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On-road behavior analysis is a crucial and challenging problem in the autonomous driving vision-based area.
Several endeavors have been proposed to deal with different related tasks and it has gained wide attention
recently. Much of the excitement about on-road behavior understanding has been the labor of advancement
witnessed in the fields of computer vision, machine, and deep learning. Remarkable achievements have been

made in the Road Behavior Understanding area over the last years.

holistic on-road behavior analysis driver-road interaction driving status analysis

road scene understanding

| 1. Introduction

Vision-based Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles (AV) development has been
witnessing a slow yet impressive growth over the past two decades for most of its modules including sensing
hardware [, perception &, mapping and path planning [, and scene understanding 4. Despite the large amount
of research and development endeavors, the area still lacks comprehensive approaches and/or systems which
provide high-level road scene analysis that includes holistic description of the AV’surrounding. By contrast to most
of the ADAS and AV vision-based tasks, there are scarce resources for broad road scene understanding, which is
mainly due to the paucity of benchmarks, standards, theoretical fundamentals, and expressly research papers that

urge the community to tackle this task.

2. Importance and Challenges of On-Road Behaviors
Analysis

Road crashes kill nearly “1.25 million people each year, on average 3287 deaths a day and around 50 million are
injured or disabled”, reports the Association for Safe International Road Travel (ASIRT). By 2030, fatal traffic
crashes are expected to become the fifth leading cause of death worldwide. ITS (Intelligent Transportation
Systems) is investigating to find smarter solutions that allow bolder ADAS and AV systems in order to reduce road

fatalities.

To do so, many vision-based components have been developed and significant advances have been made on

semantic segmentation 2!, object detection [, mapping and localization &, etc. Yet, such tasks have not really
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addressed the challenges in high-level understanding and correspond only to the first step of understanding, thus
the importance of on-road scene analysis. In fact, detecting/localizing participants in a given scene and parsing

them to the semantic classes is just a mid-level analysis step.

Despite the ITS community always asking “what are the difficulties and challenges in on-road behaviors analysis?”,
this question has not been raised seriously so far in the literature or even been generalized. As vision-based
understanding related tasks have different goals and constraints, integrating a set of these tasks under the same
framework implies imperatively a higher complexity. Aside from common issues in image and video analysis tasks
such as sudden and gradual illumination changes and viewpoints variation, the specificity of road environments
involves more aspects including temporal and spatial patterns intra-class variations, cluttered scenes, and the

curse of data labeling for high-level analysis.

| 3. RBA Components and Milestones over the Last 20 Years
3.1. Situational Awareness

Situational awareness is a fundamental ingredient for successful on-road scene analysis. In fact, while dealing with
the perception of road environments, including objects, participants, behaviors, and activities, people need to take

into consideration their meaning, and their future status in conjunction with space and time.

For example, Kooij et al. propose in [Z a pedestrian situational awareness aiming to predict a pedestrian’s path in
the AV domain. To anticipate the decision of pedestrians, they assume that it is influenced by three factors: (i) the
presence of an approaching vehicle on a collision course, (ii) the pedestrian’s safety awareness, and (iii) the
specificity of the environment. To incorporate these factors, latent states have been built on switching linear
dynamical systems and dynamic Bayesian networks to anticipate changes in pedestrian paths. The situational
awareness evaluates whether the pedestrian at a given instant t has seen the vehicle previously (before t)) through
the estimation of the distance between vehicle and pedestrian at the expected point of closest approach head
orientation and his distance to the road curbside. The ultimate goal is to predict the intention of a pedestrian to
laterally cross the road, which is highly related to most of the pedestrian fatalities inroads according to accident
analysis reported in 8. For a similar objective, in & the crossing behavior, i.e., the pedestrians’ intention to cross, is
predicted. Researchers consider here two classification tasks of static environmental context and passenger
action. Due to the lack of annotation of the JAAD dataset proposed, they make use of weakly supervised learning
with CNN (Convolutional Neural Network) features through an AlexNet architecture to identify visual attributes for
both tasks X9, The considered classes for the environmental contextual recognition task include the following
elements: narrow, wide, pedestrian crossing sign, zebra crossing, stop sign, traffic light, and parking lot. As for the
pedestrian action classification, only looking and crossing classes have been considered. Their experimental
results prove that using only the pedestrian action information can predict 40% of the observed crossing behavior,

yet, adding situational awareness information/context improves the results by 20%.

