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On-road behavior analysis is a crucial and challenging problem in the autonomous driving vision-based area.

Several endeavors have been proposed to deal with different related tasks and it has gained wide attention

recently. Much of the excitement about on-road behavior understanding has been the labor of advancement

witnessed in the fields of computer vision, machine, and deep learning. Remarkable achievements have been

made in the Road Behavior Understanding area over the last years.

holistic on-road behavior analysis  driver-road interaction  driving status analysis

road scene understanding

1. Introduction

Vision-based Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles (AV) development has been

witnessing a slow yet impressive growth over the past two decades for most of its modules including sensing

hardware , perception , mapping and path planning , and scene understanding . Despite the large amount

of research and development endeavors, the area still lacks comprehensive approaches and/or systems which

provide high-level road scene analysis that includes holistic description of the AV’surrounding. By contrast to most

of the ADAS and AV vision-based tasks, there are scarce resources for broad road scene understanding, which is

mainly due to the paucity of benchmarks, standards, theoretical fundamentals, and expressly research papers that

urge the community to tackle this task.

2. Importance and Challenges of On-Road Behaviors
Analysis

Road crashes kill nearly “1.25 million people each year, on average 3287 deaths a day and around 50 million are

injured or disabled”, reports the Association for Safe International Road Travel (ASIRT). By 2030, fatal traffic

crashes are expected to become the fifth leading cause of death worldwide. ITS (Intelligent Transportation

Systems) is investigating to find smarter solutions that allow bolder ADAS and AV systems in order to reduce road

fatalities.

To do so, many vision-based components have been developed and significant advances have been made on

semantic segmentation , object detection , mapping and localization , etc. Yet, such tasks have not really
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addressed the challenges in high-level understanding and correspond only to the first step of understanding, thus

the importance of on-road scene analysis. In fact, detecting/localizing participants in a given scene and parsing

them to the semantic classes is just a mid-level analysis step.

Despite the ITS community always asking “what are the difficulties and challenges in on-road behaviors analysis?”,

this question has not been raised seriously so far in the literature or even been generalized. As vision-based

understanding related tasks have different goals and constraints, integrating a set of these tasks under the same

framework implies imperatively a higher complexity. Aside from common issues in image and video analysis tasks

such as sudden and gradual illumination changes and viewpoints variation, the specificity of road environments

involves more aspects including temporal and spatial patterns intra-class variations, cluttered scenes, and the

curse of data labeling for high-level analysis.

3. RBA Components and Milestones over the Last 20 Years

3.1. Situational Awareness

Situational awareness is a fundamental ingredient for successful on-road scene analysis. In fact, while dealing with

the perception of road environments, including objects, participants, behaviors, and activities, people need to take

into consideration their meaning, and their future status in conjunction with space and time.

For example, Kooij et al. propose in  a pedestrian situational awareness aiming to predict a pedestrian’s path in

the AV domain. To anticipate the decision of pedestrians, they assume that it is influenced by three factors: (i) the

presence of an approaching vehicle on a collision course, (ii) the pedestrian’s safety awareness, and (iii) the

specificity of the environment. To incorporate these factors, latent states have been built on switching linear

dynamical systems and dynamic Bayesian networks to anticipate changes in pedestrian paths. The situational

awareness evaluates whether the pedestrian at a given instant t has seen the vehicle previously (before t)) through

the estimation of the distance between vehicle and pedestrian at the expected point of closest approach head

orientation and his distance to the road curbside. The ultimate goal is to predict the intention of a pedestrian to

laterally cross the road, which is highly related to most of the pedestrian fatalities inroads according to accident

analysis reported in . For a similar objective, in  the crossing behavior, i.e., the pedestrians’ intention to cross, is

predicted. Researchers consider here two classification tasks of static environmental context and passenger

action. Due to the lack of annotation of the JAAD dataset proposed, they make use of weakly supervised learning

with CNN (Convolutional Neural Network) features through an AlexNet architecture to identify visual attributes for

both tasks . The considered classes for the environmental contextual recognition task include the following

elements: narrow, wide, pedestrian crossing sign, zebra crossing, stop sign, traffic light, and parking lot. As for the

pedestrian action classification, only looking and crossing classes have been considered. Their experimental

results prove that using only the pedestrian action information can predict 40% of the observed crossing behavior,

yet, adding situational awareness information/context improves the results by 20%.

