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Food quality is nowadays an extremely important issue: it must not only comply with commercial regulations but also meet

consumers' expectations; this aspect includes sensory features capable of triggering emotions through the consumers'

perception. In food quality assessment, the sensory approach gives an immediate measurement of perceived attributes

and returns important information, which helps to better understand human responses. However, sensory analysis carried

out by human panels can be tricky. Thus, e-senses have been used to characterize food features associated with sensory

and compositional profiles, in a quick and objective way.
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1. E-Nose

An electronic nose (E-nose) is a tool that works through a series of sensors able to detect volatile organic compounds

(VOCs) in different types of samples. It is composed of three main parts: sample delivery system, chemical sensors, and

pattern recognition system . Gas sensors can be classified into different types, based on the materials: conducting

polymers (CP), metal-oxide semiconductors (MOS), metal-oxide-semiconductor field-effect transistors (MOSFET), and

mass-sensitive (such as quartz microbalance), and acoustic and optical sensors . The VOCs emitted by the samples

react with the sensors, causing reversible electrical signals, which are properly analyzed to extrapolate a possible pattern

of some significance for the given analysis . The intensity of the sensor’s signal depends on specific parameters, such

as the nature of the VOC (type and concentration), reaction between VOCs and sensors, type of sensor, and

environmental and sampling conditions . After the processing, what is obtained is an aromatic fingerprint. The E-nose

can be trained to interpret the results differentially depending on the food industry needs, and the sensors can be

customized based on the desired application . As being able to mimic the human smell, the E-nose has been largely

tested in the food industry to identify specific aromatic fingerprints associated with food quality, especially considering that

different aspects influence the intensity and composition of food aroma profile. Hence, the food aroma plays a crucial role

in assessing food quality and internal composition, as well as consumers’ expectations. Consequently, aromatic

evaluation has become part and parcel of the food production process for quality inspection purposes . An e-nose finds

application in different steps of the agri-food production chain, such as ripening stages and harvesting time evaluation,

storage conditions, and shelf-life evaluation, including the assessment of freshness or decay degree, microbial

contamination, and off-flavor formation . This appears particularly important considering that food pathogens and off-

flavor production can lead to important economic loss and consumer rejection. For instance, Viejo et al.  proposed an

integrated artificial intelligence system to detect off-flavors in beer using a low-cost, portable e-nose coupled with machine

learning modeling. The Authors were able to build three highly accurate models able to predict beer faults with 95, 96, and

97% accuracy. Moreover, Fuentes and colleagues  evaluated the potential of a low-cost e-nose to assess the smoke-

taint fault in wines. Using the e-nose measurements as input in the machine learning model, it was possible to assess the

number of smoke-related compounds in wines, such as 20 glycoconjugates and 10 volatile phenols with high accuracy

(with R2 ranging from 0.95 to 0.99). Some examples of e-nose applications for food quality evaluation are shown in Table
1. The e-nose shows to be a rapid, reliable, and low-cost technology to assess food and beverages quality . Moreover,

the e-noses can be installed at different production stages for quality monitoring during the whole production process,

which can help in taking fast corrective actions before obtaining the final product . Besides the considerable advantages

of the e-noses, there is still a great difference with the human olfactory system. Hence, the technological approach has a

certain type of limitation due to sensor structure and analytical methods. For instance, sensor poisoning, calibration, and

sensitivity can represent important drawbacks . Additionally, even though the analysis is cheap and fast, a large number

of samples is often required. Gas sensors are very sensitive to external environmental conditions, especially to

temperature, humidity, and pressure. Therefore, an external condition during sampling strongly affects the response of the

[1]

[1][2]

[2]

[1]

[3]

[4]

[2]

[5]

[6]

[7]

[8]

[4]



sensor. As such, controlled conditions are required during the analysis, which makes it difficult to use E-noses in outdoor

settings . Considering the obvious limitations of the e-nose systems, a valuable approach to take key decisions in the

food production chain could be the combination of e-nose with sensory analysis approaches discussed above. In this

sense, it would make it possible to combine the ability of the e-nose to perceive chemical compounds with the ability of

the human nose to perceive the synergic interaction of chemical compounds mixture. Moreover, the combined use of e-

and human senses would reduce the necessary resources (in terms of times and samples) of both approaches .

