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Corneal infection models are tools which can be used to study host-pathogen interactions at the corneal surface.

They are highly valuable in the study of bacterial keratitis, a potentially sight-threatening eye infection, localised to

the cornea. During bacterial keratitis, bacteria colonise the cornea as biofilm populations which demonstrate an

increased resistance to antibiotics and the host immune response. Therefore the presence or absence of biofilm is

an important consideration in model development. Corneal infection models include: in vitro models (which use cell

culture techniques to generate 3D corneal constructs), ex vivo models (which use whole, excised corneas) and in

vivo models (which use live animals).

microbial keratitis  bacterial keratitis  cornea  infection  biofilm  models  in vitro

ex vivo  in vivo

1. Introduction

Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It

remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas

aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface

as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix

and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic

characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host

immune response. Therefore, understanding the role of biofilms will be essential in the development of new

ophthalmic antimicrobials. To study corneal biofilm infections in a meaningful way, it is important that biofilm models

are representative of the true infectious scenario. Abiotic models of biofilm formation (where biofilms are studied on

non-living surfaces) currently dominate the literature, but these models do not allow host–pathogen interactions to

be studied, making them unsuitable for many elements of infection research. Fortunately, co-culture models (where

biofilms are studied on host corneal surfaces) are beginning to emerge. In vitro, ex vivo and in vivo corneal

infection models have now been reported which use a variety of different experimental techniques and animal

models. However, there are various advantages and disadvantages associated with each of these models that

must be carefully considered (Table 1).

2. In Vitro Models
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In vitro models use well-defined cell culture techniques to generate 3D corneal constructs. These models are a

popular choice for ophthalmological research due to their relative cost-effectiveness and limited use of animals.

The human cornea is composed of six distinct layers: epithelium, Bowman’s layer, stroma, Pre-Descemet’s layer,

Descemet’s membrane and endothelium  (Figure 1). As the outermost layer, the corneal epithelium constitutes

the first line of defence against external pathogens and also acts as the major barrier against ocular drug

penetration . Therefore, many in vitro models have focused solely on the cultivation of human corneal epithelial

cell (HCE) multilayers . However, 3D organotypic models have also been developed which incorporate

epithelial, stromal and endothelial cells, providing whole-tissue models .

Figure 1. Human corneal layers: (A) Schematic representation, and (B) haematoxylin and eosin staining. The

cornea has six distinct layers and the outermost layer is the corneal epithelium, which is made up of 5-7 rows of

tightly packed corneal epithelial cells. These cells lie on an acellular, collagenous layer named the Bowman’s layer

and together the epithelium and the Bowman’s layer are essential in the protection of the underlying stromal tissue.

The stroma constitutes 90% of the overall thickness of the cornea and is composed of mainly type I collagen and

differentiated keratocytes. Beneath the stroma is the Pre-Descemet’s layer (also known as Dua’s layer) and the

Descemet’s membrane. These collagen-rich, acellular layers separate the stromal tissue from the endothelium.

The endothelium is composed of a single layer of cells, which are mainly hexagonal in shape. This layer is adjacent

to the anterior chamber and constitutes the final layer of the cornea. Created with Biorender.com.

Another source of model diversity is the use of primary cells versus immortalized cell lines. Primary cells are

extracted directly from donor corneal tissue and therefore share the same phenotypic and genotypic characteristics

as the donor tissue. The drawback is that these cells have a finite lifespan and reach senescence after only a few

passages . Furthermore, the availability of human corneal tissue is highly limited as healthy tissue is generally

reserved for keratoplasty. This means animal corneas are often used as a source of primary corneal epithelial cells.

The production of an immortalized cell line involves transfection/transformation of cells with a virus or plasmid that

induces the cells to enter a continuously growing state by activating telomere maintenance mechanisms . As a

result, the cells may be continuously passaged, and cell lines are commercially available. This makes immortalized

cell lines attractive model systems, as they are easy to assemble and economical. However, the underlying
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assumption that cell lines mimic all aspects of the normal cornea has not been proven and with each passage,

genetic drift occurs, causing cells to become phenotypically distinct from the original cell population . A study

comparing the gene expression profile of the HCE-T cell line to gene expression in the healthy human cornea,

found changes in gene expression for 36% of probed genes . This is a reminder of the importance of

characterising cell lines to ensure they remain suitably representative of the ocular surface in vivo.

