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A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which

usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and

the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the

central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders.

Resveratrol (RES) is a polyphenol extracted from mulberries (Morus species), grapes (Vitis vinifera), and peanuts

(Arachis hypogaea). It is a phytoalexin that spermatophytic plants make in reaction to stress, damage, or UV

radiation, as well as fungus (e.g., Botrytis cinerea) and/or another pathogen. RES has been proven to have

antioxidant, anti-inflammatory, cardioprotective, and analgesic properties, as well as a function in diabetes and

obesity. Because of its growing importance in neurological illnesses such as Parkinson’s, Alzheimer’s, and other

neurodegenerative disorders, as well as BT, RES has received a lot of attention.

brain tumor  blood–brain barrier  P-glycoprotein

1. A Basic Outline on Resveratrol

Resveratrol (RES) is a polyphenol extracted from mulberries (Morus species), grapes (Vitis vinifera), and peanuts

(Arachis hypogaea). It is a phytoalexin that spermatophytic plants make in reaction to stress, damage, or UV

radiation, as well as fungus (e.g., Botrytis cinerea) and/or another pathogen . Several biotic and abiotic factors

have been investigated in the context of induced RES production in a variety of plants. Plants synthesize RES via

the phenylalanine route . Resveratrol 3-O-beta-glycosyltransferases convert the end product to trans form, which

can subsequently isomerize to cis form or trans and cis-priced. Furthermore, the stilbene route is a branch of the

phenylpropanoid system, which is an extension of the flavonoid pathway . Michio Takaoka isolated RES from the

root of Veratrum grandiflorum O. Loes in 1939. In 1963, RES was determined to be a chemical component of

Polygonum cuspidatum (Ko-jo-kon). The first known detection technique for trans-resveratrol was published in

1976. Renaud and de Lorgeril first published the “French paradox” in 1992, after which RES faded into oblivion .

The French paradox is based on epidemiological evidence from French people who had a high-fat, high-cholesterol

diet while having a low incidence of coronary heart disease. In reality, as compared to the United Kingdom, the

United States, or Sweden, France continues to have a low incidence and mortality rate from coronary heart

disease. The concentration of RES in various wines was examined the same year . A 2001 study discovered a

link between moderate-to-low wine consumption and a decreased risk of mortality from cardiovascular and

cerebrovascular disorders. Following these discoveries, the French paradox sparked widespread interest, with
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hundreds of research projects conducted on various parts of it . RES has been proven to have antioxidant, anti-

inflammatory, cardioprotective, and analgesic properties, as well as a function in diabetes and obesity. Because of

its growing importance in neurological illnesses such as Parkinson’s, Alzheimer’s, and other neurodegenerative

disorders, as well as BT, RES has received a lot of attention . RES has also been shown to have anticancer

characteristics in a variety of different malignancies, including prostate cancer, liver cancer, breast cancer, lung

cancer, skin cancer, and colorectal cancer .

2. A Background Search on Brain Cancer

A brain tumor (BT) is an unconditional development of cells in the brain . The symptoms of BT are difficult to

diagnose, and the symptoms worsen during the progression of this disease. BT can originate in the brain (known

as primary BT) or spread from other parts of the body (known as secondary or metastatic BT). The growth and

location in the brain determine the response of cancer to nervous functioning . The symptoms and mitigation

options are also contingent on the size and location. The condition or state in which a tumor cannot be detected in

human body is called remission. Another problem that causes treatment failure is the recurrence of cancer after

treatment . The risk of reoccurrence can be in the original location or other parts of the body. If the tumor

spreads, that is, when metastasis occurs, then the success rate of the treatment is reduced to 15% . It is not

always possible to recover from BT. If the tumor cannot be controlled or cured, then the disease may be called

terminal or advanced. When diagnosed with advanced BT, the expected life span is calculated to be less than 6

months .

Primary BTs generally initiate in the brain or the tissues closer to the brain, such as the pituitary gland, cranial

nerves, pineal gland, or meninges-brain covering membrane. The origin of BT is generally a mutation in the DNA,

which results in the uncontrollable division of the brain cells and the death of the healthy cells . In adults, primary

BT is more prevalent than secondary BT.