3.2. Driver-Road Interaction
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Understanding the interactions occurring between drivers and road users is crucial toward a holistic RBA. Recently,
the ITS community has brought attention to this issue by developing new vision-based models that capture the

interaction between road users and the ego vehicle.

Owing to the newly published HDD dataset 11, Li et al. propose in 12 a spatio-temporal 3D-aware framework by
means of GCN (Graph Convolution Networks). For this purpose, participants and objects of the road scene are
categorized into two sets: Thing objects, such as pedestrians and cars, and Stuff objects, such as traffic lights and
road surface marking. As an example, interactions with Thing objects may include stopping to let pedestrians cross
and deviation for parked vehicles, and examples for interactions with Stuff objects may include changing or
merging a lane. To represent the interaction between these sets of objects and the ego vehicle, two kinds of graphs
have been proposed: Ego-Thing Graph and Ego-Stuff Graph to represent the ego vehicle interaction with Thing
and Stuff objects, respectively by extending the Ego-Thing Graph proposed in 131,

Previously, in 2000, using traditional machine learning tools in Ref.l24 HMM (Hidden Markov Model) was
leveraged to recognize the tactical driver behavior. To model the states of the ego vehicle and all the elements and
participants in the road environment, a single node was used for each one and then all the nodes were encoded
into a state vector. This approach is not reporting state-of-the-art results so far, but it still inspires recent endeavors

like those stated earlier.

3.3. Road Scene Understanding

ITS and computer vision communities have exerted extensive effort to analyze the road scene 13I18IL7 A hinted
to earlier, traditional approaches were handcrafted or machine learning-based and they were designed to deal with
an elementary task such as detection recognition or segmentation for a specific kind of object lane (18], traffic lights
(291 and pedestrians [29. Before 2013, it was not obvious how to get a holistic understanding of road environments.
With the advent of the revolutionary deep neural networks, it was made possible to get a comprehensive
understanding of the road scene. In fact, deep learning provides more automatic models, which allow combining

many tasks in a single framework.

For example, Ref. 21 proposes an encoder-decoder architecture that provides an end-to-end road scene
understanding. The encoder is a CNN-based network similar to VGGNet 19, Similarly, the decoder is a CNN
network with two streams that upsamples the features and then fuses the information of both streams to the
decoder network, which outputs the score of each pixel with regards to the predefined classes. By reporting
qualitative and quantitative evaluation done only over the CamVid dataset 22, this encoder-decoder network is
able to provide higher results for semantic segmentation and positioning in terms of CA (Class Accuracy) at MloU

(Mean Intersection over Union).

Under the same context, Ref. B deals with a more challenging task: recovery of occluded vehicles, in addition to
the amodal segmentation task. A novel multi-task approach was introduced to incorporate the two tasks under the

same framework. In another word, two networks were introduced, called (i) segmentation completion and (ii)
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appearance recovery. The first one aims to produce the recovered segmentation mask. Afterward, the obtained
mask is used for the second network to produce the occluded parts of vehicles. As a result, the invisible regions
are restored/painted back to the foreground of the original image. Experiments were done with the Occluded
Vehicle Dataset (OVD) and metrics used to evaluate the recovered segmentation mask including recall, precision,
F1 score, luO, the per-pixel L1 error and the per-pixel L2 error were used. As for the recovered appearance of the
vehicle task, the L1 and L2 errors have been used along with two new metrics: the ICP (Inception Conditional
Probability) and the SS (Segmentation Score). Overall, the obtained results demonstrate similar performance to
Deeplab [23] without the iterative refinement for the segmentation with a better capability of generating the invisible
parts.

As for the work proposed in Ref. (24 researchers focus on urban scene analysis and road detection and evaluate
their proposal over KITTI [22] and LabelMeFacade [28! datasets. The major contribution is the presentation of new
convolutional patch networks learned for pixel-wise labeling in order to classify image patches. More details

regarding the proposed CNN can be found in Section 5.

