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1. Introduction

Carbon dioxide (CO ), the most important greenhouse gas, is a significant driver of global warming. In 2019, the annual

average concentration of CO  reached 410 ppm, which was higher than any time in at least 2 million years . The

observed increase in CO  concentrations since the beginning of the industrial era is unequivocally caused by human

activities, among which the combustion of fossil fuels is responsible for most of the total anthropogenic CO  emissions.

Global warming has caused increases in the global temperature of the surface and upper ocean, increases in precipitation

and sea level, weather, and climate extremes, and decreases in glaciers and sea ice . Besides CO , fossil fuel

combustion is also a primary contributor to air pollutants . Thus, slowing down the increase in fossil fuel CO  (FFCO )

concentration is of vital importance. According to the Paris Agreement and the sixth assessment report of IPCC

(Intergovernmental Panel on Climate Change), CO  emissions need to be net negative to hold the global surface

temperature lower than 1.5 °C or 2 °C at the end of this century (very low and low greenhouse gas emission scenarios,

according to IPCC, 2021). This means that the anthropogenic removal of CO  exceed anthropogenic emissions. Under

these circumstances, identifying the contribution of FFCO  to total atmospheric CO , as well as its atmospheric process

interpretation and emission estimation, is a fundamental work for studies on its climatic and environmental impacts and on

the evaluation of mitigation actions.

Multiple tracers that co-emitted with CO  have been used to quantify FFCO , including carbon monoxide (CO), sulfur

hexafluoride (SF ), tetrachloroethylene (C Cl ) and even air pollutants, based on the ratio of each tracer to CO  

. However, there are large uncertainties due to the non-fossil emissions of the tracers . Radiocarbon ( C), a

widely used dating method in archaeology, geosciences, etc. , is a direct tracer and a promising method to differentiate

the emissions of fossil fuel and non-fossil fuel from atmospheric carbon. The abundances of three naturally occurring

carbon isotopes C, C and C are 98.89%, 1.11%, and ~10 %, respectively . The radiocarbon content of CO  is

expressed as Δ C or Δ CO  :

(1)

( C/ C)  is the C to C ratio of the sample, and ( C/ C)  is related to the commonly used primary measurement

standard Oxalic Acid I. Radiocarbon is cosmogenic, and has a radioactive half-life of 5730 ± 40 years . Thus, there are

no C in fossil fuels because they are all depleted during long-term radioactive decay. Since fossil fuel CO  contains no

C whereas CO  from other sources has similar C concentrations with the ambient air, the release of fossil fuel CO  will

cause a decrease in the C/ C ratio in the atmosphere. This was first discovered by Hans Suess , and is called the

“Suess effect”. With industrial development, atmospheric Δ CO  decreased by 25‰ between 1890 and 1950 . Then

comes the nuclear testing period between the 1950s and the early 1960s, during which large-scale detonations of nuclear

bombs produced C atoms in the Northern Hemisphere. Atmospheric Δ CO  in the Northern Hemisphere increased

swiftly and reached a peak value of nearly 1000‰ in 1963, and then decreased after the Limited Nuclear Test Ban Treaty
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2. The Basis of Tracing Fossil Fuel CO  Using C

2.1. The Theory of Quantifying Fossil Fuel CO  Using C

Observed CO  mole fraction (or concentration) is thought to be a mixing of many components, mainly including

atmospheric background CO , fossil fuel CO , biospheric CO  and oceanic CO . The most commonly used method to

constrain recently added FFCO  in the atmosphere with C is called the pseudo-Lagrangian method , in which a

parcel of air with an initial CO  mixing ratio (CO ) and Δ CO  value (Δ ) moves across a polluted region, and then

CO  mixing ratio and Δ CO  value are modified to CO  and Δ  by the addition of FFCO  and other sources or sinks

of CO . If combining other sources (and sinks) together, the mixing ratio and the Δ CO  value could be written as

CO  and Δ . Two balance equations for CO  mixing ratio and Δ C can be formulated as below.

(2)

(3)

By combining Equations (2) and (3), CO  can be calculated as:

(4)

CO , Δ  are measured in collected samples at interested sites. Δ  is measured in samples from background sites in

general, while free tropospheric measurements can also act as Δ , too . Δ  is known to be −1000‰ since CO  is C-

free.

