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Aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer
widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic,

organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nandfillers.

aerogel silica biopolymer biomedical application wound healing drug delivery

| 1. Introduction

Aerogel is a nanostructured material that is gaining popularity as a structural alternative for insulation in a variety of
uses, ranging from residences and commercial structures to offshore platforms and spacecraft. Aerogel insulator is
thought to provide 40 times the shielding effect of fiber glass, allowing it to be used in space-constrained
applications. It is a low-density, high dielectric strength, high specific surface areas, low thermal conductivities, and
extremely porous foam with interconnected nanostructures 2, Aerogel is composed of approximately 99.8
percent space, giving it a spectral look, and garnering the name of ‘solid smoke’ 2!, It is typically composed of silica
and may take numerous shapes. However, organic polymers, inorganic, carbon allotropes, polysaccharides,
transition metals, and nanostructures of semiconductors may also synthesize aerogels . Aerogel is created by

drying gels at extremely elevated heat.

In the early 1930s, Kistler and Learned invented the first aerogel by supercritical drying a wet gel and extracting the
liquid &. It was employed as a tobacco filler and thickener, whereas silica aerogel was used as a thermal insulating
blanket. Despite the numerous benefits that silica as well as other inorganic compounds can bring in the production
of aerogel, conventional aerogel raw resources are still derived from petrochemical sources. On the other hand, the
difficult multistage preparation method stymied the development of aerogel. Nonetheless, native aerogel with a
single element is typically afflicted by serious issues such as weak mechanical properties, and a lack of
functionalities. The name “aerogel” resurfaced in the 1970s, with the rising use of sol-gel synthesis processes and
the usage of aerogel to store rocket fuels 8. Following that, important efforts were made to simplify the synthesis
methods, particularly drying to achieve a low-cost and simple synthesis of aerogel. This paved the way for a wide
range of aerogel to be used in various fields of application due to their open structure and lightweight BIZIE! To
improve aerogel performance, significant growth in the emergence of future aerogel with varied physicochemical
features and functional abilities is required 229, For example, aerogel-based biomaterials are now made from a
variety of sources or components that imitate the structure of a biological extracellular matrix. The tissues that

surround this structure serve as support cells and are affected biochemically by it. Even though an aerogel network
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has also hybridized with a wide variety of nanostructures and improved functional properties such as antifungal or

antimicrobial performance.

| 2. Type of Aerogels and Properties

Different varieties of aerogels were produced during the last few decades as the methods for the synthesis and
drying of aerogels improved. They can be classified as inorganic aerogels (silica, alumina, and titania), polymer-
based, carbon allotropes (nanotubes and graphene), and natural macromolecule-based aerogels (alginate, starch,
gelatin, protein, nanocellulose and chitosan) BUI2 Typically, silica-based aerogels are the most potential
candidate materials owing to their distinctive characteristics, such as low thermal conductivity (15-20 W/mK), low
density (0.003-0.5 g/cm?3), and large surface area 13, They are generally fragile, have poor mechanical properties,
and require a lengthy processing technique, hence limiting their application range 9. Many attempts to increase
the quality of silica-based aerogels have already been made, including using (i) adaptable silica catalysts in the
strand, (ii) enhanced polymer cross-linking, (iii) accelerated ageing processes in different solutions, (iv) adding
nanofillers, and (v) polymerizing the precursor in advance of gelation. For example, it has been shown that the
combination of silica with methacrylate polymer to improve the polymerization resulted in enhanced mechanical
performance and other parameters, including densities, areas, pore diameters, and void content 14 Silica
aerogels through polymer modification are illustrated in Figure 1. They are classified as silica aerogels reinforced
polymer, fabricated via cross-linked via water-oil agueous solution in high-internal stage emulsion substance. This
novel material shows a superior performance property over pure silica aerogels 2. In addition, Posada et al.
produced ceria-containing silica aerogel via a three-way catalyst approach in incorporation with a new rapid
supercritical separation method. They employed a polyether to strengthen the aging process and accelerate the
gelation time (28], This innovative technique can reduce the time taken to prepare wet gels, including gelation,

ageing, and solvent exchange from days to seconds 27,
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Figure 1. Polymer modification via polymerization of water-in-oil HIPE templates 13,

In addition, a nanofiller such as graphene nanoplatelets (GnPs) can also be employed to enhance the mechanical
behavior of aerogel. This GnPs can speed up the gelatinization of nanostructures and reduce nanopore shrinkage
throughout the hydrothermal process (8. In addition, many studies are concentrating on improving the
performance of silica aerogel by utilizing various approaches in native silica aerogel. A trifunction
alorganoalkoxysilane, such as methyltrimethoxysilane was also used to provide agility to silica aerogel. However,
the high costs of these precursors make them unsuitable for long-term use. As a result, many researchers adopted
the organic-inorganic hybridization method, which entails cross-linking the silica aerogel with organic molecules
(291 This distinctive aerogel has a high degree of hydrophobicity and thermal insulation, giving it appealing
properties such as self-cleaning, infrared stealth, and heat insulation compared with rival commercial items. The
cellular structure shown the construction of multidimensional nanomaterials with synergistic action of organic—
inorganic components contributed to the excellent multifunction of aerogel 2221 and a strong interfacial effect is
formed between the two components 22, In general, other inorganic aerogels, such as alumina and titania, have
garnered huge attention due to their unique microstructures. However, the extreme brittleness and manufacturing
expense of these aerogels severely limit their industrial advantages. These aerogels may be modified with other
materials, such as organic and polymer substances to provide numerous meshwork formation, high porosity,
lightweight structure, moduli of elasticity, and low thermal conductivity [28l241125] - Multifunctional inorganic aerogel
with high open porosity and enormous surface area is a promising material that might be extended for extensive
applications (281271 Additionally, the agglomeration of inorganic nanoparticles and nanofibers are recognized as a

