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Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and

dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the

mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. In particular, new strategies

for the improvement of the ability of biomaterials to trigger and sustain osteogenesis need to be developed. Autophagy is

a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and

development. An extensive revision of the literature on biomaterials, both for orthopedic and dentistry applications,

enhancing osteogenesis by modulation of the autophagic process is here presented. Already investigated conditions

regulating bone regeneration via autophagy need to be better understood for designing novel biomaterials with improved

bioactivity.
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1. Introduction

A biomaterial is any material (e.g., polymer, ceramic, metal, or composite) that has been engineered to interact with

biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the

body) or a diagnostic one. Biomaterials are used every day in dental and orthopedic applications, surgery, and drug

delivery. They can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches

and materials. Biomaterials can be broadly categorized in metals, polymers, ceramics, and composite materials. This

classification is followed in this section to discuss biomaterials promoting bone regeneration by modulating the autophagic

process. The research in the field of biomaterials applied to bone regeneration is actually focused on the modifications of

their surfaces in order to improve their bioactivity. In this perspective two strategies can be used: the functionalization of

the biomaterial/cell interface by linking to its surface osteoinductive/osteoconductive molecules; and the modification of

surface topography to make them more suitable for cell growth and differentiation. In the following paragraphs many

examples of these strategies are given, relating them to the biomaterial used.

Table 1 provides an overview of the biomaterials discussed in this section along with the experimental model they were

tested and the signaling pathway involved (where applicable).

Table 1: Biomaterials, experimental models, and signaling pathways.

Biomaterial Model Pathway Reference(s)

Silicon, Orthosilic acid Murine preosteoblast MC3T3-E1 BMP2/RUNX2 Col1

Silica NPs Murine preosteoblast MC3T3-E1 ERK1/2, LC3, p62

Chitosan Primary hMSCs mTOR/S6K/S6/4E-BP1

TiAl6V4 particles Osteocytic cell line MLO-Y4 IFN-β

Titanium hBMSCs  

Titanium Human osteoblasts PI3K/Akt
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Titanium Murine preosteoblast MC3T3-E1  

Titanium Murine preosteoblast MC3T3-E1 β-catenin/YAP

Alumina rBMSCs Wnt BMP

Silver NPs    

Silver NPs Mouse  

Silver NPs hMSCs  

Hydroxyapatite DPSCs  

Hydroxyapatite DPSCs IL-6

Hydroxyapatite Murine preosteoblast MC3T3-E1 mTOr

Hydroxyapatite PDLSCs AMPK mTOR

Fluorapatite hASCs  

2. Polymers

Silicon based materials have long been studied for their application in regenerative medicine either for their proangiogenic

role  or their use in scaffolds that mimic the structure and composition of bone tissue . In this field, the synthesis of

silicate-containing hybrids by the sol–gel method is a new route to preparing bioactive implants with improved mechanical

properties. These materials can be degraded by the physiological environment, which involves the eventual bone

colonization and full tissue restoring. Actually, the research is focused on tailoring the hybrid implants for bone tissue

regeneration rather than bone substitution. Silicate-containing hybrids must promote the osteogenic performance of the

osteoblast-like cells .

Interestingly, orthosilic acid, a unique soluble form of silicon, enhanced the bone morphogenetic protein2 (BMP-2)/RUNX2

and collagen I protein expression in preosteoblastic cells, promoting differentiation and mineralization of osteoblasts

through the activation of the autophagic pathway . Moreover, an engineered bioactive silica-based nanoparticle

formulation (NPs) was found able to stimulate in vitro differentiation and mineralization of osteoblasts and increased bone

mineral density in young mice in vivo . In the search of the mechanisms underlying such results, Ha and

collaborators   found that the stimulation of autophagy and associated signaling suggests a cellular mechanism for the

stimulatory effects of silica nanoparticles on osteoblast differentiation and mineralization. They notably suggested that it is

the size of the nanoparticles (50 nm) that stimulates autophagy rather than the materials they are made of. These

considerations are remarkably in line with what was found about gold nanoparticles: the 45 nm AuNPS were the most

effective in promoting both autophagy and osteogenesis .

