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The volume of collected or archived geospatial data for land use and land cover (LULC) mapping including

remotely sensed satellite imagery and auxiliary geospatial datasets is increasing. Innovative machine learning,

deep learning algorithms, and cutting-edge cloud computing have also been developed. While new opportunities

are provided by these geospatial big data and advanced computer technologies for LULC mapping, challenges

also emerge for LULC mapping from using these geospatial big data.

land use and land cover mapping  remote sensing  machine learning  deep learning

geospatial big data

1. Introduction

Accurate and timely land use and land cover (LULC) maps are important for a variety of applications such as urban

and regional planning, disasters and hazards monitoring, natural resources and environmental management, and

food security . LULC mapping may help tackle many significant large-scale challenges, such as global

warming, the accelerating loss of species habitat, unprecedented population migration, increasing urbanization,

and growing inequalities within and between nations . Therefore, it is important to produce accurate LULC

maps.

The  land use  concept and the  land cover  concept, though related, are distinctly different . Land cover mainly

refers to direct observations of terrestrial ecosystems, natural resources, and habitats on the Earth’s surface, while

land use generally describes a certain land type produced, changed or maintained by the arrangements, activities,

and inputs of people. Land use relates to the purpose for which land is utilized by people, but land cover specifies

landscape patterns and characteristics. Examples of land use may include multi-family residential homes, state

parks, reservoirs, and shopping centers. In contrast, examples of land cover may include forests, wetlands, built

areas, water, and grasslands. However, land use and land cover are often used as interchangeable terms in

existing research literature. 

Remotely sensed satellite imagery is a valuable source for LULC mapping . Many studies have attempted to

extract LULC information from remotely sensed imagery . Advances in remote sensing technologies have

resulted in improvements in spectral, spatial, and temporal resolutions of satellite imagery, all of which benefit

LULC mapping. LULC mapping is currently experiencing a transformation from the coarse and moderate scales to

much finer scales in order to provide more precise land knowledge. Although remotely sensed imagery has been
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used in LULC mapping since the launch of Landsat 1 in 1972 , it is still difficult to capture complex and diverse

LULC information and patterns by using remotely sensed imagery alone . Ancillary data are typically needed as

a supplement to remotely sensed imagery in order to accurately identify LULC information, especially the land use

information related to socioeconomic aspects .

With the development of GPS and data acquisition techniques, the merging of big data with spatial location

information—such as social media data, mobile phone tracking data, public transport smart card data, Wi-Fi access

point data, wireless sensor networks, and other sensing information generated by Internet of Things devices—may

provide useful ancillary data for LULC mapping . Compared to traditional geospatial data acquisition, these

geospatial big data are normally obtained at a lower cost and have different coverages and better spatio-temporal

resolutions. They contain abundant human activity information and may thus be used to compensate for the lack of

socioeconomic attributes of the remotely sensed imagery data for accurate LULC mapping . In fact, the

aforementioned geospatial big data were integrated with remotely sensed imagery and other source data for

accurate LULC mapping in many studies .

Human are currently living in the era of big data. The volume of collected or archived geospatial data, including

remotely sensed data, is increasing from terabytes to petabytes and even to exabytes . For example, the

European Space Agency (ESA), the National Aeronautics and Space Administration (NASA), the United States

Geological Survey (USGS), and the National Oceanic and Atmospheric Administration (NOAA) provide a huge

amount of freely available remotely sensed data and other Geographic Information System (GIS) data for LULC

mapping. Social media sites, such as Facebook, Twitter, and Instagram, are generating an enormous volume of

data with geospatial location information that can be used for LULC mapping nowadays . Progress in data

access and algorithm development in the era of big data provides opportunities for developing improved LULC

maps . Figure 1 illustrates the major opportunities of LULC mapping in the era of big data. Databases that offer

free access to LULC maps at the global scale have emerged. For example, as a free search engine, “Collect Earth”

developed by the Food and Agriculture Organization (FAO) can help derive past and present LULC change

information .
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Figure 1. Major opportunities of LULC mapping in the era of big data.