Cancer growth can reduce blood flow even in perineural regions by compressing blood vessels due to the limited

space in the brain. Furthermore, the neurovascular unit develops differently in the cancer core compared to the

cancer periphery and neuroparenchyma, the latter of which has an intact blood–brain barrier (BBB) as BT lesions

grow .

The cancer vasculature becomes increasingly heterogeneous as the primary BT progresses and brain metastasis

develops. Neuronal viability and vascular function are directly affected by local and distal changes caused by an

expanding neoplastic lesion . Because the vasculature changes during cancer growth, existing vessels must be

co-opted, and/or new ones must be created through angiogenesis to meet the nutritional needs of proliferating

cancer cells. Postnatal vasculogenesis, vascular mimicry, intussusception, and transdifferentiation are some of the

other mechanisms by which cancers increase blood vessel supply . Cancer progression is accompanied by

vascular dysfunction and an acidic microenvironment, which are fueled in part by hypoxia-inducible factor 1 (HIF1)

transcriptional programs. Studies reported that when vascular endothelial growth factor (VEGF) signaling is
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blocked in mice, BTs are lopped into their immature and leaky vessels, and the remaining vasculature is actively

remodeled to look like normal vasculature .

Surgery, chemotherapy, radiotherapy, and targeted therapy are some of the treatment options for BT. The option

used for low-grade cancer is mostly surgical removal of the tumor . Medications are used as a treatment option

to destroy cancer cells, categorized as chemotherapy and targeted therapy. A chemotherapeutic regimen is used to

inhibit cancer cell division and the growth of the cancer cells, which can destroy the cancer cells and reduce the

symptoms. Sometimes, chemotherapy is suggested after radiotherapy or surgery. Drugs that can bypass the BBB

are commonly used as BT drugs, such as canmustine, temozolomide, and combinations of vincristine, lomustine,

and procarbazine . If the growth of the cancer cells is not retarded, then other treatment options are taken into

consideration. In addition to standard chemotherapy, an alternative is targeted therapy, such as anti-angiogenesis

therapy or therapy that focuses on genetic changes.

The chemical-based treatment strategy has various side effects and toxic effects, which include hair loss, nausea,

vomiting, fatigue, diarrhea, loss of appetite, etc. . Some drugs may even cause hair loss, kidney damage, and

increase the risk of infection . Current research focusing on natural remedies for mitigating BT lags behind,

partially because there is no clear-cut idea about the BT mechanism itself. However, herbal and natural remedies

may help to reduce the risk of BT, ease some of its symptoms, and even inhibit cell growth . Herbal remedies

are generally recommended as safe, even under long use and in larger doses. Hence, the combination of a drug or

a natural compound and a chemotherapeutic drug could be a possible effective therapeutic modality for the

mitigation of BT.

3. RES—A General Concept and a Basic Outline

RES is a plant-derived polyphenol found in berries, grapes, nuts, and red wine . RES crosses the BBB, which

may have an impact on the nervous system . It also affects the enzyme isocitrate dehydrogenase and, more

importantly, resistance to standard mitigation through a variety of mechanisms, including O6-methylguanine

methyltransferase. For example, RES was shown to inhibit resistance to standard alkylating agents such as

temozolomide by inhibiting O6-methylguanine methyltransferase activity .

RES is a low-toxicity molecule that targets specific potential biological signaling pathways and affects several

carcinogenesis-related genes . The important antiproliferative capability of RES was already indicated in a

diverse array of cancer forms when administrated alone or in addition to various anticancer agents and targeted

therapies. Its ability to prevent BT includes the inhibition of oxidative stress and inflammation and also the

regulation of cell proliferation through the signaling of apoptosis pathways. It may influence the activity of cancer

cells by affecting various signaling mechanisms such as PI3K/AKT/mTOR, nuclear factor-kB (NF-kB), p53, Wnt, or

even signal transducer and activator of transcription-3 (STAT3).

