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Food quality is nowadays an extremely important issue: it must not only comply with commercial regulations but

also meet consumers' expectations; this aspect includes sensory features capable of triggering emotions through

the consumers' perception. In food quality assessment, the sensory approach gives an immediate measurement of

perceived attributes and returns important information, which helps to better understand human responses.

However, sensory analysis carried out by human panels can be tricky. Thus, e-senses have been used to

characterize food features associated with sensory and compositional profiles, in a quick and objective way.

chemosensory analysis  e-senses  emotions  consumers choice  food quality

1. E-Nose

An electronic nose (E-nose) is a tool that works through a series of sensors able to detect volatile organic

compounds (VOCs) in different types of samples. It is composed of three main parts: sample delivery system,

chemical sensors, and pattern recognition system . Gas sensors can be classified into different types, based on

the materials: conducting polymers (CP), metal-oxide semiconductors (MOS), metal-oxide-semiconductor field-

effect transistors (MOSFET), and mass-sensitive (such as quartz microbalance), and acoustic and optical sensors

. The VOCs emitted by the samples react with the sensors, causing reversible electrical signals, which are

properly analyzed to extrapolate a possible pattern of some significance for the given analysis . The intensity of

the sensor’s signal depends on specific parameters, such as the nature of the VOC (type and concentration),

reaction between VOCs and sensors, type of sensor, and environmental and sampling conditions . After the

processing, what is obtained is an aromatic fingerprint. The E-nose can be trained to interpret the results

differentially depending on the food industry needs, and the sensors can be customized based on the desired

application . As being able to mimic the human smell, the E-nose has been largely tested in the food industry to

identify specific aromatic fingerprints associated with food quality, especially considering that different aspects

influence the intensity and composition of food aroma profile. Hence, the food aroma plays a crucial role in

assessing food quality and internal composition, as well as consumers’ expectations. Consequently, aromatic

evaluation has become part and parcel of the food production process for quality inspection purposes . An e-nose

finds application in different steps of the agri-food production chain, such as ripening stages and harvesting time

evaluation, storage conditions, and shelf-life evaluation, including the assessment of freshness or decay degree,

microbial contamination, and off-flavor formation . This appears particularly important considering that food
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pathogens and off-flavor production can lead to important economic loss and consumer rejection. For instance,

Viejo et al.  proposed an integrated artificial intelligence system to detect off-flavors in beer using a low-cost,

portable e-nose coupled with machine learning modeling. The Authors were able to build three highly accurate

models able to predict beer faults with 95, 96, and 97% accuracy. Moreover, Fuentes and colleagues  evaluated

the potential of a low-cost e-nose to assess the smoke-taint fault in wines. Using the e-nose measurements as

input in the machine learning model, it was possible to assess the number of smoke-related compounds in wines,

such as 20 glycoconjugates and 10 volatile phenols with high accuracy (with R2 ranging from 0.95 to 0.99). Some

examples of e-nose applications for food quality evaluation are shown in Table 1. The e-nose shows to be a rapid,

reliable, and low-cost technology to assess food and beverages quality . Moreover, the e-noses can be installed

at different production stages for quality monitoring during the whole production process, which can help in taking

fast corrective actions before obtaining the final product . Besides the considerable advantages of the e-noses,

there is still a great difference with the human olfactory system. Hence, the technological approach has a certain

type of limitation due to sensor structure and analytical methods. For instance, sensor poisoning, calibration, and

sensitivity can represent important drawbacks . Additionally, even though the analysis is cheap and fast, a large

number of samples is often required. Gas sensors are very sensitive to external environmental conditions,

especially to temperature, humidity, and pressure. Therefore, an external condition during sampling strongly affects

the response of the sensor. As such, controlled conditions are required during the analysis, which makes it difficult

to use E-noses in outdoor settings . Considering the obvious limitations of the e-nose systems, a valuable

approach to take key decisions in the food production chain could be the combination of e-nose with sensory

analysis approaches discussed above. In this sense, it would make it possible to combine the ability of the e-nose

to perceive chemical compounds with the ability of the human nose to perceive the synergic interaction of chemical

compounds mixture. Moreover, the combined use of e- and human senses would reduce the necessary resources

(in terms of times and samples) of both approaches .

