialC, poST) fit very well for specification various control algorithms, which can consist of

hundreds and thousands of processes. In addition to the fact that process-oriented programs structurally and

conceptually correspond to the technological description of the plant under control, they also have the following

remarkable property. In process-oriented algorithms, the use of data is usually local, limited to one or more

processes.

distributed control systems control software process-oriented programming

cyber-physical production system

1. Introduction and Motivation

Cyber-physical systems (CPSs) are usually defined as network systems with a computational core that interacts

with the physical world through sensors and actuators. Some researchers insist on adding the network architecture

to the definition. This remark is confirmed by the widespread use of distributed architectures for the implementation

of cyber-physical systems. For example, a modern car control system can include up to a hundred microcontrollers

connected to the CAN bus . The distributed architecture of the vehicle control system provides a reduction in the

length and weight of connecting wires, ease of maintenance, eliminates the mechanical or hydraulic

implementation of various functions, thereby minimizing the weight and size characteristics of the system as a

whole, and also makes it possible to implement various control strategies . Due to these circumstances,

software development has a significant part in the costs of creating new and redesigning existing control systems.

Usually, software development costs account for more than half of all expenses .

Cyber-physical systems (CPSs) are being actively developed as part of the Industry 4.0 concept. According to the

concept, which declares the shift from mass production to mass customization, the CPSs must meet requirements

such as modularity, adaptability, reusability, and flexibility. The class of cyber-physical systems that integrate

physical and virtual components in the automation of production processes is called cyber-physical production

systems (CPPSs). IEC 61131-3 languages and a later superstructure over them—IEC 61499 function blocks—are

[1]

[2][3][4]

[5]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 2/15

positioned as the main means of specifying the algorithms for the functioning of CPPSs. These approaches are

seriously criticized by specialists for their inability to respond to the challenges that arise in the development of

industrial automation systems and, in fact, for their inability to solve the problems for which these languages were

created: to ensure portability, reconfigurability, interoperability, and the distribution of the developed software .

The developers of the IEC 61131-3/IEC 61499 specifications themselves agree with the conclusions about the

standard’s inconsistency with the declared goals .

The problems of existing approaches lead to the fact that, in practice, a module-oriented (device-centric) approach

is used , which involves the separate programming of each controller of the control system. In particular, this is

caused by the current “one function per module” paradigm used in the development of control system components

in accordance with the V-cycle technology . The main disadvantages of this approach are the complexity of

software maintenance, its readability and modification, flexibility, and the complexity of verification, which is crucial

for most cyber-physical systems. Based on the current problems of programming cyber-physical systems, the need

for the development of the topologically independent (application-centric) programming of distributed control

systems was stated in . The indisputable advantage of this concept is the possibility of a simple and, in the most

preferable case, sequential description of the control algorithm, independent from the type of nodes, their number,

and the topology of the distributed control system. Topology-free programming could provide a drastic reduction in

the cost of developing and maintaining the control software being created. The implementation of the concept

involves creating a toolchain for the design and development of the control algorithm: first of all, automatically

dividing the algorithm into parts and deploying them on controllers. The concept weeds out the tedious and error-

prone manual process of dividing it into parallel (more precisely, independent or loosely connected) parts. Although

the quality of automatic parallelization has improved over the past few decades, the fully automatic parallelization

of sequential programs by means of compilers remains a significant challenge due to the need for complex

program analysis and unknown factors (such as input range) at compilation time . This gives rise to serious

problems associated with the automatic generation of executable code. Automatic parallelization by compilers or

tools is very difficult due to different types of race conditions. Dependency analysis is not easy for code that uses

indirection, pointers, recursion, and indirect function calls. In addition, access to shared or global resources can

lead to bottlenecks, resource starvation, or deadlocks . The main direction for increasing the comprehensibility

and reducing the complexity of the verification of a system of concurrent processes is to ensure the determinism of

its execution .

These circumstances are typical for the field of parallel programming of computational algorithms. In terms of

control algorithms, the complexity of the problem can be reduced due to the following features:

First of all, in the field of automation, parallelism is an integral part of the control algorithm. This circumstance is

reflected in so-called process-oriented languages; for example, in the recently developed poST language, which

is a process-oriented dialect of the IEC 61131-3 Structured Text . In the poST language, a program is built as

a set of weakly dependent processes—FSM-like structures. Therefore, the process-oriented specification of the

control algorithm contains information about its possible parallelization.