3.1. Resveratrol and Its Pharmacological Action in the General Aspect
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3.1.1. Resveratrol’s Pharmacological Influence on Immunity

The first research of RES on immunomodulatory effects revealed that it suppressed interleukin-2-induced (IL-2)

and spleen cell proliferation. It has a greater impact on lymphocyte and macrophage production of IL-2, IFN-β, and

TNF/IL-12 . RES is either directly or indirectly involved in the establishment and modulation of innate and

adaptive immunity . The immune system is affected by RES in a dose-dependent manner. At low dosages, it

activates the immune system for an immunological response, while at higher levels, it suppresses the immune

system . Another research discovered that it promoted chicken growth by increasing immune responses and

decreasing immunocyte mortality. RES inhibited the Toll/IL-1 receptor, reducing the activity of the respiratory

syncytial virus . RES suppressed enterovirus replication and reduced the virus’s generation of IL-6 and TNF-α

. RES increased CD4+ cell proliferation, splenic lymphocyte proliferation, and peritoneal macrophage activity in

mice . Intravenous RES therapy decreases ischemia-induced inflammation and oxidants produced by HX/XO,

but not leukotriene B4 .

3.1.2. Resveratrol’s Effect on Cancer

Jang et al. discovered that RES could suppress carcinogenesis in mouse skin cancer models, and further research

has confirmed this conclusion . Later, it was shown that RES inhibited cancer cell growth in the ovary, stomach,

intestine, prostate, colon, liver, pancreas, brain, and thyroid. In HL-60 leukemic cells, RES decreased free radical

production caused by 12-O-tetradecanoylphorbol-13-acetate . By scavenging OH and superoxide generated by

cells, as well as lipid peroxidation occurring inside cell membranes, RES protects against DNA damage caused by

ROS production. The antimutagenicity of N-methyl-N-nitro-N-nitrosoguanidine in S. Typhimurium strain TA100 was

shown using RES. A recent study in colorectal cancer has revealed that RES is a multifunctional factor with anti-

inflammatory and anticancer properties . They have also been shown to block the NF-kB signaling pathway.

RES has also been demonstrated to inhibit TNF-α stimulated colorectal cell invasion and viability. RES also

suppressed the activation of NF-kB and carcinogenic gene products in colorectal cells, as well as other signaling

molecules such as vimentin, slug, and E-cadherin .

3.1.3. Toxicity Effects of Resveratrol

Several researchers have found that RES has harmful impacts. After 24 h, no adverse effects were seen in 15

healthy volunteers who received a single high dose (500 mg) of RES while fasting. Long-term therapy with RES at

a dosage of 2.5 g per day, however, produced vomiting, diarrhea, and nausea in healthy patients . Surprisingly,

long-term (up to one year) intake of grape RES at levels as high as 16 mg exhibited no discernible negative effects.

After a dose of 5 g RES in the form of SRT501 (developed by Sirtris, a GSK company) was administered in two

cycles during multiple myeloma, renal toxicity was observed in healthy controls, type 2 diabetics, and patients with

lactic acidosis, mitochondrial encephalomyopathy, and stroke-like episodes (MELAS) syndrome. The researchers

concluded that the appropriate amount of RES is required to treat a range of disorders .

4. RES Brain Delivery
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RES use has been linked to several health benefits, including anti-inflammatory, anti-carcinogenic, and brain

inhibitory responses . The neuroprotective responses of RES in neurological diseases like Alzheimer’s (AD) 

and Parkinson’s (PD)  are signified by the establishment of neurons that are protected from oxidative damage

and toxicity, as well as the prevention of apoptotic neuronal death . In BTs, RES induces cell apoptosis while

inhibiting angiogenesis and cancer invasion. Despite its enormous potential as a therapeutic agent for a wide range

of diseases, RES has some barriers . It is chemically unbalanced and is degraded by isomerization when

unprotected from high temperatures, pH changes, UV light, low water solubility, or specific enzymes . As a

result, RES has limited biological, low bioavailability, and pharmacological benefits. To get around these

restrictions, RES can be carried via nanocarriers . This subfield of nanomedicine studies how the use of