3.4. Trajectories Forecast

Trajectories forecast in road environments consists of predicting the path that a moving vehicle, pedestrian, or any
other road agent follows through road space as a function of time. The extracted trajectories from a visual data are
less mastered with relation to ADAS and AV contexts. It is highlighted its importance and the methods developed
by the computer vision community that can be useful in such circumstances. In addition to the prediction of future
paths of road participant, this RBA component is of crucial importance and might be used to supply other
components by modeling traffic representation in real-time. Thus, this task is useful for performing safe ADAS and
AV systems not only by improving all the vision-based components but also by using it in the management of

congestion and vehicle routing.

For instance, Ref. 27 proposes an approach named DROGON for “Deep RObust Goal-Oriented trajectory
prediction Network” that forecasts future trajectories of vehicles by taking into consideration their behavioral
intention, which is commonly called causal reasoning. A conditional prediction model has been built to solve this
issue. Three steps have been followed to train such a model. The first step is to infer the interaction of vehicles with
other road agents. Then, the second and the third steps consist in estimating their intention and thus by computing
the intention’s probability distribution based on the inferred interaction and the causal reasoning, respectively. To
evaluate their approach, Choi et al. also introduce a new dataset acquired at four-way intersections. Through
gualitative and quantitative evaluation using ADE (Average Distance Error) and FDE (Final Distance Error) metrics,
the DROGON framework has demonstrated an efficient performance for predicting and generating trajectories over

the state-of-the-art.

A near-term trajectories forecast approach is also proposed by Chandra et al. in [28]. They tackle more challenging
contexts, mainly heterogeneous traffic where road agents are very varied for, e.g., pedestrians, cars, bicycles,

trucks, buses, motorcycles, etc. The major contribution is the representation of heterogeneous interactions
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between different kind of agents. An RNN-CNN framework called TraPHic is introduced in order to automatically
predict the trajectories and does so by taking into consideration the challenges of heterogeneous contexts related

to different textures, shapes, motions, and activities of each road participants.

3.5. Driving Activities and Status Analysis

Driver’s status and activities analysis are crucial because one of the leading cause of traffic accidents is related to
driver’s inattention, aggressive maneuvering, or drowsiness. Detecting or predicting strange maneuvers or status

may help avoiding fatal crashes by keeping a distance to identified aggressive drivers.

In the literature, Ref. (22 proposes a novel framework named GraphRQI to learn, in a supervised fashion, third
party driver behavior. Based on the approach proposed in Ref. [28 (detailed in the previous section), road
participants trajectories are used to pinpoint the general traits of the driver, i.e., conservative or aggressive, which
inherently affects the trajectories of the surroundings agents. By means of GCNs trained on the TRAF [28 and
Argoverse (B9 datasets, driving status has been classified into six classes: reckless, careful, timid, impatient,

threatening, and cautious.

In a similar way, Ref. Bl classifies the ego vehicle behavior through scene understanding-based CNN and robust
temporal representation-based LSTM (Long Short Term Memory). The key element is the incorporation of scene
context features related to weather and road characteristic, places, types, and surface conditions. Experimental
results shown on the HDD dataset and a newly collected dataset prove that the proposed scene classification

boosts the understanding of driver behavior.

Multi-modality cues have been extensively used with regard to driver maneuvers classification for example, by
taking into consideration only the temporal aspect, Ref. 32 presented a fancy architecture based on Gated
Recurrent Fusion Unit to model multi-modal data coming from two streams: video and CAN bus. Novel gating
functions have been introduced in order to represent the exposure of each data stream at each frame in order to
provide an adaptive data fusion. To recognize the action that occurred during the driving scenarios over the HDD
dataset, Ref. [33l employs a CNN-based architecture with a triplet loss as a space embedding regularizer to limit the
problem of overfitting encountered with HDD pre-trained models. Extensive evaluation done on the HDD dataset
proves that softmax plus triplet loss achieves a better performance on minority classes, proving a better

generalization of the trained network.

Following a multi-modal framework as well, Ref. 24 presents DBUS (Driving Behavior Understanding System),
which makes use of image sequences synchronized with GPS/IMU signals. The perks of DBUS is the recognition
of the driver’s attention and intention along with the maneuver. A unified model has been proposed to jointly
analyze the attention and the intention of the driver activity. Even though the proposal is original, its efficiency was

not evaluated over state-of-the-art benchmarks and it has only been tested on a non publicly available dataset.