While these geospatial big data provide new opportunities, challenges remain in storing, managing, analyzing, and

visualizing these data for LULC mapping . Geospatial big data not only have various forms but are also often

associated with unstructured data that are difficult to manage . It is extremely difficult to integrate, analyze, and

transform these heterogeneous geospatial big data from different sources into useful values for LULC mapping.

Traditional LULC classification or mapping solutions and software face excessive challenges in dealing with these

large and complex geospatial big data. New approaches are needed to efficiently process and analyze these data

to reveal patterns, trends, and associations related to LULC mapping .

Lately, advanced machine learning techniques, especially deep learning (DL), have been developed for large-scale

LULC mapping based on multispectral and hyperspectral satellite images or the integration of satellite imagery with

other geospatial big data . Deep learning has demonstrated better performance compared to traditional

methods, such as random forest (RF) and support vector machine (SVM), e.g., . Nevertheless, there are

still many issues in applying advanced machine learning or deep learning for accurate LULC mapping using

geospatial big data.

2. LULC Mapping from Remotely Sensed Imagery Data

As mentioned previously, remote sensing has become one of the most important methods for LULC mapping 

. Many existing LULC maps were made by the classification of remotely sensed satellite imagery data .

Remotely sensed data have multi-source, multi-scale, high-dimension, and non-linear characteristics . Since the
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advent of remote sensing technology, many satellites have been launched. Every day, a large set of spaceborne

and airborne sensors provide a massive amount of remotely sensed data. At present, there are more than 200 on-

orbit satellite sensors capturing a large amount of multi-temporal and multi-scale remotely sensed data. For

example, NASA’s Earth Observing System Data and Information System (EOSDIS) managed more than 7.5

petabytes of archived remotely sensed data and archived a daily data increase of four TB in 2013 . Many

satellite imagery data providers release timely remotely sensed data to the public without any cost. USGS, NASA,

NOAA, IPMUS Terra, NEO, and Copernicus open access hubs are among the most popular open access remotely

sensed data providers.

In the past, many LULC maps were made from coarse spatial resolution satellite imagery data such as advanced

very-high-resolution radiometer (AVHRR) and moderate-resolution imaging spectroradiometer (MODIS) .

Advances in remote sensing technology and the launch of sensors with moderate spatial resolutions, such as

Landsat, Satellite Pour l’Observation de la Terre (SPOT), and Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER), have contributed to enhanced LULC mapping, e.g., . Lately, detailed LULC

maps have been produced from high-resolution imagery data such as QuickBird, IKONOS, and WorldView, which

can provide more detailed spatial and spectral information for LULC mapping, e.g., . With these high-

resolution remotely sensed data, it is possible to identify the detailed geometries, textures, sizes, locations, and

adjacent information of ground objects at a much finer scale for LULC mapping .

In addition to the different spatial resolutions, the remotely sensed data for LULC mapping also have different

spectral and temporal resolutions. Many satellite sensors produce imagery data with very-high spectral resolutions

. For example, the Hyperion sensor consists of 220 spectral bands, the AVIRIS system provides 224 spectral

bands, the WIS instrument has 812 bands, and the hyperspectral imager equipped in HJ-1A has 128 bands.

Furthermore, remotely sensed data may come from different types of satellites. Some satellites use optical sensors

such as SPOT, Landsat, and IKONOS; some use microwave synthetic aperture radar (SAR) sensors such as

TerraSAR, Envisat, and RADARSAT; while others use multi-mode sensors such as MODIS. While the optical

satellite imagery data face challenges in producing LULC maps under cloudy weather conditions, microwave SAR

data allow LULC mapping under all weather conditions, including the constantly cloudy weather situation .

From a temporal resolution perspective, these satellites also have different capabilities to revisit an observation

area. Some satellites have a short revisit period of one day (e.g., MODIS and WorldView), while other satellites

have a long revisit period of 16 days (e.g., Landsat). Figure 2 shows different types of remotely sensed satellite

imagery for LULC mapping. Teeuw et al. , Navin and Agilandeeswari , and Pandey et al.  provided detailed

tables for the characteristics of different types of remotely sensed data.
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Figure 2. Different types of remotely sensed satellite imagery for LULC mapping.