2.1. Existing in Vitro Infection Models

Drug permeation studies have been a key driver in the development of in vitro corneal models. Curved filters have

been used to produce monolayers that share the curvature of the cornea  and optimisation of cell culture

conditions has led to the development of corneal models with tight cell junctions, epithelial barrier integrity and

permeation profiles comparable to those of the excised cornea . The development of in vitro models for

studying corneal absorption has been reviewed previously  and optimised cell culture techniques are

transferable to the development of in vitro infection models. Such models have been used to investigate host–

pathogen interactions at the corneal epithelial surface. Immortalized HCE cell lines have been used to investigate

receptor-mediated adhesion mechanisms and identify key bacterial virulence factors (VFs) involved in invasion

. Modulation of the host response has also been studied, with a recent study demonstrating that the type-III

secretion system (T3SS) of P. aeruginosa is involved in subversion of antimicrobial peptide (AMP) expression .

Furthermore, in vitro studies have demonstrated the importance of host cell defences such as cell surface mucins

and tear fluid. Knockdown of MUC16 in the HCLE cell line causes significant decreases in epithelial barrier

function  and exposure of primary rabbit corneal epithelial cells to human tear fluid has been shown to confer

significant cytoprotective effects, as well as reducing the translocation of P. aeruginosa . These in vitro

infection models have helped to progress our understanding of bacterial keratitis, but they are limited by the

absence of a biofilm component. To the best of our knowledge, an in vitro model that combines live HCE cells and

the formation of bacterial biofilm is yet to be reported. In contrast, multiple keratitis studies have investigated biofilm

formation on abiotic surfaces in the absence of cells . As in vitro modelling techniques continue to improve,

co-culture models may be reported but there are various limitations associated with the use of in vitro systems for

studying biofilm infections . For instance, characteristics of the biofilm microenvironment (e.g. nutritional cues,

presence of immune cells)  have been shown to influence biofilm morphology and so differences in specific

biofilm-forming conditions may limit model applicability.

3. Ex Vivo Models

Ex vivo studies make use of whole, excised corneas that are maintained in an artificial environment before

experimentation. Animal corneas are often used due to the limited availability of human corneas and so

interspecies variation is one of the main problems with ex vivo studies. A lack of standardised methods and paucity

of information on animal models means comparing ex vivo studies is difficult, and there is dispute regarding the

suitability of different animal models. Ex vivo models used to investigate bacterial keratitis include mice

, rabbits , goats , cows  and pigs . It is currently unknown if interspecies

differences in the thickness of the corneal epithelium  and stroma  play a major role in development
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and progression of infection in the ex vivo cornea. Morphological aspects that may affect the development of

infection between species have been discussed previously  but many questions remain unanswered. Of

particular importance is the presence or absence of the Bowman’s layer. The Bowman’s layer is typically found in

primate species but has not been found in all animals  and there is evidence that it functions as an additional

barrier to bacterial traversal . The importance of this layer is influenced by the method of infection. Popular

infection methods include corneal scarification or intrastromal injection, which bypass the Bowman’s layer and

provide direct access to the corneal stroma. In these instances, the protective role of the Bowman’s layer is less

important, but other studies have used contact lenses or blotting paper to introduce bacteria without prior wounding

of the cornea. Such methods are important for studying intrinsic corneal resistance and/or initial bacterial adhesion,

and in these studies, interspecies differences in the Bowman’s layer may compromise model suitability. There are

conflicting reports for rabbit and porcine corneas with some studies claiming the Bowman’s layer is absent

, while others report it as present . Given the popularity of these two animal models, it is important that

resolution be reached on this topic.

3.1. Existing ex Vivo Infection Models

Various techniques have been used to induce bacterial infection in ex vivo corneas, including prolonged exposure

to bacteria , use of infected contact lenses , superficial injury (e.g., tissue paper blotting) , corneal

scarification  and intrastromal injection . Differences in infection method, inoculum size, culturing

techniques, incubation times and bacterial strains mean that comparing ex vivo studies is challenging. For

example, Pinnock et al.  found that more bacteria are recovered after injecting the inoculum into the stroma than

after corneal wounding. In contrast, similar infection outcomes were reported for both rabbit and human corneas.

Colony Forming Units (CFU) were measured following 24 or 48 h infection and variations in CFU were small

despite differences in bacteria and handling techniques for each model . In agreement with Pinnock et al., we

recently demonstrated that there was no significant difference in viable cell count between ex vivo porcine and

rabbit cornea models after 24 h infection, nor when two different strains of P. aeruginosa were used .