[6]

[7]

[8]

[9]

[9]

[10]

[11]

[12]

[13]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 3/15

Secondly, in contrast to parallel programming goals, the need for parallelization is primarily caused not by the

desire to reduce the computation time but by the desire to reduce the cost of the system as a whole and the

cost of its maintenance by using smaller, less expensive, and more flexible microprocessors, reducing the

length of wires, reducing the complexity of wiring, and improving maintainability, providing the opportunity to

implement various control strategies .

Thirdly, for control problems, an extremely important circumstance is the possibility of formally verifying the

algorithms being created. For the process-oriented paradigm, researchers developed the mathematical model

of hyperprocesses. Informally, a hyperprocess involves expanding the processes in the system into one process

by periodically turning on the logical processes in the program according to the round robin strategy to execute

the code in their current states. A number of formal methods for the process-oriented programming languages

have been developed based on the semantics of a hyperprocess. Correspondingly, when developing a

methodology for the topologically independent programming of control systems based on a process-oriented

approach, it is desirable to reuse the existing verification methods.

2. Distributed Control Systems for Vehicles

Probably the most well-known area of the application of distributed control today is the automotive domain. Here,

the associated data transmission lines are used to connect the main electronic control unit (ECU) of the car to child

ECUs and sensors/actuators. Based on this approach, other systems in different domains are being developed for

cases where there is a sufficiently large number of interacting devices and it is required to minimize the number of

wires. Since the 90s of the last century, the advent of injection technology and the implementation of closed-loop

engine control algorithms have led to the need to take into account the data and synchronization of a large number

of signals from sensors connected at different places in the system. Thus, the need for distributed control was

recognized early enough in the automotive industry and a number of connectivity protocols were developed to

enable in-vehicle network communication. Nowadays, these protocols have been merged into a de facto standard

for the in-vehicle controller area network (CAN) . A CAN bus has been successfully integrated into the industry

for data exchange between controllers in a distributed system with a distance of several meters.

In , the authors explored CAN messages from a vehicular peripheral bus of a real car. It was found that the

peripheral bus is disconnected from the main bus, where data are transmitted in the exchange of devices for

monitoring engine parameters, is less high-speed, and transmits data between the radio, heating installation,

display, and control knobs. There are several identifiers and data bytes are transmitted for each identifier with

some given periods. From such experiments, the distributed control approach used in industry today can be stated

as: (1) controllers transmit periodic messages to each other about the state of key system variables (encoded

information received from closely connected sensors and derived information based on the processing of this

data); (2) more important information is transmitted at shorter intervals; (3) periods are calculated so that there is

not a large number of collisions during simultaneous transmission; (4) the data network is essentially distributed

into independent subnets that do not interfere with each other when transmitting heterogeneous information (as in

[3][14]

[15][16]

[17]

[18]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 4/15

the example, the engine ECU does not need to know about the radio station currently playing). In the existing

literature, such a control algorithm is called “time-triggered control” .

In , Albert et al. compared the applications of the time-triggered and event-triggered approaches in automotive

distributed control systems using the CAN bus and its TTCAN variant (time-triggered CAN) . It is noted that

systems whose subsystems’ operation is pre-calculated by time windows are predictable; their components can be

interchanged from different vendors, with the requirements that the maximum operating times are not violated.

However, such systems cannot properly respond to important (system critical state) messages because the latter

can only be processed after bus arbitration. On the other hand, fully event-driven systems can process messages

with the desired priorities; however, due to non-determinism, when changing system components to others (for

example, faster or slower), the control algorithm must be completely revised. It is concluded that it is necessary to

use the event-triggered approach only for a few of the most important messages and to include their processing in

a special time window before everyone else, while the processing of the normal messages should be performed

using time-triggered control. In this case, it is possible to calculate the change in the control law of the object, and it

becomes predictable.

Thus, when planning control algorithms, the delays associated with the bus should be calculated and simulated.

For instance, the work by Baek et al. considers the theory and practice of creating a controller for an

autonomous all-terrain vehicle using the CAN bus. Using a simple fixed-priority bus model , the worst-case

response time was calculated and the transit times and loss percentages between key system components were

measured. Taking into account the obtained information, a simulation was carried out on the controller model

based on control theory and it was concluded that the implementation is built correctly, taking into account the

specified delays and losses. The same has been carried out in numerous research projects; for example .