Using the same concept of multi-modal and multi-level understanding, Ref. 11 recognizes driver behaviors through

different layers including attention, cause, stimulus-driven action, and goal-oriented action. Contrary to Ref. 341, the
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proposed approaches based on standard CNN and LSTM have been evaluated over the HDD benchmarks
devoted to learning the driver’s activities and causal reasoning. The same model has been reproduced in 22! where
Chen et al. propose to classify driving behavior through new modes, color, and depth sequences coming from

video and LiDAR sensors, respectively.

3.6. Holistic Understanding

Holistic understanding aims at jointly dealing with different complementary tasks within the same framework for
RBA. In the literature, there was a lack of serious endeavors until 2015. Jain et al. proposed the first-ever
framework that incorporates several levels of understanding to predict maneuvers of the ego vehicle €. Both
inside and outside contexts (with regards to the vehicle) have been taken into consideration. Researchers consider
the visual representation for the driver’s facial expression and motion. As for the outside context, scene perception
has been investigated to anticipate a driver’s maneuver through multi-modal features such as image sequences,
GPS, road maps, speed, and events. Auto-regressive HMM models have been proposed to generate the latent
states of the driver B2, Owing to the uniqueness of the approach, promising results have been obtained on a first-

ever dataset called Brain4Cars including multi-modal inside and outside data of the vehicle.

Ref. 38l introduces an end-to-end learning approach of driving models. Based on visual features of the current and
the previous vehicle states, the contribution is the proposition of a holistic approach that predicts the distribution
driving behaviors along with semantic segmentation. An adaptive FCN-LSTM model has been proposed to
anticipate the distribution of the vehicle motion. A crowd-sourced driving behavior dataset is also introduced to
better evaluate the efficiency of the proposed learning paradigm for both semantic segmentation and behaviors

prediction.

A more comprehensive approach was introduced in B2 to jointly analyze road agent dynamics, interactions, and
the scene context along with the prediction of future states of the road agents, not only the ego vehicle as done by
the previously cited work. A CNN architecture was used to encode static and dynamic states and semantic map
information in a top-down spatial grid. Due to the lack of a benchmarking dataset that includes road map

information, researchers propose a novel large-scale dataset to advance the state-of-the-art of the field.

| 4. Deep Learning Solutions
4.1. Deep Convolutional Neural Networks

CNNs are the most appealing variant of deep neural networks in vision related-tasks. They were basically
developed by LeCun et al. in 49 and successfully reused in the ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) competition by Krizhevsky et al. 29 CNNs are able to perform feature learning to get consistent
representation from visual data (basically). Its architecture includes three kinds of layers/mapping functions;
convolution, pooling, and ended with one or more fully connected or GAP (Global Average Pooling) layers. Dropout

and batch normalization is generally used in CNN for regularization. The biggest advantage is the use of weight
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sharing (contrary to conventional neural networks), which helps in saving memory and reducing complexity. Along
with this, CNNs have shown impressive performance and outperformed all the machine learning techniques

devoted to visual understanding.

One of the main application of CNNs is object detection, which represents an important task and a major challenge
in computer vision (411 Its challenges are mainly related to object localization and classification. Several methods
based on CNN exist in the literature. Overall, methods using CNNs fall into two categories: (i) single-stage
methods, which perform object localization and classification in a single network such as Single-Shot Detector
(SSD) 2l and You Only Look Once (YOLO) 43, Both of these architectures produce as output a bounding box of
each detected object, its class, and its confidence score 41, and (ii) two-stage methods, which have two separate

networks for each of these tasks.