3.2. Driver-Road Interaction
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Understanding the interactions occurring between drivers and road users is crucial toward a holistic RBA. Recently,

the ITS community has brought attention to this issue by developing new vision-based models that capture the

interaction between road users and the ego vehicle.

Owing to the newly published HDD dataset , Li et al. propose in  a spatio-temporal 3D-aware framework by

means of GCN (Graph Convolution Networks). For this purpose, participants and objects of the road scene are

categorized into two sets: Thing objects, such as pedestrians and cars, and Stuff objects, such as traffic lights and

road surface marking. As an example, interactions with Thing objects may include stopping to let pedestrians cross

and deviation for parked vehicles, and examples for interactions with Stuff objects may include changing or

merging a lane. To represent the interaction between these sets of objects and the ego vehicle, two kinds of graphs

have been proposed: Ego-Thing Graph and Ego-Stuff Graph to represent the ego vehicle interaction with Thing

and Stuff objects, respectively by extending the Ego-Thing Graph proposed in .

Previously, in 2000, using traditional machine learning tools in Ref. , HMM (Hidden Markov Model) was

leveraged to recognize the tactical driver behavior. To model the states of the ego vehicle and all the elements and

participants in the road environment, a single node was used for each one and then all the nodes were encoded

into a state vector. This approach is not reporting state-of-the-art results so far, but it still inspires recent endeavors

like those stated earlier.

3.3. Road Scene Understanding

ITS and computer vision communities have exerted extensive effort to analyze the road scene . As hinted

to earlier, traditional approaches were handcrafted or machine learning-based and they were designed to deal with

an elementary task such as detection recognition or segmentation for a specific kind of object lane , traffic lights

, and pedestrians . Before 2013, it was not obvious how to get a holistic understanding of road environments.

With the advent of the revolutionary deep neural networks, it was made possible to get a comprehensive

understanding of the road scene. In fact, deep learning provides more automatic models, which allow combining

many tasks in a single framework.

For example, Ref.  proposes an encoder-decoder architecture that provides an end-to-end road scene

understanding. The encoder is a CNN-based network similar to VGGNet . Similarly, the decoder is a CNN

network with two streams that upsamples the features and then fuses the information of both streams to the

decoder network, which outputs the score of each pixel with regards to the predefined classes. By reporting

qualitative and quantitative evaluation done only over the CamVid dataset , this encoder-decoder network is

able to provide higher results for semantic segmentation and positioning in terms of CA (Class Accuracy) at MIoU

(Mean Intersection over Union).

Under the same context, Ref.  deals with a more challenging task: recovery of occluded vehicles, in addition to

the amodal segmentation task. A novel multi-task approach was introduced to incorporate the two tasks under the

same framework. In another word, two networks were introduced, called (i) segmentation completion and (ii)
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appearance recovery. The first one aims to produce the recovered segmentation mask. Afterward, the obtained

mask is used for the second network to produce the occluded parts of vehicles. As a result, the invisible regions

are restored/painted back to the foreground of the original image. Experiments were done with the Occluded

Vehicle Dataset (OVD) and metrics used to evaluate the recovered segmentation mask including recall, precision,

F1 score, IuO, the per-pixel L1 error and the per-pixel L2 error were used. As for the recovered appearance of the

vehicle task, the L1 and L2 errors have been used along with two new metrics: the ICP (Inception Conditional

Probability) and the SS (Segmentation Score). Overall, the obtained results demonstrate similar performance to

Deeplab  without the iterative refinement for the segmentation with a better capability of generating the invisible

parts.

As for the work proposed in Ref. , researchers focus on urban scene analysis and road detection and evaluate

their proposal over KITTI  and LabelMeFacade  datasets. The major contribution is the presentation of new

convolutional patch networks learned for pixel-wise labeling in order to classify image patches. More details

regarding the proposed CNN can be found in Section 5.