Table 1.  Examples of E-Nose application for Food Analysis. MOS: metal-oxide semiconductors. ANN: artificial

neural network; CDA: Critical discourse analysis; CT classification and regression tree; HCA: hierarchical cluster

analysis; LDA: linear discriminant analysis; MARS: multivariate adaptive regression splines; PCA: principal

component analysis; PLS: and partial least square; RBFNNs: radial basis function neural networks; SVM: support

vector machine; SNV: standard normal variate.
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Food
Category Sample Application Sensor Chemometric

Approach Reference

Agri food
Rice

Detection of fungal infection
during storage

MOS
PCA, LDA, and

PLS

Peach Fruit decay MOS PLS and SVM

Apple
Detection of pathogen

contamination
MOS PCA and HCA

Dragon fruit,
pear, kiwi fruit,

Fruit deterioration MOS PCA
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Food
Category Sample Application Sensor Chemometric

Approach Reference

apple

Potato Soft-rot infection MOS LDA, MARS, CT

Broccoli Freshness evaluation MOS PCA, HCA, CDA

Citrus
Early detection of Bactrocera

dorsalis infection
MOS PCA and LDA

Bell pepper Freshness MOS PCA and PLS

Mushrooms Early detection of contamination MOS PCA and PLS

Apple

Detection of pathogens
(Salmonella, Erwinia,
Streptococcus, and

Staphylococcus) contamination

MOS PCA and HCA

Grapes
Identification of smoke-related

volatiles
MOS PCA

Oils and
Dairy

products

Olive oil
Evaluation of rancidity and

oxidation
MOS PCA and LDA

Olive oil Presence of defects MOS PCA

Peony seed oil Adulteration MOS PCA and LDA

Edible oils Adulteration MOS
HCA, PCA,

PCR, LDA, and
ANN

Parmigiano
Reggiano
cheese

Adulteration MOS PLS and ANN

Butter Adulteration MOS PCA and ANN

Meat and
fish

Fish Spoilage monitoring MOS -

Tuna Process development MOS PCA

Salmon
Freshness evaluation during

storage
MOS

RBFNNs and
PCA

Squid Formaldehyde identification MOS PLS

Processed
food

Grape syrup Adulteration MOS
PCA, HCA,

SVM, and LDA
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2. E-Tongue

The human sense of taste involves identifying basic flavors, namely, sweetness, acidity, bitterness, salinity, and

umami. Many researchers have introduced the electronic tongue (E-tongue) as a rapid and objective method to

replace the human tongue . The e-tongue is the analytical device based on the principles of functioning of the

human sense of taste able to classify the tastes of various chemical compounds in liquid phase samples. Like the

e-nose system, it allows the identification, classification, and analysis (both qualitative and quantitative) of the

multicomponent mixtures, returning a taste fingerprint. Overall, it is based on a multi-channel taste sensor,

composed of three parts: a sample-dispensing chamber, a sensory array with different selectivity, and software for

data processing. The interaction between the sensors and the analytes gives a primary chemical energy output,

which is a function of components’ structure and concentration, and it is transformed into electrical output .

These measurable electrical signals are used to recognize and classify the pattern. Most of the e-tongue

instruments are based on electrochemical techniques, namely, conductometry, voltammetry, and potentiometry ;

the latter representing the most common and versatile one. These sensors are able to measure a great number of

different compounds in different solutions. In several studies, voltammetric e-tongues have been used to identify

sweeteners and acids (such as glucose, lactate, sucrose, lactic, and acetic acid) in different food products. In the

agri-food sector, potentiometric sensors have been used to classify beers and wines . Specifically, the e-tongue,

based on potentiometric electrodes sensitive to sodium, calcium, ammonia, and anion was able to discriminate 34

types of beers from different brands and types. Moreover, it was able to discriminate the presence of stabilizers

and antioxidants, unmalted cereals, and carbohydrates added during fermentation. The same system was used to

analyze wines and was able to discriminate the different wines based on the varieties used for the winemaking

(Chardonnay, Americanas, Malbec, and Merlot). In Table 2 are reported some examples of e-tongues used for food

analysis.

