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AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of
accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological
entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically
significant animals and plants, but they can also be useful for biological control, suppressing populations of pests
and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several
activities, including drug design.

AlphaFold viruses bacteriophages

| 1. Introduction

Prediction of the three-dimensional structure of proteins is a difficult task. For a long time, the main prediction
methods included comparative modelling (homology modelling), threading and ab initio and machine-learning
approaches 2, The development of end-to-end machine-learning approaches in recent years has resulted in the
emergence of new techniques that can often outperform other methods BI4!. Moreover, recent progress associated
with deep-learning methods enables speculation about a revolution in protein-structure prediction . One of the
most popular deep-learning techniques is Alphabet—Google DeepMind’s neural network-based end-to-end solution
AlphaFold2 (AlphaFold, AF2), which was presented in the CASP14 competition 8, the second iteration of the
AlphaFold system entered in CASP13 1. AlphaFold employs a deep-learning approach and a conventional neural
network. This technique is able to predict the distance and torsion distribution of proteins, using training schemes
of experimentally determined PDB structures, protein primary sequences and the multiple sequence alignment
(MSA) of proteins. In CASP14, AlphaFold2 structures had a median backbone accuracy of 0.96 A RMSDgs (Ca
root-mean-square deviation at 95% residue coverage) and an all-atom accuracy of 1.5 A RMSDgs. The
corresponding values for the prediction of the best alternative method were 2.8 A and 3.5 A [&. The high level of
accuracy of AlphaFold2 predictions boosted the popularity of this technique. One might even talk about “AlphaFold

mania”, given the astonishing increase in the number of journal articles and preprints citing AlphaFold2 Al software
8,

| 2. Application of AF2 for Research on Eukaryotic Viruses

2.1. Application of AlphaFold for SARS-CoV-2 Research
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The outbreak of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2, realm Ribozyviria,
class Pisoniviricetes, order Nidovirales, family Coronaviridae, genus Betacoronavirus) and the spread of
associated infection boosted research on coronaviruses. The structure of SARS-CoV-2 spike (S) glycoprotein, the
main target of antibodies, has been determined by cryo-electron microscopy and was used in the development of
vaccines and inhibitors B9, S glycoprotein promotes entry into the cell. Another target of drug design is main
protease cutting the initial translated propeptide into functional viral proteins. The crystal structure of the SARS-

CoV-2 main protease was also obtained experimentally 11,

To assist the solution of tasks related to general research and drug design, different structure prediction
techniques, including AlphaFold, were used for prediction of SARS-CoV-2 proteins [L2UISIL4USII6IL7] The main
task was probably the investigation of the mechanism of interaction of the SARS-CoV-2 receptor-binding protein
(RBP), which is the SARS-CoV-2 spike, and the angiotensin-converting enzyme 2 (ACE2) receptor. AF2
predictions enabled clarification of the structural features of monomeric and multimeric formulations of the vaccine
and suggested that monomeric formulation presents more antigenic epitopes 14, The emergence of new immune-
escaping variants of SARS-CoV-2, such as Omicron BA1, made it important to study potential mutation sites that
do not yet exist in nature but could increase the binding affinity of RBD and the receptor 18, AF2 predictions were
successfully used to find an explanation for the observed reduction in the neutralisation of SARS-CoV-2 variants of
concern compared with other variants 2. AF2 predictions can be combined with molecular dynamics simulations
to improve modelling accuracy 28! and to predict the physical properties of proteins. Such models can be used for
studies of both qualitative and quantitative aspects of the formation of the quaternary structure of proteins 7.
AlphaFold models are useful for revealing possible ligand binding sites. Together with virtual screening and in silico
validation, these approaches provide the basis for the biological testing of new drugs and for the repurposing of

natural products 221,

The accuracy of predicted structures can be assessed using computational techniques 22 and via experimental
methods, e.g., optical spectroscopy or measurement of solution residual dipolar couplings data (RDCs) 29211 A
meticulous evaluation of the concordance of AF2 models of the SARS-CoV-2 homodimeric 3C-like protease (MP)
with residual dipolar couplings (RDCs) measured in solution for 15N-IHN and 13C'-'HN atom pairs indicated the