Of course, if the controllers are placed side by side, it makes no sense to use the CAN bus. For example, Shiau et

al. explored the possibility of designing a distributed multi-MCU-based flight control system for unmanned aerial

vehicles . The system was built on low-cost microcontrollers. For inter-node communication, the UART interface

was used. The distributed system is able to calculate complex non-linear Kalman filters and calculate the attitude

angle using base elements with a low performance. The system also provides for error handling when receiving

sensor data. The quality of the resulting design was verified using MATLAB.

3. Design of Distributed Control Systems Based on IEC
61131-3/61499

Christensen in suggested and adopted the model–view–control (MVC) design pattern to the domain of

industrial automation and integrated it with the IEC 61499 standard architecture. According to the adopted pattern,

control software is organized from two components connected in a closed loop: a controller, implementing a set of

control operations available as published services, and a model, simulating the plant. Vyatkin et al. in extended

the approach to include the formal verification of function block systems, appropriate for more rigorous verification

by means of model checking.

[19]

[20]

[21]

[22]

[23]

[24][25]

[26]

[27]

[28]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 5/15

Thramboulidis in adopted a system-based approach for the development of industrial automation systems

(IASs). Based on the proposed methodology, the UML software model of the system was obtained by extracting it

from a formal system model and was further developed into implementation code. The approach presented by the

author enables the development of control systems from diverse perspectives to meet the demands of CPSs. The

author provided evidence of the need for such an approach by demonstrating the simultaneous engineering of

various components of the system, including mechanical, electrical, and software parts. This approach offers the

advantage of integrating the relationships between the physical and software aspects of components in CPS,

thereby improving the quality of IAS development.

In , Schwab et al. described the TORERO tool, which achieved a semi-automatic allocation of the IEC 1499

control application to the distributed hardware underneath, and generated communication-related code

automatically based on the allocation.

In , Dai and Vyatkin proposed three different approaches to redesigning existing PLC programs to the distributed

architecture based on the IEC 61499 functional blocks: two object-oriented approaches and a service-oriented one

(class-oriented approach), in which the program is structured based on the plant functionality. A study of the

effectiveness of these approaches on an airport baggage handling system showed the improved effectiveness of

the latter approach, even when compared to the original IEC 61131-3 program.

Ribeiro and Bjorkman in analyzed and identified several fundamental challenges that need to be addressed

before one can start to design cyber-physical production systems consistently. Among other things, the authors

stated the existence of two different approaches to the decomposition (structuring) of the system: functional or

structural (object-oriented) decomposition. In addition, the authors, analyzing the concept of holonic manufacturing

systems, noted the lack of dedicated domain-specific language, leading to agent or service-based architectures or

a combination of both in articulation with other technologies.

Patil et al. in proposed refined design patterns for cyber-physical system architecture. These patterns were

empirically tested in a series of projects and showed a reduction in development complexity .

In , Cruz Salazar et al. proposed a classification of multi-agent approaches to the design and implementation of

cyber-physical production systems, classified them, and showed their satisfactory properties, particularly for the

implementation of the field control level. The analytical part of the work provides an excellent overview of multi-

agent technologies that are alternative to the conventional one based on the IEC 61131-3/61499 standard.

Zyubin and Rozov in proposed a conceptual approach to the IEC 61499-based specification for control software

using the poST language. The approach is based on the idea of a single reduced function block with one event

input invoking the algorithm specified in poST. The approach allows for developing distributed event-driven

algorithms using only one ST-like language, and thus drastically simplifies program maintenance. The question of

ensuring determinism was left out of consideration.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 6/15

In , the researchers concluded that managing scenarios for reconfiguration within the function block can be

difficult at this stage as the reconfiguration and control models are merged into a single ECC. This results in

overlapped error handling, initialization, and reconfiguration. Additionally, there is no differentiation between the

control level and higher levels within the ECC. This leads to a large number of states and transitions and low

readability and maintainability. Furthermore, due to the high dependency between the states, it is challenging for

the developer to extend or maintain an ECC.