As illustrated in Figure 3, more types of remotely sensed data have emerged to provide additional observations for

LULC mapping . These remotely sensed data provide observations to differentiate LULC types with complex

structures, which are difficult to differentiate in the past. For example, as a unique measure of human activities and

socio-economic attributes, remote sensing-based nighttime lights (NTL) imagery is especially useful for urban

LULC mapping at different spatial and temporal scales, e.g., . Light detection and ranging (Lidar) is another

type of remotely sensed data for detailed LULC mapping, e.g., . Unlike optical data, airborne Lidar data can

capture highly accurate structural information to differentiate LULC types with different structures, components, and

compositions . In addition, street-view imagery from Google, Baidu, and Tencent also functions as an additional

type of remotely sensed data for LULC mapping, e.g., . In contrast to the overhead view captured by most

other remote sensing methods, street-view imagery data provide street-level or eye-level observations along the

road networks. By providing information about what people typically see at street level on ground, street-view

imagery data provide crucial information on the functions of objects conventionally hidden from the view above,

e.g., . For example, street-view imagery data have been used for level II or III land use classification (e.g.,

differentiation of commercial buildings and residential buildings by using text information on buildings from street-

view imagery data . Street-view imagery can also be used for ground truth purposes. Recently, unoccupied

aerial system (UAS) platforms with small-sized and high-detection-precision sensors have also started producing

massive high-resolution images as well, and have been extensively used for high-resolution LULC mapping, e.g.,

. Currently, the amount of data collected by UAS is about to explode.
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Figure 3. More types of remotely sensed imagery for LULC mapping.

Because of the diversity and high dimensionality of remotely sensed data, LULC mapping from remotely sensed

big data becomes complex. It is challenging to identify the right datasets and combine them to make detailed LULC

maps at large scales. Although the multi-source optical and microwave remotely sensed data allow people to

obtain LULC information from multiple viewpoints, they sometimes cause confusion in deciding which type is the

most appropriate for particular LULC mapping. In addition, because of the data representation challenge, it is

difficult to integrate the various remotely sensed data with different features (e.g., spectral signatures in optical

imagery and electromagnetic radiations in microwave imagery) from various sources. Traditional pixel-level,

feature-level, and decision-level fusion cannot be used to integrate remotely sensed imagery with different scales

and/or formats . New approaches need to be developed to fuse remotely sensed imagery with other geospatial

big data, such as photos from a social network and crowdsourcing spatial data, for LULC mapping.

3. LULC Mapping from Integration of Geospatial Big Data
and Remotely Sensed Imagery Data

Although remotely sensed data have become one of the most important data sources for LULC mapping, these

have limitations . Remotely sensed data are valuable to extract natural and physical land cover information

based on spectrum, texture, geometry, context, and temporal information, but they have limitations in capturing the

patterns of human activities and socioeconomic environments and describing indirect anthropogenic differences

among different land use classes . For example, while the spectral information of remotely sensed imagery data

is effective to extract land cover information such as water area, forest land, and built-up area, it is almost

impossible to distinguish some land use classes such as some industrial land, residential land, and commercial

land using the spectral information of remotely sensed data alone .
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With the development of mobile positioning techniques, wireless communication, and the Internet of Things, new

emerging types of social sensing big data are providing complementary information to differentiate some land use

classes caused by human activities and socioeconomic environments . Examples of these emerging social

sensing big data include mobile phone data, geo-tagged photos, social media data, traffic trajectories, and

volunteered geographic information (VGI) data . These emerging social sensing big data are able to more

effectively capture human activities and dynamic socioeconomic environments, and are regarded as complements

of remotely sensed imagery data for effectively LULC mapping . For example, Geo-Wiki is a crowdsourcing

platform for LULC mapping and other tasks, which was used to derive the global LULC reference data via four

campaigns . Flickr offers online services for the sharing of digital photos with geographic locations based on

social networks, which was used to identify socioeconomic and human activities in LULC mapping .