Furthermore, while some studies have reported that infection in ex vivo corneas is easy to establish and that

progress is visible within less than 24 h  , Madhu et al. found that incubation time could be extended by a

few days if a smaller inoculum was used . Despite issues with standardisation, ex vivo models have been used

to study various aspects of bacterial keratitis. This includes: epithelial barrier function , effect of bacteria on

epithelial cell migration , bacterial transmission from contact lenses , bacterial adherence to corneal

epithelium , movement of bacteria in stroma, role of virulence factors  and drug testing of new ophthalmic

antimicrobials . Despite the popularity of ex vivo corneal infection models, biofilm formation under these

conditions remains to be characterised. However, our group is currently using an ex vivo porcine infection model to

study bacterial distribution and biofilm formation at the corneal surface  (Figure 2). Scanning Electron Microscopy

(SEM) depicts bacterial colonization under different infection conditions, indicating that ex vivo porcine models

could be useful in the study of established bacterial keratitis infections.

[49]

[50][51]

[52]

[53][54][55]

[56] [57][58]

[59][60] [42] [61]

[39][40][44] [36]

[36]

[36]

[44]

[36][44][60]

[40]

[30][62]

[43] [38][42][63]

[61] [32][40]

[25][41]

[44]



Corneal Infection Models: Bacterial Keratitis | Encyclopedia.pub

https://encyclopedia.pub/entry/3577 5/17

Figure 2. Scanning electron micrographs of ex vivo porcine corneas after 4 h Methicillin-Resistant Staphylococcus

aureus (MRSA) infection (A), 6 h MRSA infection (B), 24 h Pseudomonas aeruginosa infection (C) and the

uninfected porcine cornea (D). Arrows show MRSA adhering to corneal epithelial cells.

4. In Vivo Models

In vivo modelling involves the use of live animals. Rat  and rabbit  models have been reported, but

mouse models currently dominate the literature . Despite its smaller size, the murine cornea

contains more corneal epithelial cell layers than the human cornea and the ratio of epithelial to stromal cells is

larger  [179]. As with other animal models, there is a dispute regarding the presence of a Bowman’s layer

and there are large interspecies differences in immune response that must be considered . However, murine

models remain a popular choice for in vivo work because of their small size, ease of breeding and the existence of

large genetic mutant libraries. Various techniques have been developed for studying bacterial keratitis in vivo.

Animals are first anesthetized so that corneal wounding/bacterial inoculation can be performed, and infection

progresses in the living model. Following scarification, the eyes are enucleated and analysed ex vivo or

alternatively, intravital imaging techniques have now been reported which allow microscopic analysis to be

conducted in vivo . In vivo corneal models are ideal for studies of host immune defences, inflammation and

corneal healing processes. However, these models are not suitable for studying the early stages of infection, as the

healthy, intact cornea is difficult to infect unless contaminated contact lenses are used . Additionally,

initiating and developing infection takes days and is not always guaranteed .

[64] [65][66][67]

[24][30][31][68][69][70][71]

[72] [57][58]

[73]

[74]

[31][75][76]

[75]



Corneal Infection Models: Bacterial Keratitis | Encyclopedia.pub

https://encyclopedia.pub/entry/3577 6/17

4.1. Existing in Vivo Infection Models

Increasing interest in ocular biofilms over the past decade has resulted in the development of an established in vivo

cornea model , followed by improved methods of imaging bacteria and biofilm formation . This

has allowed researchers to begin to characterise the process of biofilm formation at the ocular surface (Table 2). In

vivo infection models have also played an integral role in other areas of bacterial keratitis research, including:

biofilm formation on contact lenses in rabbit  and mice , host–pathogen interactions on ocular samples using

proteomics , activation of immune signalling pathways , the role of virulence factors in keratitis

and drug testing of new ophthalmic antimicrobials . Drug testing has included synthetic analogues of host

antimicrobial peptides, with one study reporting reduced corneal bioburden and improved ocular scores following

treatment with their lead peptide . This suggests that synthetic AMP analogues could provide valuable

alternatives/adjuncts to antibiotics and highlights the importance of ocular surface proteins in defence against

bacterial keratitis . For instance, surfactant protein D (SP-D) present in tear fluid has been shown to take

part in clearing P. aeruginosa from the murine ocular surface , while exogenous vasoactive intestinal peptide

regulates expression of other proteins involved in infection . However, it was recently found that there are

differences in protein expression between human and mouse stroma in vascularized and healthy corneas .

These differences are likely to affect pathophysiology between species and may limit the clinical relevance of

murine in vivo models.

Table 1. Evaluation of in vitro, ex vivo and in vivo corneal models for the study of bacterial keratitis infections.