Sinha et al. in proposed a hierarchical and concurrent ECC (HCECC) to model concurrent behaviors within the

IEC 61499 paradigm. The HCECC-based function blocks utilize a multilevel hierarchical state machine to integrate

concurrent and hierarchical behaviors and reduce system complexity. However, the authors did not tackle the

reconfiguration issue, which is critical in distributed control systems where execution semantics are influenced by

environmental changes and user requirements.

Marschall et al. in proposed an agent-controlled approach for CPPSs. Open Platform Communications Unified

Architecture (OPC UA) was selected as the standard protocol for the data exchange in the multiagent control

system. The internal control logics of the system were implemented using the state machine design pattern. When

implementing the system, no verification tools were used and the resulting program contained errors during

execution.

Despite the fact that the IEC 61499 standard aims to achieve interoperability and portability, the results of the

experiments show that the options for exchanging data between different tools within this standard are restricted.

As part of their efforts to tackle the challenge of porting IEC 1499 applications, Hopsu et al. in suggested

streamlining manual processes for relocating functional blocks in a distributed system by creating a standalone

application in order to use the NxtStudio package, which automatically manages communication between different

devices.

In paper , the authors proposed an IEC-61499-based model for CPSs to distribute the complexity of control

software over numerous small devices. The approach enables the creation of a comprehensive structure that can

combine the design, simulation, and distributed deployment of automation software. The proposed scheme was

validated through a packet-sorting system implemented in the nxtSTUDIO platform. Thus, the article outlines one

of the variants of the so-called device-centric approach.

Parant et al. in proposed a methodology for building the knowledge base from the product’s specifications and

a formal diagram linkage table (DLT) approach to ensure the domains’ coherence and interdependence. This

approach facilitates the identification of a perturbation’s impact on the system and proposes the appropriate

response during a reconfiguration of its functionality. In fact, the authors extended the functional approach to

designing CPPSs and included in the development process not only the question “what the system should do” but

also the question “what the system can do”.

4. Solving Conflicts in Distributed Systems

[37]

[38]

[39]

[40]

[41]

[42]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 7/15

Well-known approaches that deal with non-deterministic behavior during conflicts over shared resources have

been developed for concurrent processes. The development of these methods is traditionally associated with

Dijkstra’s classic work, e.g., . Reviews of the state of the art in this area can be found in . However, since the

concept makes stronger demands and has specifics, particularly the interaction with the environment, these

algorithms are only partially applicable to the tasks of creating distributed automation systems.

Eidson et al. introduced a programming model that captures the physical notion of time for the model-based design

of distributed real-time embedded systems, called programming temporally integrated distributed embedded

systems (PTIDESs). PTIDES structures distributed software as an interconnection of components communicating

using timestamped events in order to provide determinism in CPSs .

Among the works on modeling cyber-physical systems, the papers of Edward Lee should be especially noted. In

his book and also in his article , he dwells in detail on aspects of the correct definition of the concept of a

cyber-physical system. He notes that this concept was introduced by Helen Gill in 2006 and is just a modern

rethinking of cybernetic systems, which, in turn, are systems studied in control theory. However, modern cyber-

physical systems are associated with large amounts of information from heterogeneous sensors. Such systems

operate in a distributed manner and have an impact on people, and, when designing them, modeling cannot be

dispensed with, since their correct functioning can have consequences for the environment and humans. In their

works, Lee raises the key problem of modeling a non-deterministic world based on different types of models, both

deterministic and non-deterministic. For instance, in , he gives a detailed description of PRET and Ptides

projects, which aimed to use deterministic models for CPS with faithful physical realizations. The author argues

that such an approach is practical due to deterministic models being easier to understand and analyze. The PRET

project shows that the timing precision of synchronous digital logic can be practically made available at the

software level of abstraction. The Ptides project shows that deterministic models for distributed cyber-physical

systems have practical faithful realizations. The time stamp mechanism proposed in these projects allows for

detecting synchronism violations due to network delay or the clock synchronization error and processing these

violations in accordance with the context; for example, rejecting a database transaction.

In , in order to avoid undesirable non-determinism in the system of parallel processes (e.g., data racing), M.

Lohstroh et al. suggested time-tagging actions of parallel processes that are sensitive to non-deterministic

execution. These tags are used in additional timing constraints that are supposed to ensure that concurrent

processes run in a consistent manner that does not allow for undesirable non-determinism. This technique requires

a careful study of the sequence of the processes’ execution, which is quite labor-intensive.