3.4. Trajectories Forecast

Trajectories forecast in road environments consists of predicting the path that a moving vehicle, pedestrian, or any

other road agent follows through road space as a function of time. The extracted trajectories from a visual data are

less mastered with relation to ADAS and AV contexts. It is highlighted its importance and the methods developed

by the computer vision community that can be useful in such circumstances. In addition to the prediction of future

paths of road participant, this RBA component is of crucial importance and might be used to supply other

components by modeling traffic representation in real-time. Thus, this task is useful for performing safe ADAS and

AV systems not only by improving all the vision-based components but also by using it in the management of

congestion and vehicle routing.

For instance, Ref.  proposes an approach named DROGON for “Deep RObust Goal-Oriented trajectory

prediction Network” that forecasts future trajectories of vehicles by taking into consideration their behavioral

intention, which is commonly called causal reasoning. A conditional prediction model has been built to solve this

issue. Three steps have been followed to train such a model. The first step is to infer the interaction of vehicles with

other road agents. Then, the second and the third steps consist in estimating their intention and thus by computing

the intention’s probability distribution based on the inferred interaction and the causal reasoning, respectively. To

evaluate their approach, Choi et al. also introduce a new dataset acquired at four-way intersections. Through

qualitative and quantitative evaluation using ADE (Average Distance Error) and FDE (Final Distance Error) metrics,

the DROGON framework has demonstrated an efficient performance for predicting and generating trajectories over

the state-of-the-art.

A near-term trajectories forecast approach is also proposed by Chandra et al. in . They tackle more challenging

contexts, mainly heterogeneous traffic where road agents are very varied for, e.g., pedestrians, cars, bicycles,

trucks, buses, motorcycles, etc. The major contribution is the representation of heterogeneous interactions
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between different kind of agents. An RNN-CNN framework called TraPHic is introduced in order to automatically

predict the trajectories and does so by taking into consideration the challenges of heterogeneous contexts related

to different textures, shapes, motions, and activities of each road participants.

3.5. Driving Activities and Status Analysis

Driver’s status and activities analysis are crucial because one of the leading cause of traffic accidents is related to

driver’s inattention, aggressive maneuvering, or drowsiness. Detecting or predicting strange maneuvers or status

may help avoiding fatal crashes by keeping a distance to identified aggressive drivers.

In the literature, Ref.  proposes a novel framework named GraphRQI to learn, in a supervised fashion, third

party driver behavior. Based on the approach proposed in Ref.  (detailed in the previous section), road

participants trajectories are used to pinpoint the general traits of the driver, i.e., conservative or aggressive, which

inherently affects the trajectories of the surroundings agents. By means of GCNs trained on the TRAF  and

Argoverse  datasets, driving status has been classified into six classes: reckless, careful, timid, impatient,

threatening, and cautious.

In a similar way, Ref.  classifies the ego vehicle behavior through scene understanding-based CNN and robust

temporal representation-based LSTM (Long Short Term Memory). The key element is the incorporation of scene

context features related to weather and road characteristic, places, types, and surface conditions. Experimental

results shown on the HDD dataset and a newly collected dataset prove that the proposed scene classification

boosts the understanding of driver behavior.

Multi-modality cues have been extensively used with regard to driver maneuvers classification for example, by

taking into consideration only the temporal aspect, Ref.  presented a fancy architecture based on Gated

Recurrent Fusion Unit to model multi-modal data coming from two streams: video and CAN bus. Novel gating

functions have been introduced in order to represent the exposure of each data stream at each frame in order to

provide an adaptive data fusion. To recognize the action that occurred during the driving scenarios over the HDD

dataset, Ref.  employs a CNN-based architecture with a triplet loss as a space embedding regularizer to limit the

problem of overfitting encountered with HDD pre-trained models. Extensive evaluation done on the HDD dataset

proves that softmax plus triplet loss achieves a better performance on minority classes, proving a better

generalization of the trained network.