Among its milestones models, the important engines in CNN are AlexNet 19 VGG-16 44l GoogleNet/Inception 431,
ResNet 48] and Xception 2. Autonomous driving systems take advantage of the so-called pre-trained model of an
already-trained model over other visual tasks. Expressly, for a completely new problem/data, the ITS community
makes use of the publicly available model to either (i) use open access meta-architectures to train it from scratch
on their own data or (ii) use the pre-trained models as feature extractors by feeding new data to a trained model
with its trained weights and tweak it to train the new task, which is called transfer learning. Commonly, the output
layer is replaced with a new fine-tuned layer in order to determine the deviation of the prediction to the labeled
data. Thus, using a non-large-scale dataset, three training ways might be considered: train only the output layer,
train the whole CNN, or the last few layers. The ITS community makes use of all these learning strategies to build,
train, or retrain their CNN backbones. With application to the on-road behavior tasks, while many endeavors
succeed to generate robust features from pre-trained models B2[24] major improvements have been proposed
recently at many levels of the standard architecture with regards to the spatial exploitation, depth, and feature map

exploitation.

Graph Convolutional Network (GCN). GCN consists in using graph-based learning instead of learning data
represented in the Euclidean space (such as image or video). The strength of the graph-based framework is the
ease of representing the interaction occurring between the instance’s components. This is of great importance in
road scenes, which will serve in describing the causality between the intention and the attention of the drivers and
all the road participants. This paradigm has been exploited by Li et al. in 22 to model interactions, as detailed
earlier in Section 4. The two proposed networks, Ego-Thing Graph and Ego-Stuff Graph advanced the state-of-the-
art of GCNs through the extension of the backbone proposed in Ref. 28 with two-stream instead of one-stream.
First, to generate graphs, 3D convolutions have been applied to obtain the first level of visual features which are
feeding both streams; Thing and Stuff graphs. Then, as a second step, the Thing and Stuff representations are
extracted using RolAlign #2 and the newly proposed approach called MaskAlign to deal with irregular objects. The
extracted features from both streams are then used to generate the graph generators using a frame-wise fashion.
Ego-Thing Graph and Ego-Stuff Graph allow afterward to pass on the connections between different kinds of
objects through these GCNSs. Outputs from the two obtained streams are fused and fed into a temporal module.

This latter module aggregates spatial features using max-pooling to compute the final GCN output.

https://encyclopedia.pub/entry/21840 7/15



Development in Vision-Based On-Road Behaviors Understanding | Encyclopedia.pub

Fully Convolutional Networks (FCN). Unlike standard CNN, FCN is an end-to-end network where a Fully
Connected (FC) layer BY or an MLP (Multi-Layer Perceptron) network B are derived on the top of a CNN-like
network where filters are learned at all the levels including the decision-making layers. This allows FCNs to learn
representations and scoring based on local features/data. Ref. (28 exploits this fact to propose an end-to-end
architecture for generic motion models for autonomous vehicles under crowd contexts. Researers here propose the
so-called dilated FCN approach. Taking advantage of the pre-trained CNN models, the second and the fifth pooling
layers have been removed and a dilated convolution layer replaced the third convolution layer through FC7. The
difference between the usual convolution with stride and the dilated one is the expansion of the filter’s size before

doing the convolution.

Among other applications of FCN is semantic segmentation, where the output of the model has the same
resolution as the input images, with a class prediction for each pixel. Since the pioneering work of Long et al. [22],
where the base structure of the model is an encoder and a decoder streams, many variants have been proposed.
Most of these works focus on the improvement of the accuracy of segmentation. However, real-time performance is
very important for autonomous driving. Combination of light architectures like SkipNet 22 and ShuffleNet 53 for the
encoder and decoder parts, respectively, allows segmentation rates at about 16 FPS on a Jetson TX2, while

maintaining high accuracy (241,

3D CNNs. represent an extension of CNNs where a 3D activation map is generated over the convolution layers.
The intuition behind this is to encode data that can be represented on more than two dimensions like volumetric or
temporal data. 3D CNNs have been used in different contexts such as 3D shape estimation 3, human activity
detection B8l and recently explored in RBA systems 7 to further enhance the understanding of drivers’ behaviors.
Indeed, a TRB (Temporal Reasoning Block) has been introduced to model the causes of behaviors. The aim of this
3D-CNN is to discriminate spatio-temporal representations with attention saliency mechanisms. By assuming
inputs as coarse-grained videos, the main contribution here is the proposition of a novel reasoning block composed
of two layers; the first one consists of fine-grained 3D convolution and the second one allows to keep the temporal

continuity.