In paper , H. Li et al. studied the possibilities of ensuring the robustness for a distributed consumption–

production system with respect to deadlocks. They proposed a strict proxy communication protocol for the system

agents (processes) that limits the number and frequency of process interactions. On the one hand, such

restrictions strongly lead to the absence of deadlocks in the system, but, on the other hand, they significantly

complicate the interaction of parallel processes.

[43] [44]

[45]

[46] [12]

[12]

[47]

[48]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 8/15

5. Design of Distributed Control Systems Based on Process-
Oriented paradigm

5.1. Plain method

The main idea of mapping a process-oriented algorithm to a distributed architecture is shown in Figure 1. The

mapping preserves the semantics of a hyperprocess since the algorithm is in fact executed sequentially. In

accordance with this scheme, the execution of a process-oriented algorithm occurs cyclically while maintaining the

"read-calculate-write'' cycle. The reading of the input signals is performed in parallel, and then the cycle of the inter-

node synchronization of the read values is performed. After the synchronization cycle, the processes on the first

computing node are activated. At the end of the calculations, the control (interprocess) signals and the calculated

values of the output signals are transmitted to the stakeholder nodes; at the end of the synchronization, the second

(in the general case, to the next) node computer executes its part of the control algorithm. After the sequential

execution of the algorithm on all computing nodes of the distributed control system, the last microprocessor node

initiates a parallel writing of output signals. After this, the next cycle begins.

Figure 1. Preserving the hyperprocess semantics while deploying a process-oriented specification on a distributed

architecture.

[49]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 9/15

This approach enables researchers to generate a distributed application for any topology, comprising nodes up to

the number of processes in the original process-oriented specification. When specifying the control algorithm,

researchers do not care about the number of nodes, their type, and the network topology. This makes this

approach topology-free programming.

Advantages of the approach:

deterministic behavior of a distributed system;

a high degree of granularity up to placing only one process on a node of the distributed system;

preserving the semantics of the monolithic implementation.

Besides the advantages, the designed model also leads to a more intricate software architecture as only one PLC

can have access to a single output module. It also requires additional communication between multiple PLCs to

share information such as input/output module data and program data. As a result, there is an increase in both

hardware costs and engineering effort required .

5.2. Ad Hoc method

There are various alternative approaches aimed at minimizing the overhead associated with inter-process data

synchronization. To minimize the computational complexity of inter-node synchronization, which should ideally be

excluded, the set of program processes can be divided into independent groups (clusters) with the finest possible

granularity. The requirements for partitioning a control algorithm according to a process-oriented specification into

clusters are as follows:

processes using the same variable should both be in the same cluster;

two processes using the same process should both be in the same cluster;

processes forming a loop relative to the use relation should be in the same cluster.

Figure 2 demonstrates the algorithm flowchart that extracts clasters from a process-oriented specification.

[31]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 10/15

Figure 2. Partitioning algorithm flowchart.

6. Summary

A topologically independent specification of distributed control algorithms with the process-oriented programming

paradigm can be deployed with the plain approach based on a network of microcontroller nodes. In this schema,

only operations for reading input and writing output signals are physically parallelized, and the algorithm itself is

executed sequentially, similarly to a centralized implementation, with synchronization of information messages and

the order of execution over the bus. The approach constructively ensures the absence of data races and the

preservation of the semantics of the original process-oriented program, which means the applicability of existing

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 11/15

methods for verifying centralized process-oriented programs to distributed process-oriented programs. This opens

the door to the formal verification of distributed programs using already developed approaches.

In particular, model checking method for process-oriented programs proposed in can be applied with minor

corrections that concern constructing several independent action lines of parallel processes with regard to given

clusters. Also it is possible to use process-oriented deductive verification methods proposed in by applying

them to each cluster separately with the original program annotations.

In an algorithm for splitting a process-oriented specification into clusters, which eliminates the need for data

synchronization, is proposed. The study of the algorithm on case study shows that clusters can be arranged in any

arbitrary combination on the computing nodes of a distributed system. In any combination, the physical signals are

processed locally and the implementation does not require data synchronization.

