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The global burden of cancer is on the rise, and as a result, the number of therapeutics

administered for chemotherapy is increasing. The occupational exposure, recalcitrant nature and

ecotoxicological toxicity of these therapeutics, referred to as antineoplastic (ANP) drugs, have raised

concerns about their safe remediation. This review provides an overview of the environmental source

of ANPs agents, with emphasis on the currently used remediation approaches. Outpatient excreta,

hospital euents, and waste from pharmaceutical industries are the primary source of ANP waste.

The current review describes various biotic and abiotic methods used in the remediation of ANP

drugs in the environment. Abiotic methods often generate transformation products (TPs) of unknown

toxicity. In this light, obtaining data on the environmental toxicity of ANPs and its TPs is crucial to

determine their toxic e ect on the ecosystem. We also discuss the biodegradation of ANP drugs using

monoculture of fungal and bacterial species, and microbial consortia in sewage treatment plants.

The current review e ort further explores a safe and sustainable approach for ANP waste treatment

to replace existing chemical and oxidation intensive treatment approaches. To conclude, we assess

the possibility of integrating biotic and abiotic methods of ANP drug degradation.
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1. Introduction

Last few decades have experienced rising concerns over the release of pharmaceutical drugs into the environment.

Though pharmaceutical compounds have targeted effects on the human body, the knowledge about the direct impact of

their transformation products (TPs) and metabolites on other organisms and indirect effects on human health is scarce.

Antineoplastic (ANP) drugs (also known as anticancer or cytostatic) are a specific group of pharmaceutical compounds

which prevent, inhibit, or terminate the development of cancer. However, due to their non-specific mode of action,

affecting both cancerous and healthy cells, ANP drugs exhibit cytotoxic, genotoxic, mutagenic, carcinogenic and

teratogenic effects in all eukaryotic cells . Nevertheless, due to their low environmental concentrations (10–100 ng/L

or below), there is not enough evidence to accurately assess whether or not ANPs have an impact on the environment .

However, since they are designed to disrupt or prevent cellular proliferation, usually by interfering in DNA synthesis, their

fate and transport in the environment should be explored.

The World Health Organization estimated the global burden of cancer at 18.1 million new cases and 9.6 million deaths in

2018 . As per an evaluation by the American Cancer Society, 1,806,590 new cancer cases and 606,520 cancer deaths

are projected to occur in the United States by 2020 . In compliance with this trend of increasing cancer prevalence, new

ANP drugs are also being designed, tested, and manufactured at an increasing rate . Over the past few years, 70 new

ANP drugs have been released to treat 20 variants of tumors (cancerous growths), the number of ANP drugs has

expanded by more than 60% . More than 500 companies are currently pursuing ANP drug development, with 300

companies having cancer drugs under clinical development stages . Figure 1a,b shows the total number of ANP drugs

approved in USA and EU, and total ANP molecules under different phases of development, respectively. In 10 years from

2010 to 2020, ANP drug production is expected to double . The production of novel ANP drugs has varied greatly across

countries over the years. For example, in 2004, Canada and Australia consistently produced a higher volume of ANP

drugs (51 and 39 for Australia and Canada, respectively) whereas United States and Germany produced significantly

lower volume (29 and 17 for Germany and United States, respectively). On the other hand, in 2014, United States and

Germany produced higher volume of novel ANP drugs . A comparative global heatmap of some prominent ANP drug

producing countries in 2004 and 2014 is shown in Figure 1c. The raw data of Figure 1c is given. In addition to the

production, it is also crucial to highlight the sites where ANPs are mostly released into the environment. However, there is

not enough data to categorize sites in terms of ANP emission into the environment. The number of publications on

occurrence of ANP compounds in environment is scarce, and most of studies to date are almost exclusively focused on
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Europe . Nevertheless, the number of cancer cases in different countries can be a governing factor that dictates the

introduction of these compounds in the environment. The country with highest number of cases will consume the most

ANP drugs and hence there will be a greater probability of introduction of these compounds into the environment. The

global heatmap of the number of cancer cases in different countries per 100,000 people is given in Figure 1d. The raw

data was obtained from the GLOBOCAN online database .
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Figure 1. (a) Number of antineoplastic (ANP) drugs approved between 1995 and 2019 in USA and European Union (EU)

; (b) The Global Late Phase Oncology Pipeline in 2015; (c) comparative global heatmap of ANP drug produced in

some select countries in 2004 and 2014 ; (d) age standardized cancer incidence in select countries in 2018 . (Phase II

and Phase III refers to ANP drugs that are at second and third phase of clinical trials, respectively).

ANP drugs are categorized into different groups based on the organ or system on which they act and their therapeutic,

pharmacological, and chemical properties . These different categories of ANP drugs differ in their chemical structures

and physicochemical properties. The physicochemical properties play an indispensable role in the potential fate of these

drugs in the environment . Building a physicochemical profile of ANPs will allow for their partitioning, and help us study

the fate of ANPs within aquatic and terrestrial ecosystems . In total, 102 active antineoplastic drugs have been

identified which are environmentally relevant . Section 2 of this review describes the parameters that determine the fate

and distribution of ANPs in the environment.