Following a multi-modal framework as well, Ref.  presents DBUS (Driving Behavior Understanding System),

which makes use of image sequences synchronized with GPS/IMU signals. The perks of DBUS is the recognition

of the driver’s attention and intention along with the maneuver. A unified model has been proposed to jointly

analyze the attention and the intention of the driver activity. Even though the proposal is original, its efficiency was

not evaluated over state-of-the-art benchmarks and it has only been tested on a non publicly available dataset.

Using the same concept of multi-modal and multi-level understanding, Ref.  recognizes driver behaviors through

different layers including attention, cause, stimulus-driven action, and goal-oriented action. Contrary to Ref. , the
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proposed approaches based on standard CNN and LSTM have been evaluated over the HDD benchmarks

devoted to learning the driver’s activities and causal reasoning. The same model has been reproduced in  where

Chen et al. propose to classify driving behavior through new modes, color, and depth sequences coming from

video and LiDAR sensors, respectively.

3.6. Holistic Understanding

Holistic understanding aims at jointly dealing with different complementary tasks within the same framework for

RBA. In the literature, there was a lack of serious endeavors until 2015. Jain et al. proposed the first-ever

framework that incorporates several levels of understanding to predict maneuvers of the ego vehicle . Both

inside and outside contexts (with regards to the vehicle) have been taken into consideration. Researchers consider

the visual representation for the driver’s facial expression and motion. As for the outside context, scene perception

has been investigated to anticipate a driver’s maneuver through multi-modal features such as image sequences,

GPS, road maps, speed, and events. Auto-regressive HMM models have been proposed to generate the latent

states of the driver . Owing to the uniqueness of the approach, promising results have been obtained on a first-

ever dataset called Brain4Cars including multi-modal inside and outside data of the vehicle.

Ref.  introduces an end-to-end learning approach of driving models. Based on visual features of the current and

the previous vehicle states, the contribution is the proposition of a holistic approach that predicts the distribution

driving behaviors along with semantic segmentation. An adaptive FCN-LSTM model has been proposed to

anticipate the distribution of the vehicle motion. A crowd-sourced driving behavior dataset is also introduced to

better evaluate the efficiency of the proposed learning paradigm for both semantic segmentation and behaviors

prediction.

A more comprehensive approach was introduced in  to jointly analyze road agent dynamics, interactions, and

the scene context along with the prediction of future states of the road agents, not only the ego vehicle as done by

the previously cited work. A CNN architecture was used to encode static and dynamic states and semantic map

information in a top-down spatial grid. Due to the lack of a benchmarking dataset that includes road map

information, researchers propose a novel large-scale dataset to advance the state-of-the-art of the field.

4. Deep Learning Solutions

4.1. Deep Convolutional Neural Networks

CNNs are the most appealing variant of deep neural networks in vision related-tasks. They were basically

developed by LeCun et al. in  and successfully reused in the ILSVRC (ImageNet Large Scale Visual Recognition

Challenge) competition by Krizhevsky et al. . CNNs are able to perform feature learning to get consistent

representation from visual data (basically). Its architecture includes three kinds of layers/mapping functions;

convolution, pooling, and ended with one or more fully connected or GAP (Global Average Pooling) layers. Dropout

and batch normalization is generally used in CNN for regularization. The biggest advantage is the use of weight
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sharing (contrary to conventional neural networks), which helps in saving memory and reducing complexity. Along

with this, CNNs have shown impressive performance and outperformed all the machine learning techniques

devoted to visual understanding.

One of the main application of CNNs is object detection, which represents an important task and a major challenge

in computer vision . Its challenges are mainly related to object localization and classification. Several methods

based on CNN exist in the literature. Overall, methods using CNNs fall into two categories: (i) single-stage

methods, which perform object localization and classification in a single network such as Single-Shot Detector

(SSD)  and You Only Look Once (YOLO) , Both of these architectures produce as output a bounding box of

each detected object, its class, and its confidence score , and (ii) two-stage methods, which have two separate

networks for each of these tasks.