nanoscale materials affects pharmacokinetics, drug administration, and pharmacodynamics . The use of

nanotechnology in the mitigation and prevention of neurological diseases also conceals the physicochemical

assets of therapeutic drugs to enhance their half-life and cross the BBB. This is essentially achieved by

encapsulating the drug in a nanoparticle (NP) composed of an array of substances . There is a rising trend to

encapsulate and deliver RES to the brain. RES encapsulated liposomes, lipid nanoparticles, and polymeric

nanoparticles are being used to encapsulate RES. Furthermore, the majority of these nanocarriers have been

obtained by targeting molecules that can recognize brain regions . In both in vitro and in vivo experimental

models, RES has been shown to regulate redox biology, mitochondrial function, and dynamics . RES also

mitigates the mitochondrial dysfunction caused by oxidative stress. RES regulates the release of mitochondrial

antioxidant enzymes, limiting reactive species stimulation by these organelles . RES also promotes

mitochondrial biogenesis, which enhances mitochondrial bioenergetics in mammalian cells. The researchers

discussed the responses of RES to brain mitochondria. Brain cells (both neuronal and glial) are vulnerable to

mitochondrial dysfunction due to their high demand for ATP . Moreover, brain cells produce a lot of oxygen,

which causes the mitochondria to generate a lot of reactive species. As a result, strategies focusing on

mitochondrial function restoration in these types of cells are of therapeutic interest in neurodegenerative diseases

requiring mitochondrial impairment and enhancing reactive species capacity, resulting in neuroinflammation and

cell death . The mechanism by which RES protects mitochondrial function and dynamics is unknown, and more

research is needed to determine how RES affects mitochondrial-related factors. Moreover, it is critical since RES,

depending on the dosage, can cause cytotoxicity .

5. Combination, Synergistic Response, and the Response to
Conventional Therapy

A combination strategy is proposed to produce a synergistic response. In this concept, two herbal ingredients or an

herbal and a synthetic agent could be combined either by physical or chemical conjugation . The combination of

the herbal and synthetic agents is found to be best for the mitigation of BT as it could reduce the toxic response of

the synthetic agent, which is achieved by reducing the dose .

The synergistic activity of the combination can be confirmed by using in vitro cell line studies. In addition, analytical

methods are being used to confirm the compatibility of the drugs . Focus on the combination strategy when used
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with a synthetic chemotherapeutic agent can help in dose reduction and, hence, the toxic response can also be

reduced. The use of herbal remedies mainly acts as a P-gp inhibitor; hence the efflux mechanism can be altered

. The combination of the herbal and the synthetic remedy can be conjugated using a chemical conjugation as

well as a physical combination method. The addition of the lipids will help to cross the BBB as well as act as a P-gp

inhibitor .

Many techniques, including prodrugs and nanotechnology-based technologies, have been attempted and

employed to increase the bioavailability and cellular absorption of RES. The RES is entrapped and transported to

the target location by a lipoidal layer and interior hydrophilic layers. Distinct encapsulating methods have varied

advantages and disadvantages, as well as different impact qualities . As a result, a nanocarrier system capable

of extending molecule life while preserving biological and physical features is required. This focuses on unique

RES management and execution strategies for increased treatment effectiveness .

Several techniques for delivering RES to the brain have been researched in recent years. Several materials have

been utilized to encapsulate RES and increase its activity. Various drug delivery systems have been reported to

have advantageous qualities such as increased stability, bioavailability, and biocompatibility. Several methods of

extending the duration that NPs are in circulation may be employed. One of the most common approaches is the

attachment or adsorption of many molecules to the surface of the NPs . PEG and polysorbates, which are

hydrophilic stabilizers, can be utilized. These molecules also provide steric stability to the NP surface, making it

simpler to bind other ligand moieties such as antibodies, aptamers, and proteins recognized by BBB receptors .

These ligand molecules can aid the immune system in recognizing and eliminating NPs. PEG molecules on the

surfaces of the NPs, on the other hand, prevent this behavior.