Table 1. Examples of E-Nose application for Food Analysis. MOS: metal-oxide semiconductors. ANN: artificial neural

network; CDA: Critical discourse analysis; CT classification and regression tree; HCA: hierarchical cluster analysis; LDA:

linear discriminant analysis; MARS: multivariate adaptive regression splines; PCA: principal component analysis; PLS:

and partial least square; RBFNNs: radial basis function neural networks; SVM: support vector machine; SNV: standard

normal variate.

Food
Category Sample Application Sensor Chemometric

Approach Reference

Agri food

Rice Detection of fungal infection during
storage MOS PCA, LDA, and

PLS

Peach Fruit decay MOS PLS and SVM

Apple Detection of pathogen contamination MOS PCA and HCA

Dragon fruit, pear,
kiwi fruit, apple Fruit deterioration MOS PCA

Potato Soft-rot infection MOS LDA, MARS, CT

Broccoli Freshness evaluation MOS PCA, HCA, CDA

Citrus Early detection of Bactrocera
dorsalis infection MOS PCA and LDA

Bell pepper Freshness MOS PCA and PLS

Mushrooms Early detection of contamination MOS PCA and PLS

Apple
Detection of pathogens (Salmonella,

Erwinia, Streptococcus, and
Staphylococcus) contamination

MOS PCA and HCA

Grapes Identification of smoke-related volatiles MOS PCA

Oils and Dairy
products

Olive oil Evaluation of rancidity and oxidation MOS PCA and LDA

Olive oil Presence of defects MOS PCA

Peony seed oil Adulteration MOS PCA and LDA

Edible oils Adulteration MOS HCA, PCA, PCR,
LDA, and ANN

Parmigiano
Reggiano cheese Adulteration MOS PLS and ANN

Butter Adulteration MOS PCA and ANN

Meat and fish

Fish Spoilage monitoring MOS -

Tuna Process development MOS PCA

Salmon Freshness evaluation during storage MOS RBFNNs and PCA

Squid Formaldehyde identification MOS PLS

Processed
food

Grape syrup Adulteration MOS PCA, HCA, SVM,
and LDA

Tomato paste Adulteration MOS PCA, PLS, SVM,
and LDA

Chicken Evaluation of roasted chicken
deterioration MOS PCA
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Food
Category Sample Application Sensor Chemometric

Approach Reference

Beverages

Vinegar Classification MOS PCA, SNV, and
LDA

Orange juice Adulteration MOS HCA, ANN, and CT

Beer Off-flavor identification MOS ANN

Wine Smoke taint evaluation MOS ANN

2. E-Tongue

The human sense of taste involves identifying basic flavors, namely, sweetness, acidity, bitterness, salinity, and umami.

Many researchers have introduced the electronic tongue (E-tongue) as a rapid and objective method to replace the

human tongue . The e-tongue is the analytical device based on the principles of functioning of the human sense of

taste able to classify the tastes of various chemical compounds in liquid phase samples. Like the e-nose system, it allows

the identification, classification, and analysis (both qualitative and quantitative) of the multicomponent mixtures, returning

a taste fingerprint. Overall, it is based on a multi-channel taste sensor, composed of three parts: a sample-dispensing

chamber, a sensory array with different selectivity, and software for data processing. The interaction between the sensors

and the analytes gives a primary chemical energy output, which is a function of components’ structure and concentration,

and it is transformed into electrical output . These measurable electrical signals are used to recognize and classify the

pattern. Most of the e-tongue instruments are based on electrochemical techniques, namely, conductometry, voltammetry,

and potentiometry ; the latter representing the most common and versatile one. These sensors are able to measure a

great number of different compounds in different solutions. In several studies, voltammetric e-tongues have been used to

identify sweeteners and acids (such as glucose, lactate, sucrose, lactic, and acetic acid) in different food products. In the