Among its milestones models, the important engines in CNN are AlexNet , VGG-16 , GoogleNet/Inception ,

ResNet , and Xception . Autonomous driving systems take advantage of the so-called pre-trained model of an

already-trained model over other visual tasks. Expressly, for a completely new problem/data, the ITS community

makes use of the publicly available model to either (i) use open access meta-architectures to train it from scratch

on their own data or (ii) use the pre-trained models as feature extractors by feeding new data to a trained model

with its trained weights and tweak it to train the new task, which is called transfer learning. Commonly, the output

layer is replaced with a new fine-tuned layer in order to determine the deviation of the prediction to the labeled

data. Thus, using a non-large-scale dataset, three training ways might be considered: train only the output layer,

train the whole CNN, or the last few layers. The ITS community makes use of all these learning strategies to build,

train, or retrain their CNN backbones. With application to the on-road behavior tasks, while many endeavors

succeed to generate robust features from pre-trained models , major improvements have been proposed

recently at many levels of the standard architecture with regards to the spatial exploitation, depth, and feature map

exploitation.

Graph Convolutional Network (GCN). GCN consists in using graph-based learning instead of learning data

represented in the Euclidean space (such as image or video). The strength of the graph-based framework is the

ease of representing the interaction occurring between the instance’s components. This is of great importance in

road scenes, which will serve in describing the causality between the intention and the attention of the drivers and

all the road participants. This paradigm has been exploited by Li et al. in  to model interactions, as detailed

earlier in Section 4. The two proposed networks, Ego-Thing Graph and Ego-Stuff Graph advanced the state-of-the-

art of GCNs through the extension of the backbone proposed in Ref.  with two-stream instead of one-stream.

First, to generate graphs, 3D convolutions have been applied to obtain the first level of visual features which are

feeding both streams; Thing and Stuff graphs. Then, as a second step, the Thing and Stuff representations are

extracted using RoIAlign  and the newly proposed approach called MaskAlign to deal with irregular objects. The

extracted features from both streams are then used to generate the graph generators using a frame-wise fashion.

Ego-Thing Graph and Ego-Stuff Graph allow afterward to pass on the connections between different kinds of

objects through these GCNs. Outputs from the two obtained streams are fused and fed into a temporal module.

This latter module aggregates spatial features using max-pooling to compute the final GCN output.
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Fully Convolutional Networks (FCN). Unlike standard CNN, FCN is an end-to-end network where a Fully

Connected (FC) layer  or an MLP (Multi-Layer Perceptron) network  are derived on the top of a CNN-like

network where filters are learned at all the levels including the decision-making layers. This allows FCNs to learn

representations and scoring based on local features/data. Ref.  exploits this fact to propose an end-to-end

architecture for generic motion models for autonomous vehicles under crowd contexts. Researers here propose the

so-called dilated FCN approach. Taking advantage of the pre-trained CNN models, the second and the fifth pooling

layers have been removed and a dilated convolution layer replaced the third convolution layer through FC7. The

difference between the usual convolution with stride and the dilated one is the expansion of the filter’s size before

doing the convolution.

Among other applications of FCN is semantic segmentation, where the output of the model has the same

resolution as the input images, with a class prediction for each pixel. Since the pioneering work of Long et al. ,

where the base structure of the model is an encoder and a decoder streams, many variants have been proposed.

Most of these works focus on the improvement of the accuracy of segmentation. However, real-time performance is

very important for autonomous driving. Combination of light architectures like SkipNet  and ShuffleNet  for the

encoder and decoder parts, respectively, allows segmentation rates at about 16 FPS on a Jetson TX2, while

maintaining high accuracy .

3D CNNs. represent an extension of CNNs where a 3D activation map is generated over the convolution layers.

The intuition behind this is to encode data that can be represented on more than two dimensions like volumetric or

temporal data. 3D CNNs have been used in different contexts such as 3D shape estimation , human activity

detection , and recently explored in RBA systems  to further enhance the understanding of drivers’ behaviors.

Indeed, a TRB (Temporal Reasoning Block) has been introduced to model the causes of behaviors. The aim of this

3D-CNN is to discriminate spatio-temporal representations with attention saliency mechanisms. By assuming

inputs as coarse-grained videos, the main contribution here is the proposition of a novel reasoning block composed

of two layers; the first one consists of fine-grained 3D convolution and the second one allows to keep the temporal

continuity.