close agreement of AlphaFold predictions with experimental data 29,

Interestingly, the high level of accuracy of AF2 predictions makes it possible to use AlphaFold predictions to
determine a macromolecular structure from crystallographic diffraction experiments. It has been shown that a
template-free AF2 model, generated by the AlphaFold2 group, was of sufficient quality to phase the native SARS-
CoV-2 ORF8 dataset by molecular replacement, overcoming the limitations of the crystallographic phasing problem
(13 However, a comparison of RMSD (root mean square deviation of atomic positions) values of SARS-CoV-2
spike RBD, the laboratory-derived structure with both trRosetta-generated models 22 and models generated by
AlphaFold v2.1.0, indicated the high level of accuracy of both methods, but the better results were obtained with

trRosetta.

2.2. Application of AlphaFold to Study Eukaryotic Viruses
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AlphaFold is widely used in research on other eukaryotic viruses, including monkeypox virus (MPXYV) [231[24](25][26]
herpes simplex virus 27[28] hepatitis E virus (HEV) 22 and other viral pathogens of humans and economically
significant animals and plants [BBLEB2E3IBAES]  Monkeypox virus (MPXV) represents a new serious threat to

human health. MPXV has spread to 110 countries (https://www.cdc.gov/poxvirus/mpox/response/2022/world-

map.html, accessed on 1 March 2023). As of 1 March 2023, there were 86,231 confirmed cases worldwide, of
which 84,858 cases occurred in locations that had not previously reported MPXV cases. Monkeypox virus is
classified as a member of realm Varidnaviria, class Pokkesviricetes, order Chitovirales, family Poxviridae, genus
Orthopoxvirus and is evolutionarily close to vaccinia virus (VACV), the smallpox virus. AlphaFold-derived structures
of the recombinantly expressed MPXV antigen truncations to their VACV homologues have indicated that MPXV
and VACV antigens are likely to achieve similar conformations 28, The World Health Organisation (WHO) has
recommended the current anti-smallpox drugs tecovirimat, brincidofovir and cidofovir for the treatment of
monkeypox 28, Brincidofovir and cidofovir inhibit DNA polymerase (DNAP), while tecovirimat is an inhibitor for

poxvirus phospholipase D (protein F13) B2, but specific antiviral treatment requires new drugs.

MPXV DNA polymerase (DNAP) is a very important antiviral drug target. The laboratory-derived structure of MPXV
DNAP was deposited in the RCSB PDB database (PDB code 8HG1) in mid-November 2022, and a paper
describing this structure was published in January 2023 28], Before that, the AF2-derived structure was obtained
and used in the search and design of new inhibitors of MPXV DNAP. The molecules found were predicted to bind
to the MPXV DNAP with a binding energy comparable to that of brincidofovir and cidofovir. New MPXV DNAP
inhibitors are important in the context of possible drug resistance, which can arise due to mutations in proteins of
the DNA replication complex (RC). Studies of the effect of mutations in MPXV RC using AF2-generated models
have suggested similar mechanisms of drug resistance to cidofovir in monkeypox and vaccinia viruses 24, It
appears that the use of highly accurate AlphaFold predictions can assist the forecasting of the emergence of drug-

resistant variants of concern to improve preparedness for them.

The molecular mechanism of interaction of tecovirimat with the monkeypox phospholipase D (F13) was studied
using AlphaFold models and molecular dynamics simulations [22l. The results suggested a detailed mechanism of
inhibition of F13 by tecovirimat and supported the efficacy of tecovirimat against monkeypox virus, emphasising the

importance of the availability of precise modelling for revealing molecular mechanisms of drug action.

The development of new drugs is barely possible without an understanding of the mechanisms of viral infection.
This knowledge can often require robust structural analysis, which can make use of modern deep-learning

structure prediction methods. AlphaFold can facilitate the elucidation of the functionality of viral proteins.