Table 2.  Examples of E-tongue application for Food Analysis. ANN: artificial neural network; CDA: Critical

discourse analysis; CT classification and regression tree; ELM: extreme learning machine; HCA: hierarchical

cluster analysis; LDA: linear discriminant analysis; MARS: multivariate adaptive regression splines; PCA: principal

component analysis; PLS: and partial least square; RA: regressive analysis; RBFNNs: radial basis function neural

networks; SNV: standard normal variate; SVM: support vector machine.

Food
Category Sample Application Sensor Chemometric

Approach Reference

Tomato paste Adulteration MOS
PCA, PLS, SVM,

and LDA

Chicken
Evaluation of roasted chicken

deterioration
MOS PCA

Beverages

Vinegar Classification MOS
PCA, SNV, and

LDA

Orange juice Adulteration MOS
HCA, ANN, and

CT

Beer Off-flavor identification MOS ANN

Wine Smoke taint evaluation MOS ANN
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Food
Category Sample Application Sensor Chemometric

Approach Reference

Agri food Coffee
beans

Evaluation of bitterness Potentiometric RA [40]
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Food
Category Sample Application Sensor Chemometric

Approach Reference

Melon
Evaluation of storage

condition
Potentiometric PLS and LDA

Corn
seeds

Aflatoxin detection Potentiometric PLS

Oils and
Dairy

products

Vegetable
oil

Adulteration with low-grade
oils

Solid-state
electrodes

RA

Olive oil Rancidity evaluation Potentiometric LDA

Milk
Discrimination based on

storage days
Voltammetric ANN

Paneer
cheese

Evaluation of capsaicin
content

Potentiometric PCA

Meat and fish

Fish Presence of heavy metals Colorimetric PLS and ELM

Mutton
Adulteration with pork or

chicken meat
Potentiometric

PCA, LDA,
CDA, and BAD

Fish
Freshness evaluation

during storage
Potentiometric PCA-RBFNNs

Carp
Evaluation of flavor

changes during steam
cooking

Potentiometric PCA

Processed
products

Tomato
soup

Comparison of consumer
perception and e-tongue of

different salts
Potentiometric PCA

Soy sauce Identification of rare sugars Potentiometric PCA

Surimi
Flavor after different
processing methods

Potentiometric PCA

Beverages
Wine

Evaluation of phenols
content

Voltammetric PLS

Wine Adulteration of tokaj Potentiometric
PCA, LDA, and

PLS

Wine Off-flavor identification Potentiometric PCA

Apple juice Evaluation of sweetness
Impedance

spectroscopy
PCA
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As such, the e-tongue represents a powerful tool to characterize the sensory properties of different food products;

however, like the e-nose, it still has some important limitations. One of the main disadvantages of e-tongue sensors

is that they can be sensitive to temperature and, therefore, sensors’ temperature control is often required.

Furthermore, the sensors are often characterized by a relatively short lifespan and a frequent and careful check of

e-tongue performance and reliability is pivotal; in this case, a large number of samples is also required to have a

solid and reliable result . Lastly, considering that human taste also perceives astringency, viscosity, heat, spicy,

and so on, a complete description of the overall taste with the e-tongue alone is not possible. Again, and even

more important than in the case of the e-nose, the combined approach of the e- and human tongue would bypass

these limitations.

3. E-Eye

Contrary to smell and taste, visual perception is not a chemical sense. Eye photoreceptors are capable of reacting

to light and, therefore, collecting information from the external environment, which will be transformed into electrical

signals. In this sense, this section may sound inconsistent with the other topics. However, it must be highlighted

that the visual appearance of food products is a critical aspect of consumers’ quality expectations, and it plays a

crucial role in the decision to purchase—or consume—or not a specific product. Appearance, color, lightness, and

texture are the first sensory factors that the consumers perceive, and they determine products’ success. As such,

careful and reliable monitoring of food visual traits is crucial and cannot be ignored . In this context, the

