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Human mobility prediction is a key task in smart cities to help improve urban management effectiveness. However, it

remains challenging due to widespread intractable noises in large-scale mobility data. Based on previous research and

the statistical analysis of real large-scale data, the researchers observe that there is heterogeneity in the quality of users’

trajectories, that is, the regularity and periodicity of one user's trajectories can be quite different from another. Inspired by

this, the researchers propose a trajectory quality calibration framework for quantifying the quality of each trajectory and

promoting high-quality training instances to calibrate the final prediction process. The main module of this approach is a

calibration network that evaluates the quality of each user's trajectories by learning their similarity between them. It is

designed to be model-independent and can be trained in an unsupervised manner. Finally, the mobility prediction model is

trained with the instance-weighting strategy, which integrates quantified quality scores into the parameter updating

process of the model. Experiments conducted on two citywide mobility datasets demonstrate the effectiveness of the

approach when dealing with massive noisy trajectories in the real world.
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1. Introduction

Predicting human mobility on a citywide level is vital to studies and applications in city-related areas, such as urban

planning, traffic engineering, and epidemic prevention and control. Though human movements have a high degree of

freedom and variation, several remarkable works  have proven that regularity and periodicity dominate the main

pattern of human movements and play a critical role in mobility prediction. Therefore, extracting mobility patterns from

people’s historical trajectories and predicting their next location has attracted much attention.

Traditional mobility prediction methods are mostly pattern-based. They employ machine learning methods such as matrix

factorization to discover movement patterns from successive trajectories and predict the next location based on these

formalized pattern representations. In addition, a large number of studies apply variants of Markov models due to their

advantage in modeling sequential transitions, including hidden-Markov , weighted-Markov , attentional-Markov ,

Bayesian nets  and some other hybrid models.

In recent years, with the rapid development of deep learning, neural network models have shown promising performance

in spatio-temporal sequence modeling such as Recurrent Neural Networks (RNN)  and Transformer . Liu et al. 

propose Spatial Temporal Recurrent Neural Networks (ST-RNN) to model the temporal and spatial context. Based on

RNN, DeepMove  employs an attention mechanism to extract multi-level periodicity from long historical trajectories.

Dang et al.  proposed a dual-attentive network to capture the long-range sequential dependency within a trajectory and

the correlation between different trajectories. Given trajectory data, existing works usually train a learnable module to

predict the next Point of Interest (POI) or corresponding region, aiming to consider the more complex context of spatio-

temporal sequences and other related factors (such as social network structure  and location semantics ) to improve

prediction accuracy.

However, the above methods require a large amount of mobility data to train the model to learn the regularity and

periodicity of mobility patterns. Unfortunately, most mobility data with large scale and long duration contain noisy data

which could reduce the prediction accuracy. Noise trajectories are often generated due to technical deviations from

positioning devices and methods. Taking cellular mobility datasets  as an example, usually, a user connects to the cell

tower closest to them, so the location of the cell tower to which the user is connected is used as an estimate of the user’s

location. When there is a load balancing or signal strength change in cell towers , even if the user is not moving, the

recorded locations switch between two or more cell towers, which is called oscillation . Two real examples of such

oscillations are depicted in Figure 1. With the help of various vehicles, many trips represented by oscillations are

[1][2][3]

[4] [5] [6]

[7]

[8] [9] [10]

[11]

[12]

[3] [13]

[14]

[15]

[16][17][18]



theoretically possible . What is more, researchers often lack ground-truth information for validation to identify and clean

these noisy trajectories .

Figure 1. Two real examples of oscillations. (a) Cells jump to a far away tower then return back; (b) cells swift between

two nearby towers.

The researchers use heuristic-based approaches  to remove significant device noise from the data used in the

experiments and roughly consider the average frequency decrease in recording after denoising for each user as the

proportion of device noise in the user trajectory.  Figure 2 shows that device noise is prevalent in trajectory data. Most

users' trajectories have a small proportion of noise, ranging from 0 to 0.6, and a few users have a large proportion of

noise. This distribution indicates heterogeneity in the quality of user trajectories. Therefore, it is crucial to quantify the

importance and quality of each user's trajectory in massive noisy mobile data and to reflect this in the prediction process.

Figure 2. (a) Average time interval of user recordings before and after denoising; (b) average frequency decrease in user

recording by denoising.

There have been some works that successfully learn with noisy data in dialogue systems for NLP. To evaluate the quality

of training dialogues and generate more reasonable conversations, several methods  concentrate on quantifying the

relatedness between queries and replies and train conversation models through an instance-weighting strategy.