References

1. Capehart, B.L.; Capehart, L.C. Web Based Energy Information and Control Systems: Case
Studies and Applications; CRC Press: Boca Raton, FL, USA , 2021.

2. Chakraborty, S.; Ramesh, S. Programming and Performance Modelling of Automotive ECU
Networks. In Proceedings of the 21st International Conference on VLSI Design (VLSID 2008),
Hyderabad, India, 4–8 January 2008 ; pp. 8–9.

3. Dongik Lee; Jeff Allan; Stuart Bennett. Distributed Real-Time Control Systems using CAN;
Springer Science and Business Media LLC: Dordrecht, GX, Netherlands, 2003; pp. 357-385.

4. Sakle, S.V.; Kadam, M.R.; Dhande, M.J. Review paper of Vehicle control system using CAN
protocol. Int. J. Orange Technol. 2021, 3, 40–45.

5. Drozdov, D.; Atmojo, U.D.; Pang, C.; Patil, S.; Ali, M.I.; Tenhunen, A.; Oksanen, T.; Cheremetiev,
K.; Vyatkin, V. Utilizing software design patterns in product-driven manufacturing system. In
Proceedings of the International Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing, Paris, France, 1–2 October 2020.

6. Kleanthis Thramboulidis; IEC 61499 vs. 61131: A Comparison Based on Misperceptions. J. Softw.
Eng. Appl. 2013, 06, 405-415.

7. Thomas Strasser; Alois Zoitl; James H. Christensen; Christoph Sünder; Design and Execution
Issues in IEC 61499 Distributed Automation and Control Systems. null 2010, 41, 41-51.

8. Thramboulidis, K. Different perspectives [Face to Face; “IEC 61499 function block model: Facts
and fallacies”]. IEEE Ind. Electron. Mag. 2009, 3, 7–26.

[50][51]

[15][52]

[53]

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 12/15

9. Kim, J.C.; We, K.S.; Lee, C.G.; Lin, K.J.; Lee, Y.S. HW resource componentizing for smooth
migration from single-function ECU to multi-function ECU. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, Trento, Italy, 25–29 March 2012; pp. 1821–1828.

10. Fox, G.C.; Williams, R.D.; Messina, P.C. Parallel Computing Works!; Elsevier: Amsterdam, The
Netherlands, 2014.

11. Vajk, T.; Dávid, Z.; Asztalos, M.; Mezei, G.; Levendovszky, T. Runtime model validation with
parallel object constraint language. In Proceedings of the 8th International Workshop on Model-
Driven Engineering, Verification and Validation, Wellington, New Zealand, 17 October 2011; pp.
1–8.

12. Edward A. Lee; The Past, Present and Future of Cyber-Physical Systems: A Focus on Models.
Sensors 2015, 15, 4837-4869.

13. Vladimir E. Zyubin; Andrei S. Rozov; Igor S. Anureev; Natalia O. Garanina; Valeriy Vyatkin; poST:
A Process-Oriented Extension of the IEC 61131-3 Structured Text Language. IEEE Access 2022,
10, 35238-35250.

14. Shaila P. Kharde Rachana V. Vairal; A Review on Vehicle Control System by Using CAN Protocol.
Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2015, 4, 8678-8682.

15. Igor Anureev; Natalia Garanina; Tatiana Liakh; Andrei Rozov; Vladimir Zyubin; Sergei Gorlatch.
Two-Step Deductive Verification of Control Software Using Reflex; Springer Science and
Business Media LLC: Dordrecht, GX, Netherlands, 2019; pp. 50-63.

16. Vladimir Zyubin; Igor Anureev; Natalia Garanina; Sergey Staroletov; Andrei Rozov; Tatiana Liakh.
Event-Driven Temporal Logic Pattern for Control Software Requirements Specification; Springer
Science and Business Media LLC: Dordrecht, GX, Netherlands, 2021; pp. 92-107.

17. Controller Area Network CAN, an Invehicle Serial Communication Protocol. J1583_199003.
Available online: https://www.sae.org/standards/content/j1583_199003/ (accessed on 6 July
2023)

18. Sergey Staroletov. A Software Framework for Jetson Nano to Detect Anomalies in CAN Data;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, United States, 2023; pp.
490-498.

19. Obermaisser, R. Event-Triggered and Time-Triggered Control Paradigms; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2004; Volume 22.