The second term of Equation (4) is bias due to the effect of the others:

(5)

some researchers assume β to be zero, which means that all other sources have the same Δ C compared to those of the

background atmosphere, Δ  = Δ  . The main contributor to uncertainties in β would be heterotrophic respiration,

which has large C disequilibrium. The ignorance of β would cause a systematic underestimation of CO , up to 0.5 ppm

in summer and 0.2 ppm in winter . There are two other factors that influence atmospheric Δ CO , air-sea exchange

in the oceans, and stratosphere-troposphere transport . However, these exchanges are assumed to affect the

background and observed samples equally; thus, normally, they will not be counted in the calculation of FFCO .

2.2. Air Sampling and Measurement

Atmospheric Δ CO  can be measured with direct air sampling. Whole air samples are normally collected using flasks or

bags. Short-period and integrated samples can be collected by pump and acid solution, respectively. CO  samples can be

collected by static absorption using CO -free sodium hydroxide (NaOH) or barium hydroxide (BaOH) solutions in flasks

. The primary collection method is the static absorption of CO  using CO -free sodium hydroxide (NaOH) or

barium hydroxide (BaOH) solutions in discrete glass flasks . The flasks are exposed to air for collection of integrated

samples. Besides ground sites, tall towers, aircrafts, balloons, and even kites are all effective platforms to collect CO

samples .

Air samples reflect near real-time atmospheric Δ CO , can be used to characterize the FFCO  temporal variations with

high resolution effectively. However, the representativeness of the air samples is limited to those of the sampling region

and period, while little information (spatial and temporal distribution) is known beyond that. In addition, the sample

collecting process and/or the site maintenance is labor and cost intensive. Direct sampling of air is not the only way to

analyze atmospheric Δ CO . Plants fix CO  from the atmosphere via photosynthesis, offering a unique complementary

analysis method.
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For plants, their carbon isotopic composition can be used to reflect the mean atmosphere Δ CO  isotopic composition of

their growing period. By collecting plant samples in different regions and analyzing C, FFCO  spatial distribution on a

large scale can be mapped out. Compared to air samples, collecting plant materials is more convenient and relatively

cheap. Tree rings and annual leaves (grasses) are two main types used to reveal the spatiotemporal distribution of FFCO

. Each plant species may have its own advantages in addition to those illustrated above. Maize is

grown in many countries, so it is convenient to map out the large-scale spatial distribution of fossil fuel influences using

corn leaves. Gingko is a perennial and deciduous tree that is widely planted in East Asian countries, urban areas, and

rural areas. Thus, it is feasible to separate samples of clean sites from samples of polluted sites. Wine ethanol is a unique

plant material that can represent previous sampling years, since the harvest year and region are all written on the label of

the wine bottle. Tree rings, a unique plant material, help in the reconstruction of annual atmospheric Δ CO  for decades

or hundreds of years. In practice, however, the sampling of tree rings may be more difficult than that of annual plants

since it is difficult to separate one annual ring from the others.

Comparisons of Δ CO  and/or FFCO  between plant materials and air samples show nearly consistent results 

, which verifies the usage of plant materials. Xiong et al.  found a significant difference in Δ CO  between respired

CO  and bulk organic matter from 21 plant species, suggesting that bias associated with dark respiration should be

considered when use C in plants to quantify atmospheric FFCO . It should be noted that biomass accumulated by

plants only represents daytime Δ CO  (when photosynthesis occurs), and the sampling should be well planned for

different plant species considering their growing period and local climate.

Before the analysis of C, the preparations of air samples included extracting the CO  (purification), and the reduction of

CO  to graphite. The extraction of CO  is to remove water cryogenically, freeze CO  completely together with N O (non-

interfering), and without freeze O  or CH  . Graphite is produced by adding hydrogen gas to CO  over an iron

catalyst . The atom counting of each graphite sample is then performed by an accelerator mass spectrometer

(AMS). The preparation of annual leaves is a little different from air samples: plant samples need to (1) be cleaned by

pure water and then dried, (2) be combusted to CO  and then reduced to graphite .

Direct atom-counting of C using AMS is a great progress of C analysis methods. Before that, the conventional

methods were decay counting, solid carbon using a Geiger–Muller counter, and liquid scintillation counting . The

sensitivity was improved around 10  times by AMS over the decay counting methods . With the attempts to reduce

sample size and to increase precision, the detection limits have been reduced to ~5 µg of carbon , and the reported

precisions have reached 1‰ .
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