OpenStreetMap (OSM) (as a VGI database) allows the adding, editing, and updating of basic geographic map

information with users’ experience and knowledge, which was also used to uncover some land use types and

patterns, e.g., . The points of interest (POIs), as one of the most common categories of crowdsourced data,

were explored for land use classification by many scholars, e.g., . In addition, a large amount of GPS

traffic trajectory data also further enriched the remotely sensed data in excavating human activities at a fine scale

for accurate LULC mapping .

These emerging social sensing big data improved the existing LULC maps by providing more detailed

socioeconomic information and finer spatio-temporal resolutions . Many studies have been conducted to

integrate the social sensing big data with remotely sensed data for LULC mapping at different scales and locations,

e.g., . For example, Hu et al.  developed a protocol to identify urban land use functions over large areas

using satellite images and open social data. Yin et al.  employed both the decision-level integration and feature-

level integration of remotely sensed data with social sensing big data for urban land use mapping. Integrating data

from these social sensing big data with remotely sensed data may provide a more comprehensive picture of LULC

patterns, as shown in Figure 4.
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Figure 4. LULC mapping from the integration of geospatial big data and remotely sensed data.

In addition to the integration of remotely sensed data and social sensing big data for LULC mapping, other auxiliary

datasets may also be used for LULC mapping . For example, census data including demography, employment,

education, housing, and income information may provide valuable information to reveal spatial differences in

socioeconomic statures across different land use types, e.g., . Municipal data such as water consumption data

may offer important information to identify the socioeconomic functions of land uses and help classify mixed

patterns of land uses . In addition, topographic information such as elevation, slope, and aspect information

extracted from digital elevation or digital terrain models (DEMs/DTMs) may also be combined with remotely sensed

data to increase the accuracy of urban land use classification, e.g., .

Ubiquitous sensor networks can constantly obtain spatio-temporal data in days, hours, minutes, seconds, or even

milliseconds. These spatio-temporal data allow people to acquire multi-dimensional dynamic information about

various land entities and human activities, which may be used for making or updating LULC maps. LULC mapping

is expanding from professional aspects to public aspects with the development of The Internet of Things (IoT) and

Volunteered Geographic Information (VGI), as evidenced by Geo-Wiki and My Maps feature in Google Maps.

However, the non-professional characteristics of IoT and VGI often make the data obtained from them contain data
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uncertainty such as data loss, noise, inconsistency, and ambiguity . Therefore, it is important to develop quality

assurance procedures such as data cleaning and quality inspection for high-quality LULC mapping.

It is still challenging to integrate multi-source remotely sensed data, social sensing big data, and other auxiliary

datasets for LULC mapping because of intensive computing and the heterogeneity in spatial data structures,

formats, resolutions, scales, and data quality. Novel machine learning including deep learning and cloud computing

approaches are urgently needed for LULC mapping.

4. Machine Learning and Cloud Computing for LULC
Mapping

Machine learning is a data analysis method and a subset of artificial intelligence based on the idea that computer

systems can learn from data to identify patterns and make decisions with minimal human intervention. There are

many different machine learning approaches for LULC mapping , such as support vector machine (SVM),

random forest (RF), and K-nearest neighborhood (KNN). The strengths of machine learning include the capacity to

handle data of high dimensionality and to map LULC classes with very complex characteristics. With growing

volumes and varieties of the available aforementioned remotely sensed imagery and geospatial big data, cheaper

and more powerful computational processing tools, and affordable data storage, machine learning has become

more popular than ever for analyzing bigger and more complex data and delivering more accurate LULC mapping

results at larger scales . Machine learning provides the foundation for autonomously solving data-based LULC

mapping problems .