very viable approach for creating extremely flexible, readily accessible, and versatile composite aerogels 221,
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Furthermore, polymer aerogels have a variety of forms, including polyamide (Pl), polyvinylpolydimethylsiloxane
(PDMS), and phenolic-based aerogels. All polymer aerogels have closely similar structures and properties 28129
89 |n contrast to silica aerogel which are fragile and hygroscopic, aerogels derived from polymers have a broad
variety of uses owing to their excellent mechanical attributes, such as high strength and fatigue resistance. These
organic aerogels have thermal conductivity close to silica aerogel, comparable density and can be produced with
very little shrinkage during the manufacturing process. Depending on the polymer type and fabrication
circumstances, it may range between sheet-like skeletons and colloidal nanoparticles to nano/micro-fibrillar
networks. The structural properties of aerogel materials, such as shape, size, and even pore ordering, have a
substantial impact on their ultimate mechanical performance [Bl. For example, a Pl reinforced graphene
oxide/cobalt (PI/rGO/Co) polymer produced by a unique cross-linking process demonstrated great heat stability
and low thermal conductivity 2. Additionally, multifunctional polyvinylpolydimethylsiloxane (PDMS)-based aerogels
were reported to have high hydrophobicity and super-flexibility, thermal superinsulation, effective water, and oll
separation, integrate selective absorption, and strain sensing 22l In contrast, cellulose-based aerogel offer high
porosity, higher surface area, and lightweight B4, Aerogels containing organic precursors such as resorcinol
formaldehyde, phenol formaldehyde, or melamine formaldehyde, on the other hand, have extremely poor electrical
conductivities and dramatically lowered heat transmission throughout the aerogel’s backbone phase. Compared
with cellulose-based aerogels, they may also be mechanically more flexible and confined to surface areas of less
than 1000 m2/g [22],

Meanwhile, carbon allotrope aerogel is generally porous materials made up of small interstitial pores (less than 50
nm) and interconnected with homogeneous carbonaceous particles (3 nm—30 nm) 8, This aerogel has strong
thermal and electrical conductivity. It provide a more brittle structure with higher backbone porosity due to
micropore structures at specific areas of approximately 2000 m2/g for certain meso- and macrostructures B2, The

typical synthesis process of polymer or carbon aerogel is illustrated in Figure 2.
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Figure 2. Basic method of producing carbon or polymer aerogels B4,

Macromolecules or polysaccharides-based aerogels are made from biopolymers derived from renewable raw
materials such as cellulose, chitosan, alginate, chitin, and protein. For example, cellulose aerogel is identical to
ordinary silica and polymeric aerogel in terms of compressive stress (5.2 kPa—16.67 MPa) and better recyclability
1. As stated by Gong et al. the spongy morphology of this aerogel was steadily enhanced with the raising of the
carboxyl proportion of nanofibrils in the structure. Carboxymethyl element could also effectively increase the total
area of aerogel, due to the elimination of horrification 8. Moreover, chitosan-based aerogel has much better
physicochemical properties of the functional groups than cellulose-based aerogel and can be used in biomedical
applications. When it was incorporated with graphene oxide, the adsorption capacity of this material improved B2,
In contrast, alginate-based aerogel is highly promising for low-flammability performance; however, it exhibits poor
mechanical properties 49, Interestingly, with the addition of graphene oxide, the catalytic property of this biomass
aerogel can be increased by 30 times, resulting in an improvement in its mechanical property. The properties of

different types of aerogels are shown in Table 1.

Table 1. Different types of aerogels with their respective properties.

Types Main Properties Weakness W ST Applications References
Component Improvement
Use
precursors in
Fragile, have the
. Low heat poor. LTI Photocatalysts,
Tetraethylorthosilicate S mechanical surface-
(TEOS) and . roperties crosslinkin N
Silica . . large built-up propert . 9 insulation, [L3){4d]
methyltrimethoxysilane and require a with a
area, low absorbent
(MTMS) . lengthy polymer,
density : pollutants
processing prolonged
technique aging
incorporating,
polymerizing
Monolithic, Additives
prone to
. . (foods,
Cellulose/ High moduli defects, Usage of cosmetics)
Polymer conducting and fatigue length synthetic . [28]142]
olymer resistance rocessin olymer construction,
poly P and 9 poly materials, drug
costly delivery carrier
Carbon Carbon/CNT/ High specific Low Focused on Electrodes, in [37](43]
graphene surface area electrical carbon supercapacitors,
and porosity, conductivities aerogel- adsorbents for
low density, and reduced based phenol
good electrical heat biomass
conductor, transmission
good chemical via the
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Types it Properties Weakness ST S Applications References
Component Improvement
stability, and aerogel
hydrophobicity, backbone
phase with
related
organic
precursor
. _ Ultra-high High Hybrid Energ_y
. Oxide/ metallic/ surface area . conversion, [44][45]
Inorganic ; . production aerogel
chalcogenide and high open : storage
. cost formation .
porosity application
High Incorporated Biosensor,
. Poor . .
. . compressive . with Medical [46]
Organic Biopolymer . mechanical . . .
strength, high . inorganic implantable
properties ) :
surface area fillers device.
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23. Bonab, S.A.; Moghaddas, J.; Rezaei In-situ synthesis of silica aerogel/polyurethane inorganic-

organic hybrid nanocomposite foams: Characterization, cell microstructure and mechanical
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