Chitosan is a polysaccharide copolymer of glucosamine and N-acetylglucosamine derived by partial deacetylation of chitin

from crustacean shells. Recently, many studies have investigated the effects of chitosan film or membrane on the

morphology, stemness, and multi-differentiation abilities of mesenchymal stemc cells (MSCs). It has been demonstrated

that MSCs cultured on chitosan film formed spheres and the expression of stemness marker genes increased significantly

when MSCs were cultured using chitosan film compared with 2D monolayer culture systems . More importantly, culture

on chitosan film resulted in an increased differentiation potential of MSCs into mesenchymal lineages, such as

osteoblasts . In the same experimental model, mTOR signaling was activated especially in senescent cells, whereas its

suppression or knockdown selected more primitive MSCs that are enriched in gene expression of pluripotency, in vitro

osteogenesis, and in vivo bone formation .
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3. Metals

3.1. Titanium and Nanostructure

Most of the recent research on biomaterials is actually focused on titanium, the most often used material, due to its

biocompatibility and mechanical properties, both for orthopedic and dentistry applications, in substitution of ceramics,

polymers, and other metals .

In a lately published paper, an osteocyte-conditioned medium proved to inhibit osteoclast differentiation from bone marrow

monocytes (BMMs) to osteoclasts. However, TiAl6V4 alloy particles (TiPs) attenuated this inhibitory effect by markedly

decreasing the expression of interferon-β (IFN-β), an osteoclastogenesis-associated factor. Additional evidence

suggested that TiPs decreased the expression of IFN-β in osteocytes via stimulation of autophagy .

Among the others, one distinctive strategy used to improve the bio-functionality for titanium implants, was the use of

exosomes derived by macrophage stimulated with BMP2, that were already known for their beneficial effects on

osteogenic differentiation . The incorporation of BMP2/macrophage derived exosomes dramatically increased the

expression of osteoblastic differentiation markers in MSCs. Remarkably, the pro-osteogenic role of the titanium nanotubes

incorporated with BMP2/macrophage-derived exosomes is mediated by autophagy .

In the biomaterial field of research, it is already known that biomaterials with varied surface topography have more

biocompatible features and better interactions with the surrounding living tissues. Rough surfaces caused osteoblast

differentiation via the autophagic-dependent PI3/Akt signaling pathway. One surface provoked the development of a third

population of small, granular cells, responsible for cell cluster formation, which were important for the formation of bone

noduli and mineralization. When autophagy was inhibited, both mature osteoblasts and small cells were absent, and the

cell cluster formation was also prevented. Autophagy therefore has to play an essential role in the osteoblast

differentiation on titanium-based surfaces with rough topography .

The nanosized surface is well known for its ability to interfere with intracellular procedures and a nanotube structure was

found able to enhance mTOR-independent autophagy in osteoblasts compared to a flat surface. Further analysis revealed

that autophagy was temporally promoted by nanotubes in the initial day contact, and cell membrane stretching appeared

to be the central regulation factor. The process was also reversible by exchanging the substrate nanotopographies in

different cell lines. In summary, the nanotopographic surface is able to induce temporal and reversible autophagy, which

may be used as a versatile method to control cell differentiation .

Implant topography is associated with the functionality of osteogenic transcription factors directed by β-catenin in the

nucleus. This protein can be degraded by YAP (Yes-associated protein) which is susceptible to autophagic flux.

Nanotopography, in comparison with smooth surfaces, was associated with higher β-catenin nuclear translocation,

osteogenic differentiation, and autophagy, and less cytoplasmic YAP in MC3T3-E1 cells. These results demonstrated an

involvement of this pathway in the osteogenesis observed in response to titanium implants .

3.2. Alumina

The osteoimmune environment plays indispensable roles in bone regeneration because the early immune environment

that exists during the regenerative process promotes the recruitment and differentiation of osteoblastic lineage cells .

Nanoporous anodic alumina with different sized pores had modulatory effects on macrophage responses and

consequently on the osteogenic differentiation of bone marrow stem cells (BMSCs). The role of macrophages in

osteogenesis was already suggested to be indispensable . The effect of the 50 nm nanoporous alumina structures on

macrophage spreading and shape resulted in osteogenic differentiation of BMSCs, improving the osteogenic capacity of

bone biomaterials with a mechanism related to autophagy activation .