Herpesviruses constitute an important group of pathogens that infect animals, including humans. Herpesviruses
infect most vertebrates, causing a lifelong latent infection 39, Herpesviruses belong to the realm Duplodnaviria,
class Herviviricetes, order Herpesvirales, and comprise the families Alloherpesviridae, Herpesviridae and
Malacoherpesviridae ¥9. Human herpesviruses belong to the family Herpesviridae. Herpes simplex virus 1 (HSV-
1) (genus Alphaherpesviruse), residing in sensory neurons or sympathetic neurons, has been shown to severely

modify infected cells and to remodel the composition and architecture of cellular membranes (4142 Ope of the
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HSV-1 proteins, phosphatase adaptor UL21, mediates dephosphorylation and accelerates the rate of ceramide to
sphingomyelin conversion, altering cell membranes and influencing viral replication [, AlphaFold-Multimer
modelling has revealed the details of the interaction of UL21 and viral protein UL16 and has enabled the
suggestion of the functionality of domains of the latter protein using its structural features. Specific protein—protein
interactions have been shown to be essential for lipid metabolism 4. The use of AlphaFold has also shown that
another HSV-1 protein, the tegument protein UL37, interacts with the cytoplasmic surface of the lipid membrane,
suggesting that UL37 can be a peripheral membrane protein [28. AlphaFold predictions have suggested the domain
organisation of UL37, and assisted experimental studies and molecular dynamics simulation have clarified the

structural features and molecular mechanisms of UL37 interactions.

Fundamentally similar tasks concerning research on other viral pathogens of animals, including humans, and
plants can be made easier by the use of AlphaFold predictions. These tasks include mechanisms that are crucial
for viral attachment, penetration, replication, release and other steps in the viral infection cycle. They can include
the investigation of viral proteins and membranes [BAB3I33] viral proteins and DNA [ and studies of viral proteins,
glycoproteins and their mutations 221321341 |t js noteworthy that AlphaFold predictions are often used as part of an
integrated approach, making the planning of experiments easier and improving understanding of the results

obtained.

| 3. Application of AlphaFold for Research on Bacteriophages

Bacteriophages (a.k.a. phages) are viruses that infect and replicate in bacterial cells alone. Bacteriophages are
ubiquitous—they can be found in water, soil and various living organisms 23], The total number of bacteriophages
can be estimated at 103! viral particles, which is 10-100 times the number of cells 44, The total mass of these
particles is about a trillion tons 42!, Phages are also members of plant and animal microbiomes, including humans.
For example, the human gastrointestinal tract contains more than 102 phage virions “€. The ability of
bacteriophages to destroy the cells of pathogenic bacteria attracted the attention of scientists as early as the
beginning of the 20th century. In recent decades, interest in bacteriophage therapy has begun to grow, primarily
due to the spread of antibiotic resistance. Phage therapy has important advantages 44, including sustained
bactericidal activity and “autodosing”, wherein the number of phages positively correlates with the number of host
bacteria. Furthermore, phages have low intrinsic toxicity, and phage therapy is characterised by minimal disruption

of normal flora and the lack of cross-resistance with antibiotics.

The practical use of phages for phage therapy requires an understanding of the structural bases of interactions of
the host receptor and phage receptor-binding proteins (RBPs); the latter can include tail fibre and tail spike proteins
(TFP and TSP). In addition, phage RBPs, as well as endolysins and ectolysins, the proteins that cause cell lysis,
can be used as antibacterial agents by themselves 48149 The analysis of the structural features of phage RBPs
and lysins can use modern deep-learning techniques, including AlphaFold. Together with experimental studies,
AlphaFold predictions can be used to elucidate the domain organisation of TFP, TSP and cell-wall degrading