20. Albert, A. Comparison of event-triggered and time-triggered concepts with regard to distributed
control systems. Embed. World 2004, 2004, 235–252.

21. G Leen; D Heffernan; TTCAN: a new time-triggered controller area network. Microprocess.
Microsystems 2002, 26, 77-94.

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 13/15

22. Woonhyuk Baek; Seyong Jang; Hoin Song; Soontae Kim; Bongsob Song; Dongkyoung Chwa; A
CAN-based Distributed Control System for Autonomous All-Terrain Vehicle (ATV). null 2008, 41,
9505-9510.

23. K. Tindell; A. Burns; A.J. Wellings; Calculating controller area network (can) message response
times. Control. Eng. Pr. 1995, 3, 1163-1169.

24. Chen, R.; Liu, B.; Pan, M.; Zhou, H. Design of Distributed Control System for the Pick-up Robot
Based on CAN Bus. In Proceedings of the 2019 IEEE International Conference on Mechatronics
and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 102–107.

25. Liangfei, X.; Jianfeng, H.; Xiangjun, L.; Jianqiu, L.; Minggao, O. Distributed control system based
on CAN bus for fuel cell/battery hybrid vehicle. In Proceedings of the 2009 IEEE International
Symposium on Industrial Electronics, Seoul, Korea, 5–8 July 2009; pp. 183–188.

26. Shiau, J.K.; Hung, W.S.; Chang, C.M. Development of a Distributed Multi-MCU Based Flight
Control System for Unmanned Aerial Vehicle. J. Appl. Sci. Eng. 2015, 18, 251–258.

27. Christensen, J.H. Design patterns for systems engineering with IEC 61499. In Proceedings of the
Verteilte Automatisierung-Modelle und Methoden für Entwurf, Verifikation, Engineering und
Instrumentierung (VA2000), Magdeburg, Germany, 22–23March 2000; pp. 63–71. Available
online: http://www.holobloc.com/papers (accessed on 6 July 2023).

28. Valeriy Vyatkin; Hans-Michael Hanisch; Cheng Pang; Chia-Han Yang; Closed-Loop Modeling in
Future Automation System Engineering and Validation. null 2008, 39, 17-28.

29. Kleanthis Thramboulidis; A cyber–physical system-based approach for industrial automation
systems. Comput. Ind. 2015, 72, 92-102.

30. Schwab, C.; Tangermann, M.; Lueder, A. The modular TORERO IEC 61499 engineering platform-
Eclipse in automation. In Proceedings of the 2005 IEEE Conference on Emerging Technologies
and Factory Automation, Catania, Italy, 19–22 September 2005; Volume 2.

31. Wenbin Dai; Valeriy Vyatkin; Redesign Distributed PLC Control Systems Using IEC 61499
Function Blocks. IEEE Trans. Autom. Sci. Eng. 2012, 9, 390-401.

32. Luis Ribeiro; Mats Bjorkman; Transitioning From Standard Automation Solutions to Cyber-
Physical Production Systems: An Assessment of Critical Conceptual and Technical Challenges.
IEEE Syst. J. 2017, 12, 3816-3827.

33. Patil, S.; Drozdov, D.; Vyatkin, V. Adapting software design patterns to develop reusable IEC
61499 function block applications. In Proceedings of the 2018 IEEE 16th International Conference
on Industrial Informatics (INDIN), Porto, Portugal, 18–20 July 2018; pp. 725–732.

34. Patil, S.; Drozdov, D.; Zhabelova, G.; Vyatkin, V. Refactoring of IEC 61499 function block
application—A case study. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 14/15

(ICPS), Saint Petersburg, Russia, 15–18 May 2018; pp. 726–733.

35. Luis Alberto Cruz Salazar; Daria Ryashentseva; Arndt Lüder; Birgit Vogel-Heuser; Cyber-physical
production systems architecture based on multi-agent’s design pattern—comparison of selected
approaches mapping four agent patterns. Int. J. Adv. Manuf. Technol. 2019, 105, 4005-4034.

36. Vladimir Zyubin; Andrei Rozov. Using Process-Oriented Structured Text for IEC 61499 Function
Block Specification; Springer Science and Business Media LLC: Dordrecht, GX, Netherlands,
2021; pp. 217-227.