 
Advantages Disadvantages

In vitro cell culture

models

§     Economical.

§     Reduced use of animals.

§     Cell lines can be used

continuously.

§     3D organotypic models can be

developed using multiple cell lines.

§     Many host defence mechanisms

remain investigable, e.g. expression of

mucins, AMPs, pro-inflammatory

cytokines and microRNAs,

investigation of cell surface receptors

and PRR signalling pathways.

§     Problems with cell lines and genetic

drift.

§     Primary cells reach senescence after a

few passages.

§     Reduced cell viability and increased

susceptibility to infection.

§     Absence of resident and infiltrative

immune cells.

§     Absence of conjunctiva.

§     Absence of tear fluid and lacrimal

glands.
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§     Infection normally occurs under static

conditions.

§     Differences in the biofilm

microenvironment (e.g. nutritional cues,

absence of immune cells) may affect biofilm

morphology.

Ex vivo models

§     Whole-tissue model.

§     Complex 3D surface topology of

the cornea is preserved.

§     Increased cell viability facilitates

longer infection periods.

§     Presence of resident immune

cells.

§     Low availability of human corneas

means animal models are commonly used.

§     Lack of standardised infection methods.

§     Dispute regarding corneal anatomy of

animal models.

§     Interspecies differences in corneal

anatomy, functional characteristics and

immune response may affect applicability to

human infections.

§     Absence of infiltrative immune cells.

§     Absence of conjunctiva.

§     Absence of tear fluid and lacrimal

glands.

§     Infection normally occurs under static

conditions.

§     Differences in the biofilm

microenvironment (e.g. nutritional cues,

absence of immune cells) may affect biofilm

morphology.

In vivo models §     Complete immune response

(resident/infiltrative immune cells, tear

film, conjunctiva and lymphatic

vessels).

§     Animal models must be used, raising

ethical issues.
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§     Infection occurs under dynamic,

shear stress conditions.

§     Biofilm morphology should be

highly similar to the true infectious

scenario.

§     Interspecies differences in corneal

anatomy, functional characteristics and

immune response may affect applicability to

human infections.

§     Expensive.

§     Time-consuming.

§     Infections can be difficult to establish

and prior wounding of the cornea is often

required.

 

Table 2. Biofilm characteristics of in vivo corneal infection models.

Animal

model
Pathogen Biofilm characteristics Ref.

C57BL/6

black mice

Pseudomonas

aeruginosa ATCC

9027

§     Rapid shift from planktonic to biofilm lifestyle observed for

all corneas.

§     Microcolonies present on day 2 post-infection and fibrous

extracellular substances visible.

§     Mature biofilm structures present on day 3. Bacteria form

as “mushroom shaped bodies” and “tower like structures” and

are embedded in a web of extracellular polysaccharides.

§     A thick, dense biofilm layer is observed on days 5-6.

Bacteria become static within this structure.

§     Neutrophils migrate into the corneal stroma and production

of NETs is observed at early time points. Neutrophils are

localised to the biofilm surface once mature biofilm structures

develop.

[77]



Corneal Infection Models: Bacterial Keratitis | Encyclopedia.pub

https://encyclopedia.pub/entry/3577 9/17

C57BL/6

and Swiss

Webster

(SW) mice

Pseudomonas

aeruginosa PAO1-

GFP and 6294-GFP

(clinical isolate)

§     Early (12 h) biofilms are composed of bacterial

clusters/microcolonies that are thought to emanate from the

infected epithelial cells.

§     Late (24 h) biofilms are composed of bacterial sheets.

§     Biofilm bacteria are surrounded by Psl polysaccharide but

there is a low abundance of alginate.

§     Biofilms are resistant to neutrophil infiltration.

BALB/c

mice

Staphylococcus

aureus and Fusarium

falciforme (clinical

isolates)

§     A mixed biofilm is observed after 72 h.

§     S. aureus: Bacteria colonise the corneal epithelium and a

part of the stroma. Bacterial clusters observed, including a large

cocci aggregate at the site of the corneal lesion. Bacteria

secrete exopolysaccharides that form “halos” around the

bacteria and then merge with the extracellular matrix of other

cocci. Development of a new blood vessel in the stroma is

observed and attributed to the host immune response.

§     F. falciforme: Hyphae and conidia observed and hyphae

migrates through stroma to reach the endothelium. F. falciforme

structures are embedded in a fibrin matrix within the stroma.

Presence/growth of fungi causes corneal collagen fibres to

become disorganised.
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