3.3. Silver

Silver is used in a variety of medical and general devices for its antimicrobial properties. It is, therefore, widely used in the

form of nanoparticles in medicine, in order to retard and avoid bacterial infection . Despite their antimicrobial action,

silver nanoparticles (AgNPs) lack toxicity towards eukaryotic cells, because of the induction of the autophagic process .

Interestingly, linking the silver nanoparticles to thermosets made of materials commonly used in the dental practice

resulted in further reduced cytotoxicity , confirming that the adsorption of molecules on biomaterial surfaces can

improve their biocompatibility.
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Many results were recently achieved regarding effects of AgNPs on osteogenesis of stem cells . Again, the linking

of AgNPs, whose potential toxicity raises serious concerns, on titanium surfaces proved to be a successful strategy .

Moreover, AgNPs activated autophagy and osteogenesis. The administration of the autophagy inhibitor 3-methyladenine

could reverse both processes, binding the occurrence of osteogenesis to the autophagic activity in human MSCs .

4. Ceramics

Hydroxyapatite (HA) is a natural occurring mineral present in the human skeleton. In biomaterial applications it can be

used in combination with alginate to study the improved osteoblast differentiation of dental pulp cells (DPSCs) .

HA-nanoparticles (HANPs) promoted osteoblast differentiation in a dose-dependent manner the osteoblast cell line

MC3T3E1. In addition, the internalized HANPs were located in typical autophagic vacuoles and increased the ratio of

LC3II/LC3I, indicating HANPs induced cell autophagy. Moreover, the induction of autophagy was via the mTOR signaling

pathway also in a concentration dependent manner. Collectively, these results revealed that HANPs modulates osteoblast

differentiation by mediating autophagy in a dose-dependent manner .

Polydopamine-templated hydroxyapatite (tHA) is a type of nano-biomaterial, designed as an alternative to the traditional

hydroyapatite (HA,) that can promote osteogenesis in bone tissue engineering. The reinforcement of polycaprolactone

(PCL) matrix with tHA enhanced cell adhesion, spreading, and proliferation of human mesenchymal stem cells. More

importantly, tHA nanoparticles exposed on the surface of composite nanofibers could further promote osteogenesis of

human MSCs in vitro . However, as already seen in other experimental systems, the concentration is crucial. Indeed,

high concentrations of tHA stimulated reactive oxygen species (ROS) production, resulting in cell injury and apoptosis in

PDLSCs. Nevertheless, the triggering of the AMPK/mTOR signaling pathway when tHA is in combination with metformin,

led to autophagy activation and consequent increased viability of human PDLSCs with a further improvement of the

osteogenic effect .

Interestingly, also the incorporation of fluorapatite (FA) crystals within the three-dimensional PCL nanofiber scaffolds

provided a favorable extracellular matrix microenvironment for the growth, differentiation, and mineralization of human

DPSCs . In a different cellular model, the inhibition of autophagy at earlier stages (days 1 to 3) could affect human

adipose stem cell (hASCs) osteogenic capability and mineralization when grown on PCL+FA scaffolds. These results

suggested that autophagy was indispensable during the early stage of osteogenic differentiation in this model .

Concluding, the health of the bone tissue is strictly related to the differentiation of osteoblasts, the cell responsible for the

deposition of organic osteoid and matrix mineralization, which leads to osteogenesis. Autophagy is thoroughly involved in

the development of these cells, contributing therefore to bone homeostasis. Impairment of autophagic activity leads to

disruption of the bone-remodeling balance, which leads to pathological state and failure of biomaterial implants.

Autophagy modulation has been shown to have an intriguing potential as target for ageing, biomaterial design, and the

therapy of various pathological conditions. Here the role of autophagy in osteogenesis promoted by different types of

biomaterials is largely discussed. The knowledge of the conditions improving biomaterial bioactivity will help future

research to design new biomaterial solutions.

Abbreviations

ASCs adipose stem cells

BMMs bone marrow monocytes

BMP bone morphogenetic protein

BMSCs bone marrow mesenchymal stem cells

DPSCs dental pulp stem cells

FA fluorapatite

HA hydroxyapatite
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MSCs mesenchymal stem cells

NPs nanoparticles

PDLSCs periodontal ligament stem cells

PCL polycaprolactone

ROS reactive oxygen species
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