Targeted molecules might be added to the surface of the NP to increase the bioavailability of the encapsulated

RES . Because these ligand moieties connect to the BBB’s existing receptors, NPs may be actively transported

across the barrier, enabling brain tissue targeting. Electrostatic forces contribute to the binding of positively

charged ligands to the luminal surface of BBB cells. Because the receptor for the ligand must be overexpressed at

the BBB, it must be carefully targeted to brain tissue to prevent negative effects on healthy tissues while increasing

RES accumulation. To avoid competitive binding of the natural ligand, the saturation of the receptor must also be

carefully regulated .

Temozolomide is the standard treatment for glioblastoma, although it fails owing to numerous resistance

mechanisms and biological obstacles . The O (6)-Methylguanine DNA-methyltransferase (MGMT) protein is

associated with temozolomide resistance because it repairs DNA damage caused by temozolomide-induced

methylation. Huang and colleagues observed that RES prevented the activation of the NF-kB transcription factor in

glioma cells, which is essential for MGMT activation . As a result, RES enhances temozolomide effectiveness by

reversing therapeutic resistance. According to previous research, RES improved the chemosensitization of glioma

cells to temozolomide activity by altering many signaling pathways and producing apoptosis and cell cycle arrest

.
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6. Possible Route of Administration

Nowadays, most antineoplastic drugs for BT are administered either systemically, intravenously, or orally based on

the drug’s absorption. Although certain drugs have features that allow them to enter BTs, the constraints discussed

above prevent most chemotherapies from being delivered .

The delivery of a drug intra-arterially (IA) is intended to increase the quantity of a drug delivered to a vascular

region by bypassing first passage metabolism . Nevertheless, for medications that travel efficiently through the

CNS, reside time may be reduced, resulting in reduced effectiveness. So far, IA delivery alone has not resulted in a

better prognosis for BT patients. Iatrogenic disruption of the BBB (BBBD) before standard chemotherapy has

proven to have better outcomes. In preclinical models, IA chemotherapy combined with BBBD enhances the

concentration of drugs in the brain parenchyma . The most typical method is osmotic BBBD using drugs like

mannitol, supplemented by IA chemotherapy . However, MRI-guided ultrasound-induced BBBD has recently

been studied. This provides for more concentrated BBBD and is well tolerated. However, the results of BBBD and

IA chemotherapy have varied among tumor types, and the research has been unclear because of small sample

sizes. Yet, there were some encouraging outcomes, especially in cancers that have historically been considered

difficult to treat, such as brain stem gliomas. For anticancer medicines that are likely to link to tumor tissue (and so

not be promptly effluxed) and for chemosensitive malignancies, including primary CNS lymphoma and germ cell

tumors, BBBD and focused chemotherapy techniques show the most promise . The negative effects of BBB

disruption and IA drug delivery are often ischemic and are most possibly due to catheterization of the vessel for

distribution as well as the irritative effects of the medication. It could also be significant neurotoxicity from therapy.

BBBD with IA is mainly confined to a small number of skilled institutions since the operations are invasive,

complicated, and accompanied by infrequent but possibly harmful comorbidities .

In preclinical models, standard radiation treatment used to treat primary and metastatic BT promotes BBB

permeability. This is an especially noteworthy finding considering the shown effectiveness of temozolomide in

individuals with freshly diagnosed glioblastoma multiforme (GBM) against the low usage of temozolomide alone for

recurrent GBM . Therapies that restore the BBB, on the other hand, may, in turn, reduce the drug’s access to the

tumor. Others suggest that normalization of the vasculature increases medication delivery by normalizing pressure

gradients. If these theories are correct, a series of treatments that differently break but then repair the BBB may

enhance drug transport (across a disrupted BBB) while maintaining drug concentrations within the tumor (by

mending the BBB), permitting for optimal medication exposure of the tumor. Since 1996, when the US Food and