37. Guellouz Ep Addad, S. Towards a New Methodology for Design, Modelling, and Verification of Re
configurable Distributed Control Systems Based on a New Extension to the IEC 61499 Standard.
Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwisse
nschaftlich–Technischen Fakultät der Universität des Saarlandes und Tunisia Polytechnic School,
Carthage University, 2021. (accessed on 6 July 2023). . Zertifiziert mit dem DINI-Zertifikat 2019
für Open-Access-Publikationsdienste. Retrieved 2023-7-26

38. Roopak Sinha; Partha S. Roop; Gareth Shaw; Zoran Salcic; Matthew M. Y. Kuo; Hierarchical and
Concurrent ECCs for IEC 61499 Function Blocks. IEEE Trans. Ind. Informatics 2015, 12, 59-68.

39. Benedikt Marschall; Markus Schleicher; Axel Sollich; Thomas Becker; Tobias Voigt; Design and
Installation of an Agent-Controlled Cyber-Physical Production System Using the Example of a
Beverage Bottling Plant. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 3, 39-47.

40. Hopsu, A.; Atmojo, U.D.; Vyatkin, V. On portability of IEC 61499 compliant structures and
systems. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics
(ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 1306–1311.

41. Ernesto Monroy Cruz; Luis Rodolfo Garcia Carrillo; Luis Alberto Cruz Salazar; Structuring Cyber-
Physical Systems for Distributed Control with IEC 61499 Standard. null 2023, 21, 251-259.

42. Alexandre Parant; François Gellot; Damien Zander; Véronique Carré-Ménétrier; Alexandre
Philippot; Model-based engineering for designing cyber-physical systems from product
specifications. Comput. Ind. 2023, 145, 103808.

43. Edsger W. Dijkstra; The structure of the “THE”-multiprogramming system. Commun. ACM 1968,
11, 341-346.

44. Dhoked, S.; Golab, W.; Mittal, N. Recoverable Mutual Exclusion; Springer Nature:
Berlin/Heidelberg, Germany, 2023.

45. John C. Eidson; Edward A. Lee; Slobodan Matic; Sanjit A. Seshia; Jia Zou; Distributed Real-Time
Software for Cyber–Physical Systems. null 2011, 100, 45-59.

46. Lee, E.A. Plato and the Nerd: The Creative Partnership of Humans and Technology; MIT Press:
Cambridge, MA, USA, 2017.

Cyber-Physical Systems with Process-Oriented Paradigm | Encyclopedia.pub

https://encyclopedia.pub/entry/47303 15/15

47. Marten Lohstroh; Christian Menard; Soroush Bateni; Edward A. Lee; Toward a Lingua Franca for
Deterministic Concurrent Systems. ACM Trans. Embed. Comput. Syst. 2021, 20, 1-27.

48. Huailin Li; Qinsen Liu; Mengnan Liu; Bangyong Sun; Bin Du; Robust Deadlock Control for
Reconfigurable Printing Manufacturing System Based on Process Algebra. IEEE Access 2023,
11, 42473-42484.

49. Vladimir E. Zyubin. Hyper-automaton: a Model of Control Algorithms; Institute of Electrical and
Electronics Engineers (IEEE): Piscataway, NJ, United States, 2007; pp. 51-57.

50. Tatiana V. Liakh; Natalia O. Garanina; Igor S. Anureev; Vladimir E. Zyubin. Verifying Reflex-
software with SPIN: Hand Dryer Case Study; Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, United States, 2020; pp. 210-214.

51. Anna A. Ponomarenko; Natalia O. Garanina; Sergey M. Staroletov; Vladimir E. Zyubin. Towards
the Translation of Reflex Programs to Promela: Model Checking Wheelchair Lift Software;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, United States, 2021; pp.
493-498.

52. Ivan Chernenko; Igor Anureev; Natalia Garanina. Proving Reflex Program Verification Conditions
in Coq Proof Assistant; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ,
United States, 2021; pp. 485-488.

53. Vladimir E. Zyubin; Natalia O. Garanina; Igor S. Anureev; Sergey M. Staroletov; Towards
Topology-Free Programming for Cyber-Physical Systems with Process-Oriented Paradigm.
Sensors 2023, 23, 6216.

Retrieved from https://encyclopedia.pub/entry/history/show/107006

