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Hepatitis C Virus (HCV) is an enveloped virus with an RNA genome of positive polarity. HCV replicates mainly in the liver
and can cause liver disease, cirrhosis and cancer. Translation of the HCV RNA genome is regulated by the Internal
Ribosome Entry Site (IRES) and other cis-elements in the viral RNA genome. The viral RNA usurps cellular ribosomes
using a variety of viral RNA elements as well as by recruiting cellular RNA binding proteins. Here, we give a
comprehensive overview over the determinants involved in the regulation of HCV translation.
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| 1. Introduction

Hepatitis C virus (HCV) is an enveloped positive strand RNA virus that preferentially replicates in the liver I, and it is
classified in the genus Hepacivirus in the family Flaviviridae. Worldwide, about 71 million people are infected with HCV 2.
The infection is usually noticed only when coincidentally diagnosed by routine testing, for example, during hospitalization,
or when the liver disease becomes acute. In the latter case, liver damage by virus replication and the resulting immune
responses can lead to impaired bilirubin conjugation in the liver, and unconjugated bilirubin deposits can then be noticed
as a yellowish color (called jaundice), often first in the sclera in the eyes and when more severe also in the skin. An acute
infection can result in severe liver damage, in rare cases even resulting in death B4, However, most HCV infections
remain inapparent B8, and the virus infection can become chronic in about 60% to 70 % of all infections [, often without
being noticed. Chronic infection can, in the long run, result in liver cirrhosis and liver cancer (hepatocellular carcinoma,
HcC) BIE while a metabolic reprogramming of the infected cells according to the “Warburg effect” like in cancer cells
can be observed only a few days after the onset of HCV replication 11, Moreover, inapparent replication of the virus
usually results in unnoticed spread of the virus to other individuals, a fact that is a major challenge for surveillance, health
care, and treatment 12, Meanwhile, very effective treatment regimens using direct acting antivirals (DAAs) are available,
although they are still very expensive L3Il Although the error rate of the viral replicase is high and can, in principle,
easily give rise to resistance mutations, the conserved nature of the replicase active center and the often occurring
reduced fitness of mutants result in the rare appearance of resistance mutations against nucleoside inhibitors such as
sofosbuvir 221161 An effective vaccination is not yet available, also partially due to the high variability of the viral RNA
genome. Thus, further research on HCV is urgently required to combat HCV infections, and despite much progress in the
understanding of HCV replication, the molecular mechanisms of HCV replication are still far from being completely
understood 121,

| 2. Hepatitis C virus (HCV)

The HCV RNA genome is about 9600 nucleotides (nts) long and codes for one long polyprotein that is co- and post-
translationally processed into the mature gene products ARSI ynlike most cellular mRNAs, the 5'-end of the HCV
genomic RNA has no cap nucleotide attached which would govern efficient cap-dependent translation initiation [29121122],
Instead, HCV translation is mediated by virtue of an internal ribosome entry site (IRES) [23l241251[261[27] ' \yhich is located
largely in the 5'UTR but also slightly spans into the coding region (Figure 1). While the resulting low efficient translation
coincides with the “undercover” strategy of HCV replication that often leads to chronic infection and further unnoticed
spread of the virus to uninfected individuals, the use of such IRES elements has two more big advantages. The first
advantage is that in particular the very ends of the RNA genome do not need to serve functions in translation control such
as in capped and polyadenylated cellular mRNAs. Instead, RNA signals that are involved in genome replication can be
directly placed at the very genome ends (28181291 The second benefit of cap-independent translation is that the virus
escapes antiviral countermeasures of the cell in terms of the downregulation of cap-dependent translation, which is largely
conferred by phosphorylation of elF2 and the resulting inhibition of cap-dependent translation initiation 9.
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Figure 1. cis-Elements in the hepatitis C virus (HCV) RNA genome that are involved in translation regulation. The HCV
plus strand RNA genome. The internal ribosome entry site (IRES) in the HCV 5'-untranslated region (5'UTR), the entire
3'UTR and the cis-acting replication element (CRE) in the NS5B coding region are involved in translation regulation [231(28]
Bl Those regions of the 5'UTR, 3'UTR, and CRE that bind to the ribosomal 40S subunit are underlayed in light yellow.
Stem-loops (SLs) in the 5'UTR are numbered by roman numerals. The region of the IRES is surrounded by a dotted line.
The IRES includes SLs II-1V of the 5’'UTR but spans into the core protein coding region. The canonical AUG start codon in
SL IV of the 5'UTR (black circle) gives rise to translation of the polyprotein which is cleaved to yield structural proteins and
non-structural (NS-) proteins, including the viral replicase NS5B. The 3'UTR contains the variable region, a poly(U/C) tract
(U/C), and the so-called 3'X region including SLs 1, 2, and 3. The stem-loop 5BSL3.2 in the 3'-region of the NS5B coding
region is the CRE, flanked by upstream stem-loop 5BSL3.1 and downstream 5BSL3.3. The polyprotein stop codon is
located in the stem-loop 5BSL3.4 (asterisk). Some other start codons which give rise to the alternative reading frame
(ARF) in the core+1 reading frame B2I33134] are shown in grey. Positively and negatively acting long-range RNA-RNA
interactions (LRIs) are shown in green or red, respectively, with the sequence “9170” shown as green circle. Selected
binding sites for microRNA-122 (miR-122) are shown in blue.

The HCV IRES is located in the 5 -untranslated region (5"UTR), part of the core protein coding sequence, and by the 3
"UTR. The 5'"UTR has some highly conserved structural regions, while others can assume different conformations. The
IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is
modulated by additional cis sequences in the viral genome, including the 3’'UTR and the cis-acting replication element
(CRE). Canonical translation initiation factors (elFs) are involved in HCV translation initiation, including elF3, elF2, elF1A,
elF5 and elF5B. Alternatively, under stress conditions and limited elF2-Met-tRNAiMet availability, alternative initiation
factors like elF2D, elF2A and/or elF5B can substitute for elF2 to allow HCV translation even when cellular mRNA
translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building
large networks of RNA-protein and protein-protein interactions, also connecting 5- and 3"-ends of the viral RNA.
Moreover, some ITAFs may act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S
subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation,
most likely by stabilizing a certain structure of the IRES that is required for initiation.

In this entry, we focus on the sequences, cellular factors, and molecular mechanisms involved in the regulation of
translation by the HCV IRES. Thereby, we touch the functions of miR-122 specifically only with regard to translation
regulation.
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