Supervised learning, unsupervised learning, and semi-supervised learning are the three main types of machine

learning methods for LULC mapping, as shown in  Figure 5. Supervised learning algorithms are trained using

labeled LULC examples and apply what has been learned in the labeled LULC example data to predict the labels

of new LULC data. By inferring methods such as regression and gradient boosting, supervised learning methods

use patterns to predict the values of the labels on unlabeled LULC data . Popular supervised learning methods

include support vector machine (SVM), random forest (RF), classification and regression tree (CART), radial basis

function (RBF), decision tree (DT), multilayer perception (MLP), naive Bayes (NB), maximum likelihood classifier

(MLC), and fuzzy logic. Unsupervised learning algorithms are used with data that have no historical LULC labels

and computers infer a function to describe a hidden structure from unlabeled LULC data. Unsupervised learning

methods are used when it is unclear what the LULC mapping results will look like and computers need to dig

through hidden layers of LULC data and cluster data together based on the similarities or differences of LULC

classes. Popular unsupervised learning methods include self-organizing maps, k-means clustering, nearest-

neighbor mapping, affinity propagation (AP) cluster algorithm, ISODATA (iterative self-organizing data), and fuzzy

c-means algorithms. Semi-supervised learning is similar to supervised learning. However, it uses both labeled and

unlabeled data for training—usually a small amount of labeled data with a large amount of unlabeled data.

[79]

[80][81]

[10]

[82]

[83]



Land Use and Land Cover Mapping | Encyclopedia.pub

https://encyclopedia.pub/entry/29436 10/23

Figure 5. Types of traditional machine learning approaches for LULC mapping.

Recent advances in machine learning for LULC mapping have been accomplished via deep learning approaches

. As illustrated in  Figure 6, deep learning is a subfield of machine learning. All deep learning is machine

learning, but not all machine learning is deep learning. Deep learning emerged because shallow machine learning

cannot successfully analyze big data for LULC mapping. While basic machine learning models do become

progressively better at performing their specific functions as they take in new emergent data, they still need some

human intervention. Deep learning algorithms in layers can build an “artificial neural network” (Figure 7) that is

able to learn and make intelligent classification decisions on its own .  Figure 8  illustrates the differences

between traditional machine learning and deep learning. For traditional machine learning, feature extraction and

classification are separate processes and humans are needed to perform feature extraction. With a deep learning

model, feature extraction is integrated with classification and a classification algorithm can determine whether a

class prediction is accurate through its own neural network—beyond the training data and without requiring human

help. Deep learning algorithms can be considered as a both sophisticated and mathematically complex evolution of

machine learning algorithms . Deep learning algorithms analyze data with a logic structure similar to how a

human would draw LULC mapping conclusions. When fed training data, deep learning algorithms would eventually

learn from their own errors whether a LULC class prediction is good or whether it needs to adjust.
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Figure 6. Deep learning is a subfield of machine learning.
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Figure 7. A simple artificial neural network.

Figure 8. Differences between traditional machine learning and deep learning.
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In recent studies, deep learning outperformed other machine learning algorithms in some LULC mapping problems,

particularly in detecting fine-scale types such as small artificial objects . Deep learning algorithms have

been used to automatically extract spatial features from very-high-resolution satellite images such as IKONOS,

WorldView-3, and SPOT-5, e.g., .

There are several different types of deep learning algorithms for LULC mapping, among which the most popular

algorithms include convolutional neural networks (CNNs) and recurrent neural networks (RNNs). CNNs are some

of the most popular neural network architectures because they can extract low-level features with a high-frequency

spectrum, such as the edges, angles, and outlines of LULC objects, whatever the shape, size, or color of the

objects are. Therefore, CNNs are well suited for LULC mapping . Some popular CNN architectures used in the

literature are LeNet5, AlexNet, VGGNet, CaffeNet, GoogLeNet, and ResNet models. RNNs have built-in feedback

loops that allow the algorithms to “remember” past data points. RNNs can use this memory of past events to inform

their understanding of current events or even predict the future. RNNs are mainly designed to process time series

data and are suitable to detect LULC changes .