CNN Features Extractors. With the availability of large-scale visual data along with optimization algorithms and
powerful CPUs/GPUs, it becomes possible to train deep networks that achieve impressive performance on roughly
all the challenging tasks. The obtained models are shared for the community in order to avoid training from scratch
and make it easier for researchers to enhance the available models or reuse them as features extractors. For
example, a CNN network that has been trained to classify road objects will output several features from the low-
level to the high-level layers with increasing complexity and abstraction. Complexity, in this case, goes from pixels,
blobs, circles, wheels, stuff, faces, hoods until bicycles, cars, pedestrians, and the whole scene. A number of
neurons are supposed to be activated for these abstraction levels. The key feature of this is that another
classification task devoted for example for the indoor or in-the-wild scenes will make use of the same low- and mid-

level features that are present in all the domains.
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The ImageNet 19 and the COCO [8! pre-trained models are widely considered for RBA tasks and reused as
backbones for feature extraction. The (meta-)architectures of neural networks did make use of state-of-the-art
backbones along with task-specific layers (for, e.g., classification or detection heads). Thus, choosing the right
feature extractor is important since its properties (mainly the type of layers and number of parameters) directly
affect the performance of the whole network. By barring the few examples that decouple the backbone from the
meta-architecture B2, the main feature extractors used in the related works are AlexNet 19 ResNet-50 481 vVGG-

16 241 Inception-v2 B9 and InceptionResnet-v2 1l ysed in the following non-exhaustive list of papers detailed
above BIEIRIZLBI | respectively.

4.2. Deep Recurrent Neural Networks

Despite its impressive performance for tasks related to image analysis, CNNs examine only the current input and
fail in handling sequential data. RNNs (Recurrent Neural Networks) however process only sequential data 62,
Composed often of a single node with internal memory, the principle of RNNs is memorizing the outputs and
feeding them back as inputs and continuing to do this until predicting the output of the layer. Thus, RNNs allow
saving information that has occurred in the past and looks for patterns over time and the length of the sequence.
With application to ADAS and AV systems, such end-to-end machines have been recently used to automatically
model non-linear discriminative representations to improve the performance of vision-based analysis tools basically
related to RBA.

To start, an LSTM network has been used in Ref. [ to propose the so-called ADMD system composed of four
blocks to learn driving maneuvers as spatio-temporal sequences. Features that serve as an input for the predictor,
i.e., LSTM network, were transferred from a CNN model (InceptionResnet-v2 1)) as in [11 an attention map

generator, and raw vehicle signals.

Similarly, a novel network architecture called TraPHic is introduced in 28 to predict road agent trajectories under
complex contexts. The issue with LSTM under such circumstances is the inability to model relationships of
heterogeneous road agents since the settings of an LSTM unit are independent of the others. To capture temporal
dependencies of objects’ spatial coordinates, LSTMs are employed and combined with CNN to boost the learning
of local objects’ relationships in space and time. In Ref. Bl a two-stream deep architecture for event proposal and
prediction is proposed. The first one proposed the key-frames of the event sequences. A standard LSTM classifier
is employed to predict the corresponding class among approaching, entering, passing. The output of this first
stream, the candidate frames, is then forwarded to the second stream of prediction. The frames are here

aggregated through GAP and output the event class.

As for the GRU networks applied for RBA tasks, this is still a niche area. For instance, Hong et al. 22 propose a
new encoder-decoder architecture where an RNN-based composed of a single GRU cell has been employed as a
decoder. Unlike LSTM units, GRU has the ability to control the inputs without memorizing in-between status. This
allows a less complex decoder block in this encoder-decoder architecture B9, A more fancy unit has been

proposed in Ref. B2 called GRFU (Gated Recurrent Fusion Units) aiming to learn temporal data and fusion

https://encyclopedia.pub/entry/21840 9/15



Development in Vision-Based On-Road Behaviors Understanding | Encyclopedia.pub

simultaneously. Precisely, the novel gating mechanism learns a representation of every single-mode, i.e., sensor,

for each instance in order to infer the best fusion strategy among Late Recurrent Summation (LRS), Early Gated
Recurrent Fusion (EGRF), or Late Gated Recurrent State Fusion (LGRF).
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