CNN Features Extractors. With the availability of large-scale visual data along with optimization algorithms and

powerful CPUs/GPUs, it becomes possible to train deep networks that achieve impressive performance on roughly

all the challenging tasks. The obtained models are shared for the community in order to avoid training from scratch

and make it easier for researchers to enhance the available models or reuse them as features extractors. For

example, a CNN network that has been trained to classify road objects will output several features from the low-

level to the high-level layers with increasing complexity and abstraction. Complexity, in this case, goes from pixels,

blobs, circles, wheels, stuff, faces, hoods until bicycles, cars, pedestrians, and the whole scene. A number of

neurons are supposed to be activated for these abstraction levels. The key feature of this is that another

classification task devoted for example for the indoor or in-the-wild scenes will make use of the same low- and mid-

level features that are present in all the domains.
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The ImageNet  and the COCO  pre-trained models are widely considered for RBA tasks and reused as

backbones for feature extraction. The (meta-)architectures of neural networks did make use of state-of-the-art

backbones along with task-specific layers (for, e.g., classification or detection heads). Thus, choosing the right

feature extractor is important since its properties (mainly the type of layers and number of parameters) directly

affect the performance of the whole network. By barring the few examples that decouple the backbone from the

meta-architecture , the main feature extractors used in the related works are AlexNet , ResNet-50 , VGG-

16 , Inception-v2 , and InceptionResnet-v2  used in the following non-exhaustive list of papers detailed

above , respectively.

4.2. Deep Recurrent Neural Networks

Despite its impressive performance for tasks related to image analysis, CNNs examine only the current input and

fail in handling sequential data. RNNs (Recurrent Neural Networks) however process only sequential data .

Composed often of a single node with internal memory, the principle of RNNs is memorizing the outputs and

feeding them back as inputs and continuing to do this until predicting the output of the layer. Thus, RNNs allow

saving information that has occurred in the past and looks for patterns over time and the length of the sequence.

With application to ADAS and AV systems, such end-to-end machines have been recently used to automatically

model non-linear discriminative representations to improve the performance of vision-based analysis tools basically

related to RBA.

To start, an LSTM network has been used in Ref.  to propose the so-called ADMD system composed of four

blocks to learn driving maneuvers as spatio-temporal sequences. Features that serve as an input for the predictor,

i.e., LSTM network, were transferred from a CNN model (InceptionResnet-v2 ), as in , an attention map

generator, and raw vehicle signals.

Similarly, a novel network architecture called TraPHic is introduced in  to predict road agent trajectories under

complex contexts. The issue with LSTM under such circumstances is the inability to model relationships of

heterogeneous road agents since the settings of an LSTM unit are independent of the others. To capture temporal

dependencies of objects’ spatial coordinates, LSTMs are employed and combined with CNN to boost the learning

of local objects’ relationships in space and time. In Ref. , a two-stream deep architecture for event proposal and

prediction is proposed. The first one proposed the key-frames of the event sequences. A standard LSTM classifier

is employed to predict the corresponding class among approaching, entering, passing. The output of this first

stream, the candidate frames, is then forwarded to the second stream of prediction. The frames are here

aggregated through GAP and output the event class.

 As for the GRU networks applied for RBA tasks, this is still a niche area. For instance, Hong et al.  propose a

new encoder-decoder architecture where an RNN-based composed of a single GRU cell has been employed as a

decoder. Unlike LSTM units, GRU has the ability to control the inputs without memorizing in-between status. This

allows a less complex decoder block in this encoder-decoder architecture . A more fancy unit has been

proposed in Ref.  called GRFU (Gated Recurrent Fusion Units) aiming to learn temporal data and fusion
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simultaneously. Precisely, the novel gating mechanism learns a representation of every single-mode, i.e., sensor,

for each instance in order to infer the best fusion strategy among Late Recurrent Summation (LRS), Early Gated

Recurrent Fusion (EGRF), or Late Gated Recurrent State Fusion (LGRF).
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