Drug Administration licensed Gliadel (MGI Pharma, Bloomington, MN) for recurrent high-grade gliomas, patients

suffering from malignant gliomas have had access to polymer-based drug delivery. Gliadel is a polyanhydride

biodegradable polymer wafer impregnated with BCNU (carmustine) that is inserted into the surgical cavity during

tumor debulking and has resulted in a 2-month improvement in outcomes in patients with both diagnosed and

recurring malignant gliomas . It is generally tolerated, and side effects such as increasing edema, cerebrospinal

fluid leakage, and delayed wound healing are uncommon. This method provides local disease management but is

hampered by the limited release of BCNU distant from the resection cavity. It is also limited to individuals with

restricted cancer who can endure a complete gross resection. Despite these limitations, Gliadel can be quite
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successful when utilized as a part of a multimodal strategy . Gliadel in conjunction with systemic medicines,

such as temozolomide and O6-benzylguanine, is also being studied. Finally, new research indicates that the

highest tolerable dose of BCNU in polymers in patients with recurrent gliomas may be 40 mg, rather than the 7.7

mg presently allowed and utilized in clinical practice. Efficacy trials at a higher dosage may yield even better

survival outcomes. Gliadel is being used to treat brain metastases. Patients with single brain metastases from

distinct solid tumors received resection, Gliadel wafer insertion, or whole irradiation. There were no local herpes

outbreaks in 25 patients, and overall survival was 25% after 2 years. Gliadel appeared to manage local illness, and

it was well tolerated .

Several alternative devices for local distribution have already been developed after Gliadel’s certification. Phase II

studies with paclitaxel employing gel technology (ReGel; Protherics, London, UK) in adults with chronic gliomas are

now underway. The gel fits the contour of the resection cavity and gradually releases paclitaxel for 4 to 6 weeks

. Placing cisplatin-infused plates inside a tumor is another local delivery approach that has shown early

potential. According to preliminary findings, they are well tolerated in individuals with newly diagnosed GBM

undergoing radiation treatment. The median survival time was 14 months versus 7 months for the control group. All

of these techniques are constrained by the necessity for surgical resection and result in a restricted distribution

area; hence, they cannot control the full range of infiltrative BT. Furthermore, the regulatory process for such

devices is time-consuming, necessitating a fresh testing and approval process for each combination of delivery

method and medicine . Local delivery systems, however, provide a direct, well-tolerated, and effective therapy in

certain individuals and may serve as the cornerstone of a successful multimodal strategy. Convection-enhanced

delivery (CED) uses catheters implanted into and around a tumor to administer anticancer medicines with

hydrostatic pressure. It is an appealing strategy for drugs that are too big to penetrate the BBB or too toxic for

systemic delivery. That is a very appealing strategy for conjugated, targeted toxin therapy, antibodies, and

sometimes even entire cells . The Phase III Randomized Analysis of Convection-Enhanced Delivery of IL13-

PE38QQR to Survival Endpoint (PRECISE) trial, which investigated interleukin-13 conjugated to cintredekin

besudotox (PE38QQR), and also the TransMID (transferrin-CRM107) trial, which investigated a modified diphtheria

toxin (CRM107) conjugated to transferrin in patients with relapsed malignant gliomas. The median survival in the

PRECISE trial was 36.4 weeks (compared with 35.3 weeks with Gliadel). The TransMID trial was recently halted at

the interval analysis stage to determine the probability of improved overall survival compared with standard

second-line glioma therapies, and final results are still pending . CED delivery has been used to test several

other antibody-mediated therapies and immunotherapies. All had tolerable toxicity but highly variable efficacy.

CED has many of the same limitations as polymer-based therapies, such as a constrained distribution area and the

need for surgery . Furthermore, because drug delivery is dependent on high infusion rates, there may be a

higher risk of neurotoxicity from enhanced intracranial pressure. Innately, more catheters installed throughout

heterogeneous tumors should result in more delivery; even so, this may be technically complex, and it has not

been demonstrated in clinical practice. The most likely case is that other factors, including the rate of efflux from

the CNS, proximity to white matter tracks, and bulk flow patterns, influence the delivery, and hence the efficacy, of

the infused agent . Because drug distribution is a major limitation of CED, imaging techniques such as

fluorodeoxyglucose–positron emission tomography (FDG-PET), diffusion-weighted imaging (DWI), MRI, and single
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photo emission computed tomography (SPECT) are progressively used to image agents inside the brain after CED

.