enzymes, to reveal the sites of phage particle binding and enzymatic domains [(28159(51](52]
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As well as in the case of eukaryotic viruses mentioned above, AlphaFold predictions can contribute to building the
model of the viral particle 23541 or the virion parts, including the attachment apparatus B938! and phage egress
machinery 8l All the steps of phage infection are accompanied by macromolecular interactions that include
proteins, so AlphaFold’s highly accurate structural predictions can assist in the elucidation of the mechanisms of
the formation of the phage nucleus B2, lysogeny maintenance 58 or anti-phage defence B89 AlphaFold can also
be useful in the trivial but relevant task of phage genome annotation, assisting the prediction of genes’ functionality.
As of January 2023, 19,499 GenBank sequences, assigned to class Caudoviricetes, contained 1,731,815 coding
regions, 67% of which were annotated as hypothetical proteins. In some cases, BLAST search and HMM-HMM
motif comparisons fail to assign a function to proteins encoded in phage genomes, but analysis of fold of AF2-

derived structures can assist to clarify this function (4],

It seems that no large-scale studies have been published on the accuracy of modelling using AF2 compared with
the predictions of other algorithms. However, comparing the predicted average local distance difference test (IDDT)
score of the 54 AF2-derived models of the major capsid protein and ATPase subunit of phage terminase indicated
an impressive level of accuracy of the predictions B2, Interestingly, structural predictions of more conserved
terminase were more accurate than those of major capsid protein, (terminase IDDT mean: 0.988, median: 0.996;
major capsid protein IDDT mean: 0.907, median: 0.929). The average IDDT of the ATPase domains extracted from
the ATPase subunit of phage terminase models was even higher (mean: 0.998, median: 0.999). An evaluation of
models of the same major capsid proteins, carried out using a different deep-learning algorithm, RoseTTAFold,

showed a lower accuracy of prediction (IDDT mean: 0.634, median: 0.649) than with the AlphaFold models.

4. Application of AlphaFold for Evolutionary and Taxonomic
Studies

Comparing structural similarity and specific structural features can clarify the evolutionary relationships between
proteins. Furthermore, the emergence of new high-precision algorithms for predicting the structure of proteins,
including AlphaFold, can enable the identification of evolutionary relationships between highly divergent discovered
proteins, using the results of structural modelling. The evolution of proteins may be accompanied by the
appearance of new domains, and comparative analysis of AF2-derived structures can help reveal patterns of
protein evolution. Studies of bacteriophage tail sheath proteins, an important part of phages’ contractile injection
system, have enabled the identification of the common core domain, including both N-terminal and C-terminal
parts. The remaining variable parts consisting of one or more moderately conserved domains have, presumably,

been added during phage evolution 2],

Structural similarity is widely used to evaluate evolutionary relationships between proteins whose amino acid
sequence homology level is low or cannot be determined at all 831641, The structural similarity between two proteins
can be assessed using root-mean-square deviation (RMSD) or other metrics such as template modelling score
(TM-score) and DALI Z-score; the latter two metrics have a number of advantages over RMSD L1651 Clustering of
experimentally determined structures of major capsid proteins using the DALI Z-score has already been used to

illustrate the common origin of some viral groups and to cluster prokaryotic viruses 8368l |ntegrated use of both
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experimental structures and AF2-derived structures can be used for elucidation of evolutionary relationships and
taxonomic classification of bacteriophages and eukaryotic viruses 268169 AlphaFold modelling and subsequent
clustering have been used in taxonomic studies of archaeal viruses 8. Clustering using AlphaFold showed
interesting and often biologically meaningful results (1. Clustering using structures predicted by AlphaFold showed
interesting and often biologically meaningful results. It should also be noted that the native state of viral proteins
can change according to the state of the viral particle (e.g., empty, full, expanded capsids) and according to the
stage of viral particle assembly A28 The correlation between structural similarity and sequence identity is
not absolute due to conformational plasticity, solvent effects and ligand binding /4. Most of these limitations apply
to studies that involve experimentally determined structures, but, hypothetically, they could be exacerbated by
structural prediction errors. Therefore, predicting the effectiveness of using AlphaFold for the analysis of structural

similarity and evolutionary history, based only on the similarity of the predicted structures, seems to be a difficult
task (611,
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