electronic eye (E-eye) has proven to give a fast, accurate, and cheap evaluation of food shape, size, color,

lightness, morphology, and texture. Moreover, it can measure changes in appearance over time at each step of the

production chain . The e-eye system is based on different elements: light source, camera (in the case of an

analog camera, a frame grabber to convert the analog to a digital signal is necessary), computer with software, and

high-resolution monitor. As for the human eye, the main factors influencing the operation of vision are the intensity

and the type of light. As such, properly designed lights should be considered in order to improve the precision and

reliability of the analysis . Generally, the most used light sources include fluorescent and incandescent bulbs, but

also LED, quartz halogen, metal halide, and high-pressure sodium lamps are quite popular. The lamp system can

be arranged in a circular layout, which is used for flat samples, or scattered layout, used for round-shaped

products. The other crucial component of the system is the camera (analog or digital), which is needed to record

the image of the samples that are then sent to the computer . Analysis with e-eye is fast and extremely easy: it

is non-destructive, it does not require sample preparation and it allows multiple samples and different parameters

(i.e., color and shape) in just one run . Among the multiple applications, the e-eye is widespread in the food

industry: it is used for the classification of fruits and vegetables, to monitor specific production processes such as

aging, fermentation, or roasting, to detect defects and imperfections, and to verify color changes during food

storage or processing . Hence, color is strictly linked with food freshness evaluation, especially in perishable

food products or processed food quality. For instance, the maturity level of grapes strongly influences the quality

traits of the resulting wines. Among the different parameters generally used to monitor the ripening, such as sugar

and acidity, polyphenol content plays a crucial role in the color, structure, astringency, and body of the final wine.

As such, Orlandi and colleagues  tested an e-eye to predict the ripening stages of wine grapes based on their

Food
Category Sample Application Sensor Chemometric

Approach Reference

Liquor
Comparison of human

perception and e-tongue in
differentiating liquors

Potentiometric PCA

 
Coconut

water
Taste deterioration during

time
Potentiometric PCA
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polyphenol content. With e-eye output and modeling approaches, the system was able to predict some important

parameters related to grape phenolic ripening, such as color index, tonality, anthocyanins content, and specifically,

malvidin-3-O-glucoside and petunidin-3-O-glucoside. The visual parameters detected with the e-eye allow the

exclusion of faulty, substandard, or deteriorated products. Some proposed applications are summarized in Table 3.

However, an important point is that poor and inadequate working conditions, such as scarce illumination, can

dramatically change the quality of the images, therefore returning unreliable information. Additionally, the

characteristic of the sample surface can scatter or reflect the light and, consequently, the quality of the image. As

such, an accurate choice of light sources and intensity based on the environmental conditions and food properties

is crucial to obtaining satisfactory results.

Table 3.  Examples of E-Eye application for Food Analysis. CCD: Charge-Coupled Device; NIR: near-infrared;

CMOS: complementary metal-oxide semiconductor. ANN: artificial neural network; CNN: convolutional neural

networks; DFA: discriminant factor analysis; PCA: principal component analysis; PLS: and partial least square; RA:

regressive analysis; RF: random forest; SVM: support vector machine; RA: regressive analysis; RF: random forest.

 

Food
Category Sample Application Sensor Chemometric

Approach Reference

Agri food

Wine grapes
Color changes during

ripening
Colorimetric PLS and PCA

Climacteric
fruits

Identification of
artificially ripened fruits

Colorimetric CNN

Corni Fructus
Discrimination based
on color graduation

Colorimetric
DA, PCA, PLS,
SVM, and DA

Tomato
Quality monitoring

during storage
CCD camera PLS

Strawberries
Evaluation of Fungal

Contamination

Vis-NIR
hyperspectral

imaging system
-

Oils and
Dairy

products

Citrus oil
Measure the color

difference
Colorimetric DFA

Olive oil Characterization Colorimetric PCA

Meat and
fish

Meat Freshness evaluation
Vis-NIR

hyperspectral
imaging system

PLS

Processed
products

Dried
tangerine

Quality evaluation after
different processing

Colorimetric DFA
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