By performing complex abstractions over data through a hierarchical learning process, deep leaning algorithms

have shown great potential for analyzing big datasets for LULC mapping . The hidden layers in deep leaning

approaches can discover class structures and patterns in big data and extract valuable class knowledge. Deep

learning is also able to handle nonlinear and highly complex big data more effectively than conventional machine

learning methods . However, compared to traditional machine learning approaches, deep learning requires a

vast amount of training data and substantial computing power . A deep learning algorithm requires much more

data than a traditional machine learning algorithm to properly conduct LULC mapping. Due to the complex multi-

layer structure, a deep learning system needs a large training dataset to eliminate fluctuations and make high-

quality class interpretations . Without a large set of training data, deep learning may show a similar or worse

performance than classical machine learning techniques such as SVM .

The emergence of cloud computing infrastructure and high-performance GPUs (graphic processing units, used for

faster calculations) helped to solve the expensive computational problem faced by deep learning . The storage

and processing requirements of big data for LULC mapping are greater than that available in traditional computer

systems and technologies . The existing cluster-based high-performance computing (HPC) with plenty of

computational capacities can be used for storing large remotely sensed data and other big data for LULC mapping.

However, it is still challenging to process these big remotely sensed data and other big data for large-scale LULC

mapping because system architectures and the tools of the existing cluster-based HPC have not been optimized to

process such data. The cluster systems or peta-scale supercomputers are not good at loading, transferring, and

processing extremely big remotely sensed data and other data for LULC mapping. A potential solution to this

problem is cloud computing. Cloud computing satisfies the two main requirements of LULC mapping using big data

analytics solutions: (1) scalable storage that can accommodate growing data; and (2) a high processing capability

that can run complex LULC mapping tasks in a timely manner. Cloud computing makes deep learning more

accessible, making it easier to manage large datasets and train algorithms for distributed hardware, and deploy

them efficiently . It provides access to special hardware configures, including GPUs, field-programmable gate
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arrays (FPGAs), TensorFlow processing units (TPUs), and massively parallel high-performance computing (HPC)

systems.

Cloud computing has been used for storing big remotely sensed data and other data for LULC mapping with good

scalability . Three main types of cloud computing services have been used : (1) infrastructure-as-a-service

(IaaS), which allows renting IT infrastructures. Servers, virtual machines with storages, networks, and operating

systems are completely provided and managed by a cloud provider. Users can pay for what they use; (2)

platforms-as-a-service (PaaS): this service is an on-demand style of service where users can obtain a complete

development environment required for software applications; (3) software-as-a-service (SaaS): using SaaS, it is

possible to deliver software applications over the Internet, such as the ‘on demand’ or ‘subscription’ services.

Google AppEngine, Microsoft Azure, and Amazon EC2 are the most popular cloud providers and offer pay-as-you-

go clouding computing for storing, processing, and visualizing big remotely sensed data and other data for LULC

mapping. GoogleTM developed a geospatial data analysis platform—Google Earth Engine (GEE)—capable of

storing and analyzing vast amounts of remotely sensed data for rapid LULC mapping at large scales . GEE

provides users with free access to numerous remotely sensed datasets including Landsat, Sentinel, and MODIS

images. GEE has already proven its capacities for LULC classification and change detection, e.g., 

. Microsoft Azure Cloud Services and Amazon Web Services (AWS) have also been used to

improve LULC mapping and monitoring . Microsoft Azure Cloud Services have established artificial intelligence

(AI) for an Earth initiative to address environmental challenges. However, Azure only offers Landsat and Sentinel-2

products for North America and MODIS imagery. Amazon Web Services offer open data from more satellites such

as Sentinel-1, Sentinel-2, Landsat-8, and China–Brazil Earth Resources Satellite program (CBERS-4), NOAA

image datasets, as well as global model outputs.

In addition to machine learning and cloud computing approaches, other advanced cyberinfrastructure techniques,

such as novel scalable parallel file systems capable of storing and managing massive data, and NoSQL (Not Only

SQL) databases for managing big unstructured or non-relational data have also been developed for LULC mapping

with complex characteristics .
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