Inspired by these, the researchers propose the trajectory quality calibration framework, which automatically estimates the

quality of each training trajectory through a pre-trained calibration network and promotes high-quality training instances to

calibrate the final prediction process. Several recurrent neural sub-networks with shared weights are used in the proposed

calibration network to capture and quantify the consistency of the user's mobility transitions each day. Additionally, the

quality score of that user's trajectory is evaluated by measuring the correlation between daily features. Then, in the

unsupervised pre-training process of the calibration network through a negative sampling strategy, the quality score will be

gradually updated by comparing the relatedness between the original trajectory and the corresponding trajectory injected

with random noise. The impact of each training instance on the parameters of the final prediction model can be quantified

as a weight value by a normalization process on their quality scores. Finally, the prediction model takes advantage of

these normalized weight values to calibrate the training process by an instance-weighting method, which multiplies the

weight values to loss functions and gradient descents when updating corresponding parameters.
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2. Mobility Prediction

Former studies on human mobility prediction can be generally classified into two categories: pattern-based methods and

model-based methods.

The pattern-based methods  focus on discovering intrinsic mobility patterns from sequential trajectories and

predicting next locations based on these formalized pattern representations. Most works are based on matrix factorization

and are often assisted by feature engineering. In addition, embedding techniques can also be regarded as the pattern-

mining method, such as POI2Vec  and Personalized Ranking Metric Embedding (PRME) .

The model-based methods  predict the user’s next visit by modeling the statistical relationship of contexts in the

trajectories. The Markov model and its variations are common methods in earlier research. They model the probability of a

transition matrix between relevant positions based on different data assumptions. The Hidden Semi-Markov Model

(HSMM)  is designed to remove the constant or geometric distributions of the state durations assumed in the Hidden

Markov Model (HMM). Yan et al.  propose a weighted Markov model for different user classifications. However, the

association between Markov process and mobility dynamics has been questioned  in recent years because human

mobility may exhibit scale-invariant long-term dependency, which contrasts with the initial Markov assumption .

Recently, deep learning techniques have been widely applied to model human mobility. Many works use RNNs to capture

long-term dependencies in trajectories. Spatial–Temporal Recurrent Neural Networks (ST-RNN)  model temporal and

spatial contexts at each time interval. DeepMove  employs an attention mechanism to capture periodic features in

historical trajectories. The Bidirectional Long Short-Term Memory–Convolutional Neural Network (BiLSTM-CNN) 

passes the output of RNN to CNN to capture the overall spatial and temporal patterns. Transformer  entirely relies on

the attention mechanism to model the global dependencies of the sequence and breaks through the limitation that RNN

cannot be parallelized. Deep Wide Spatio-Temporal Transformer Network (DWSTTN)  uses two attention mechanisms

to extract relevant information in time and space, respectively. Graph Convolutional Dual-Attentive Networks (GCDAN) 

design a dual-attention mechanism within and between trajectories and use graph convolution to extract spatial features

in the embedding layer. With the help of sufficient training data sources, neural-based models can parameterize different

kinds of mobility transitions instead of fixed hypothetical representations, making it possible to capture more complex

regularities and model sequential trajectories more accurately.

However, these proposed models treat every training trajectory equally importantly, regardless of the uneven data quality

distribution, which significantly influences mobility prediction accuracy .

3. Instance Weighting

Instance weighting is a training strategy that assigns different weight values to training instances when reflecting their

influence on the updating process of model parameters. Some recent works have adopted this method for domain

adaptation tasks in NLP, especially for dialogue systems. Jiang et al.  analyze and characterize the domain adaptation

problem from a distributional view and propose a general instance-weighting framework for domain adaptation.

In common domain adaptation tasks, noisy data are identified and easy to distinguish when involving the uneven

distribution of data quality. However, the noisy data in training a conversation model for the dialogue system are not that

easy to identify, due to their high diversity based on characteristics of human language. Wang et al.  adopt the

instance-weighting strategy to address the noisy label issue during data processing. Tao et al. , Lison et al. , and

Shang et al.  propose relatedness-based evaluation metrics and matching networks to quantify and measure the

relationship between queries and replies in conversations. The above problems are similar to the regularity and periodicity

between daily mobility transitions in the task. Then, the data quality evaluation results assist the conversation model in

focusing on meaningful training dialogues and generating more intelligent answers.
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