agri-food sector, potentiometric sensors have been used to classify beers and wines . Specifically, the e-tongue, based

on potentiometric electrodes sensitive to sodium, calcium, ammonia, and anion was able to discriminate 34 types of beers

from different brands and types. Moreover, it was able to discriminate the presence of stabilizers and antioxidants,

unmalted cereals, and carbohydrates added during fermentation. The same system was used to analyze wines and was

able to discriminate the different wines based on the varieties used for the winemaking (Chardonnay, Americanas, Malbec,

and Merlot). In Table 2 are reported some examples of e-tongues used for food analysis.

Table 2. Examples of E-tongue application for Food Analysis. ANN: artificial neural network; CDA: Critical discourse

analysis; CT classification and regression tree; ELM: extreme learning machine; HCA: hierarchical cluster analysis; LDA:

linear discriminant analysis; MARS: multivariate adaptive regression splines; PCA: principal component analysis; PLS:

and partial least square; RA: regressive analysis; RBFNNs: radial basis function neural networks; SNV: standard normal

variate; SVM: support vector machine.

Food Category Sample Application Sensor Chemometric
Approach Reference

Agri food

Coffee
beans Evaluation of bitterness Potentiometric RA

Melon Evaluation of storage condition Potentiometric PLS and LDA

Corn seeds Aflatoxin detection Potentiometric PLS

Oils and Dairy
products

Vegetable
oil Adulteration with low-grade oils Solid-state

electrodes RA

Olive oil Rancidity evaluation Potentiometric LDA

Milk Discrimination based on storage
days Voltammetric ANN

Paneer
cheese Evaluation of capsaicin content Potentiometric PCA
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Food Category Sample Application Sensor Chemometric
Approach Reference

Meat and fish

Fish Presence of heavy metals Colorimetric PLS and ELM

Mutton Adulteration with pork or chicken
meat Potentiometric PCA, LDA, CDA,

and BAD

Fish Freshness evaluation during storage Potentiometric PCA-RBFNNs

Carp Evaluation of flavor changes during
steam cooking Potentiometric PCA

Processed
products

Tomato
soup

Comparison of consumer perception
and e-tongue of different salts Potentiometric PCA

Soy sauce Identification of rare sugars Potentiometric PCA

Surimi Flavor after different processing
methods Potentiometric PCA

Beverages

Wine Evaluation of phenols content Voltammetric PLS

Wine Adulteration of tokaj Potentiometric PCA, LDA, and
PLS

Wine Off-flavor identification Potentiometric PCA

Apple juice Evaluation of sweetness Impedance
spectroscopy PCA

Liquor
Comparison of human perception

and e-tongue in differentiating
liquors

Potentiometric PCA

 Coconut
water Taste deterioration during time Potentiometric PCA

As such, the e-tongue represents a powerful tool to characterize the sensory properties of different food products;

however, like the e-nose, it still has some important limitations. One of the main disadvantages of e-tongue sensors is that

they can be sensitive to temperature and, therefore, sensors’ temperature control is often required. Furthermore, the

sensors are often characterized by a relatively short lifespan and a frequent and careful check of e-tongue performance

and reliability is pivotal; in this case, a large number of samples is also required to have a solid and reliable result .

Lastly, considering that human taste also perceives astringency, viscosity, heat, spicy, and so on, a complete description

of the overall taste with the e-tongue alone is not possible. Again, and even more important than in the case of the e-nose,

the combined approach of the e- and human tongue would bypass these limitations.