A blood–CSF (B-CSF) barrier exists in addition to the BBB. The barrier is made up of fenestrated endothelial cells

on the luminal side as well as tightly joined epithelial cells without fenestration on the basolateral side (the

ependyma). Multidrug resistance transporters are expressed all along the B-CSF barrier, limiting drug entry from

systemic circulation to the CSF and clearing drugs attempting to enter the CSF from the brain . Given that

leptomeningeal disease affects up to 5% to 15% of patients with solid tumors, there have been concerted attempts

to improve drug delivery to CSF spaces. There are three methods for delivering drugs into the CSF spaces:

intrathecal, intraventricular, and intracavitary. Multiple processes are needed for this procedure, and drugs may

have limited numbers all across CSF pathways . Intraventricular administration of drugs necessitates the use of

hardware (i.e., implanted reservoirs), and it is likely to lead to increased drug volume distribution throughout CSF

pathways. Even though it is well tolerated, there are a few side effects, such as arachnoiditis, meningitis, and focal

neurologic injury. Besides this, if there are CSF flow abnormalities, each of these methods will result in a reduced

volume of distribution (and potentially increased toxicity). Because these abnormalities are frequent in people with

leptomeningeal disease, CSF flow research must be ordered before starting any CSF drug transfusion .

Anticancer therapies can be delivered directly to tumor cysts or cavities via implanted reservoirs. In patients with

recurrent malignant glioma, for example, a phase II trial of chlorotoxin combined with the radioisotope 131I (131I-

TM-601) infuses radioactive therapy into the tumor resection cavity via an Ommaya reservoir. This method allows

for repeat dosing but is limited due to the limited volume of distribution .

The anticancer activity of RES can be influenced by different administration techniques. Bioavailability improves

when RES is protected from considerable metabolization in the gastrointestinal tract and liver, which is especially

essential in intracranial cancers . Following RES mitigation, there is a wide range of apoptotic foci with reduced

Cyclin D1 staining, as well as increased autophagy with increased autophagy-related proteins LC3 as well as

Beclin 1, and improved autophagy with increased autophagy-related proteins LC3 and Beclin 1. As a result, novel

therapeutic approaches are desperately needed . The breakdown of the BBB is an important step in the

development of therapies for central nervous system (CNS) syndromes. In this situation, the intranasal route of

drug administration has also been projected as a non-invasive alternate route for straight targeting of the CNS .

This method of drug administration avoids the BBB, reducing systemic toxicity. Some formulations, primarily based

on the use of nano-sized and nanostructured therapeutic agents, have recently been developed to improve nose-

to-brain transport . The purpose is to deliver a summary of the approaches advanced for delivering anticancer

compounds via nasal administration to mitigate GBM. Particular attention will be paid to the properties of

nanomedicines proposed for nose-to-brain delivery . Preclinical and clinical data suggest that nasal delivery of

anticancer drugs could be a game-changer in the fight against GBM. The BBB keeps potential mitigation moieties

from entering the brain. Directly targeting the brain via olfactory and trigeminal neural pathways, even while

passing through the BBB, has grown in importance for the delivery of a wide range of therapeutics to the brain. The

intranasal route of administration delivers drugs to the brain without causing systemic absorption, avoiding side

responses, and increasing neurotherapeutic potency . Various drug delivery systems (DDSs) for targeting the
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brain via the nasal route have been researched in the last several decades. For example, liposomes, nanoparticles

(NPs), and polymeric micelles are examples of novel DDSs that can be responsive tools for targeting the brain

without causing toxicity in the nasal mucosa and CNS . Mayuri and Shilpa, in 2017, found out that cubosomal in

situ nasal gel containing RES was found to be effective for brain targeting . Valentina et al. developed lipid

microparticles (LMs) that were untreated or coated with chitosan and contained the neuroprotective polyphenol

resveratrol for nasal delivery .
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