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False data injection attacks (FDIAs), as a covert cyber-attack method, pose a huge challenge to the safe and stable

operation of smart grids by illegally hacking into power systems to tamper with measurement data and thus undermine

data integrity.
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1. Introduction

In recent years, sensing, communication, and control technologies have been able to realize the seamless integration in

smart grids. Hence, the physical and network fields of the power system are deeply integrated to form a cyber-physical

system . After collecting measurement data through remote terminal units (RTUs), the smart grid relies on the state

estimation algorithm to achieve its regulation. Thus, the main purpose of cyberattacks is to undermine or to mislead the

state estimation mechanism, leading to incorrect decision-making in the energy management system (EMS). In a highly

complex and automated environment, a cyber-attack may propagate to the entire system, triggering grid paralysis, mass

outage incidents, and so on, such as the massive power outage that occurred in Venezuela on 7 March 2019 .

False data injection attacks (FDIAs), as a covert cyber-attack method, pose a huge challenge to the safe and stable

operation of smart grids by illegally hacking into power systems to tamper with measurement data and thus undermine

data integrity . In , Liu et al. first proposed the concept of FDIAs and mentioned that attackers can use power

system topology and parameter information to construct a well- designed attack vector that bypasses traditional bad data

detections (BDDs) and destroys the integrity of smart grid information. Since attackers can construct extremely hidden

FDIAs without relying on system configuration information, it is difficult for traditional model-based detection methods and

boundary protection systems to handle such FDIAs. In order to run the power grid safely and steadily, an effective FDIAs

testing scheme needs to be studied and developed, which has been intensively studied by many researchers.

From the perspective of defenders, some methods have been improved for the state estimation algorithm in the study of

FDIAs detection. The improved state estimation methods mainly include residual detection method , measurement

transformation detection method , and some detection methods related to the use of Kalman filters . The FDIAs

detection method based on state estimation is mainly used for static analysis and detection of attacks at specific

moments. When the power system fluctuates, it is prone to missed detection and false detection .

The increase in the deployment of wide-area measurement system provides massive data for the analysis of power

system data. Therefore, artificial intelligence technology should be gradually increased in the FDIAs detection, mainly

including support vector machine , extreme learning machine , fuzzy c-means clustering , deep learning ,

integrated learning , etc. The advantages of such methods are that they do not need to solve complex power system

time domain equations and their calculation speed is fast. However, the disadvantage is that the test results are highly

dependent on the training process of the model. Improper selection of training samples can directly affect detection

performance.

Since the power system is in continuous dynamic operation and a space-time correlation exists between different

measurement data or state variables, most attacks are continuous. Therefore, it is feasible to consider using historical

data for trajectory prediction analysis to detect FDIAs, which mainly includes statistical consistency detection, sequence

consistency detection and sensor trajectory prediction.

Kurt et al.  used the generalized cumulative sum (CUSUM) algorithm for quickest detection of FDIAs. This method is

robust to time-varying state, attack and attacked instruments in both centralized and distributed environments. Similarly, Li

et al.  proposed a sequence detector based on a broad analogy for sequential detection of FDIAs in the smart grid. This

detector is significantly superior to first order CUSUM detector in terms of robustness and average detection delay
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performance. In , Malhotra et al. proposed a stacked LSTM prediction network to effectively detect time series

anomalies or failures, modeling the prediction error as a multivariate Gaussian distribution to evaluate abnormal behavior.

By analyzing and learning the original measurement data,  used different methods to detect abnormal data which did

not conform to the historical measurement distribution, which however failed to detect false data matching the historical

measurement distribution. Khalid et al.  proposed multi- sensor track fusion-based model prediction for malicious

attacks in PMUs, which can use smoothing algorithm based on Kalman particle filter to detect attacks at each monitoring

node. The online FDIAs detection process of SCADA and PMU hybrid measurement is proposed in , which can

effectively find the spatial hidden FDIAs based on multi-matching state prediction. However, when conditions such as load

mutation or equipment failure occur, the state prediction results are seriously misaligned and thus affect the detection

results.

Considering the time correlation of node measurement, Zhao et al.  compared prediction data with collected data

based on short-term state prediction method, and further built detection index in combination with traditional measurement

residual analysis. In order to solve the problem that it is impossible to detect attacks similar to historical data, Gu et al. 

considered the characteristics of measured data variation and proposed a detection method based on Kullback-Leibler

distance (KLD). However, the method failed to detect attacks on some nodes. A real-time detection scheme of FDIAs

based on joint transformation is proposed in , but the detection accuracy is reduced when the attack is less intense.

The detection method based on trajectory prediction analysis is mainly used to predict the distribution of state variables

according to the operation law of the system state and of the historical database. By comparing the running track, various

types of FDIAs can be detected effectively. However, there are two problems when the probability density function is used

to represent the data running track. One is the problem of overlapping distributions, and the other is the difficulty of

detecting historical data replay attacks.

2. System Model

Assuming that the grid has N+1 nodes and M measurement devices. Based on the common linear DC model,

measurement equation and state equation of discrete linear power system are given as follows:

(1)

(2)

In (1) and (2), between each time interval  and ,  is usually small. Therefore, the collected measurement data

between time  and  needs to be processed at time .

3. Bad Data Detection and Identification

System with data acquisition and monitoring control can collect real-time measurement data and make state estimation. In

order to eliminate the error caused by non-human factors  and ensure the reliability of the state estimation results,

there is a built-in BDD scheme in EMS for bad data detection and identification. The essence of the traditional method of

detecting and identifying bad data can be summed up as residual method. The residual vector  is first determined by

calculation, and then different detection standards are used for judgment. In other words, bad data can be detected by

calculating  as follows:

(3)

Taking the extremum detection method of objective function  as an example. The extremum of objective function

established by residual vector is as follows:

(4)
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r = z − ẑ = h (x) + e − (h (x) + H (x − x̂))

= e − H(H TR−1H)
−1

H TR−1e

= (I − H(H TR−1H)
−1

H TR−1)e

= Se

[29]

J (x̂) = [z − h(x̂)
T
]R−1 [z − h (x̂)] = rTR−1r



(5)

In order to further eliminate bad data by identifying them, the generally adopted criterion is the “ ” principle. When the

system has bad data, the measurement corresponding to the maximum residual should be corrected and the above

detection process should be repeated until all elements in the residual vector are within the threshold.

4. Principle of False Data Injection Attack

Attacker can successfully inject into measurement data by constructing the effective attack vector. Traditional FDIAs are

typically given as follows:

(6)

where  is the injected false data attack vector;  is the attacked measurement vector;  is the estimation vector of original

measurement vector  without attack.

If  can bypass the traditional bad data detector based on residuals, then  can also bypass BDD, satisfying the following

equation:

(7)
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At this point, the traditional method of bad data detection and identification fails to FDIAs, which allows attacker to tamper

with the measurement data at will.
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