3. E-Eye

Contrary to smell and taste, visual perception is not a chemical sense. Eye photoreceptors are capable of reacting to light

and, therefore, collecting information from the external environment, which will be transformed into electrical signals. In

this sense, this section may sound inconsistent with the other topics. However, it must be highlighted that the visual

appearance of food products is a critical aspect of consumers’ quality expectations, and it plays a crucial role in the

decision to purchase—or consume—or not a specific product. Appearance, color, lightness, and texture are the first

sensory factors that the consumers perceive, and they determine products’ success. As such, careful and reliable

monitoring of food visual traits is crucial and cannot be ignored . In this context, the electronic eye (E-eye) has proven

to give a fast, accurate, and cheap evaluation of food shape, size, color, lightness, morphology, and texture. Moreover, it

can measure changes in appearance over time at each step of the production chain . The e-eye system is based on

different elements: light source, camera (in the case of an analog camera, a frame grabber to convert the analog to a

digital signal is necessary), computer with software, and high-resolution monitor. As for the human eye, the main factors

influencing the operation of vision are the intensity and the type of light. As such, properly designed lights should be

considered in order to improve the precision and reliability of the analysis . Generally, the most used light sources

include fluorescent and incandescent bulbs, but also LED, quartz halogen, metal halide, and high-pressure sodium lamps

are quite popular. The lamp system can be arranged in a circular layout, which is used for flat samples, or scattered

layout, used for round-shaped products. The other crucial component of the system is the camera (analog or digital),

which is needed to record the image of the samples that are then sent to the computer . Analysis with e-eye is fast and

extremely easy: it is non-destructive, it does not require sample preparation and it allows multiple samples and different
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parameters (i.e., color and shape) in just one run . Among the multiple applications, the e-eye is widespread in the food

industry: it is used for the classification of fruits and vegetables, to monitor specific production processes such as aging,

fermentation, or roasting, to detect defects and imperfections, and to verify color changes during food storage or

processing . Hence, color is strictly linked with food freshness evaluation, especially in perishable food products or

processed food quality. For instance, the maturity level of grapes strongly influences the quality traits of the resulting

wines. Among the different parameters generally used to monitor the ripening, such as sugar and acidity, polyphenol

content plays a crucial role in the color, structure, astringency, and body of the final wine. As such, Orlandi and colleagues

 tested an e-eye to predict the ripening stages of wine grapes based on their polyphenol content. With e-eye output and

modeling approaches, the system was able to predict some important parameters related to grape phenolic ripening, such

as color index, tonality, anthocyanins content, and specifically, malvidin-3-O-glucoside and petunidin-3-O-glucoside. The

visual parameters detected with the e-eye allow the exclusion of faulty, substandard, or deteriorated products. Some

proposed applications are summarized in Table 3. However, an important point is that poor and inadequate working

conditions, such as scarce illumination, can dramatically change the quality of the images, therefore returning unreliable

information. Additionally, the characteristic of the sample surface can scatter or reflect the light and, consequently, the

quality of the image. As such, an accurate choice of light sources and intensity based on the environmental conditions and

food properties is crucial to obtaining satisfactory results.

Table 3. Examples of E-Eye application for Food Analysis. CCD: Charge-Coupled Device; NIR: near-infrared; CMOS:

complementary metal-oxide semiconductor. ANN: artificial neural network; CNN: convolutional neural networks; DFA:

discriminant factor analysis; PCA: principal component analysis; PLS: and partial least square; RA: regressive analysis;

RF: random forest; SVM: support vector machine; RA: regressive analysis; RF: random forest.

 

Food Category Sample Application Sensor Chemometric
Approach Reference

Agri food

Wine grapes Color changes during
ripening Colorimetric PLS and PCA

Climacteric
fruits

Identification of artificially
ripened fruits Colorimetric CNN

Corni Fructus Discrimination based on
color graduation Colorimetric DA, PCA, PLS,

SVM, and DA

Tomato Quality monitoring during
storage CCD camera PLS

Strawberries Evaluation of Fungal
Contamination

Vis-NIR hyperspectral
imaging system -

Oils and Dairy
products

Citrus oil Measure the color difference Colorimetric DFA

Olive oil Characterization Colorimetric PCA

Meat and fish Meat Freshness evaluation Vis-NIR hyperspectral
imaging system PLS

Processed
products

Dried
tangerine peel

Quality evaluation after
different processing

methods
Colorimetric DFA

Carasau Bread Monitoring manufacturing
process Colorimetric ANN

Beverages Tea Quality evaluation CMOS camera PLS, SVM, and RF
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