Though used in minimal quantity, ANP drugs persist in the environment  and can be harmful even if present under low

concentrations . All ANP compounds are potent immunosuppressive agents and have a high pharmacological

potency that is fatal to aquatic and terrestrial organisms . Significant disadvantages and environmental concerns

associated with the usage of ANP drugs include the following: (i) inevitable contamination of natural ecosystems

(terrestrial and aquatic) by the drugs themselves and their potentially toxic transformation products (TPs); (ii) scarcity of

complete and coherent knowledge on the environmental fate of these drugs, its human metabolites, or TPs; (iii) their

biomagnification at various trophic levels which can have adverse effects on the flora and fauna of the contaminated

ecosystems.

The aforesaid environmental concerns have made it imperative to develop a safe, economical, and environmentally

friendly process to remediate residual ANP drugs in the ecosystem. To date, limited studies have been successful in using

a single microbial system or microbial consortia for the complete or partial elimination of ANP wastes . The

integration of microbial bioremediation systems with abiotic remediation techniques can be beneficial as it will decrease

the requirements of harsh chemicals and may also reduce the generation of toxic degradation products . This review

presents a case for integrating abiotic and biotic modes of ANP degradation. With our decade-long continuous exploration

in the field of extremophilic bioprocessing and bioremediation , we have identified the scope of

thermophilic microbes and thermophilic bioprocessing towards developing sustainable and environment friendly methods

of ANP waste degradation.

The primary objectives of this review effort are to (i) outline the parameters that affect the circulation of ANP drugs in an

environment; (ii) provide a brief overview of the source, types, and concentration of ANPs in the environment; (iv)

compare and contrast the Environmental Risk Assessment (ERA) strategies being implemented in different regions; (iii)

compile the information on existing biotic and abiotic methods of remediation of ANP drugs; (iv) discuss the possibility of

designing a more energy efficient remediation method through integration of biotic and abiotic methods of treatment.

2. Sources of ANPs in the Environment

Since the very first detection of ANP drugs in the aquatic environment in 1985 , various studies have discovered

different classes of ANP drugs in the aquatic environment, with negligible or almost unchanged structural conformation

. ANP agents are mostly introduced into the environment through the urine and feces of outpatients who consume the

drug at home (oral chemotherapy), or patients who undergo chemotherapy at hospitals. Particularly effluents from cancer

hospitals or hospital wards specialized in oncology are the key emission source of ANP drugs in the aquatic environment

. In fact, excretions of patients undergoing chemotherapy at hospitals is the main source of introduction of ANP
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drugs in the environment . The excretion route (feces or urine) is dependent on the type of drug administered. For

example, 70% of bleomycin (in less than 2 h) and 40% of doxorubicin (in 5 days) is excreted in urine, and 50% of

irinotecan (ITN) (48 h) in feces . A few more ANP drugs such as MTX and pemetrexed (PEM) have shown high urinary

excretion rates (≈ 90%). MTX and PEM are mainly excreted as human metabolites of the parent drug . For example,

the urinary excretion of 5-FU is only about 15% as parent compound (5-FU), and 80% as its metabolite R-fluoro-alanine

. The excretion rate of ANP drugs varies with medication (duration of medication, formulation), mode of application

(intradermal, intravenous, oral), and metabolic rates among treated patients. Figure 2 shows the possible routes for the

introduction of pharmaceutical drugs into the environment. The occurrence and concentration of ANPs in effluents is also

dependent on many factors, such as the number of patients, the physico-chemical nature of the drug used, dosing,

excretion rates, methods of sampling, storage, and transport, as well as daily water consumption, which can significantly

dilute the effluent and affect the detectability of ANP and its TPs . ANPs through effluents can enter the aquatic

environment unaltered or as TPs depending on the physicochemical characteristics discussed in Section 2. These drugs

or their TPs can have detrimental effects on the environment, aquatic life, and human health . Due to danger that these

drugs pose, it is important to gather data on the usage of ANPs in a decentralized way because every patient and hospital

do not use the same type ANP drugs. Such decentralized categorization of data would also help in designing efficient

environmental risk assessment and remediation strategies.

Figure 2. Sources for the introduction of ANP waste into the environment (modified from ).

3. Environmental Risk Assessment (ERA) of ANPs

Recent years have seen a sharp spike in the number of ANP drugs in the market which has promoted anticancer home

treatments . As a result, more ANPs are being increasingly reported in wastewater and natural water bodies . Due to

their increased accumulation and highly hazardous nature, it has become imperative to quantify the concentration of

ANPs in the environment and carry out an environmental risk assessment (ERA). The ERA methodology varies in different

regions of the world. The European medical agency (EMA) calculates the predicted environmental concentration (PEC) in

addition to screening the persistence, bioaccumulation, and toxicity of the drug during phase I assessment . The

PEC value is calculated using the following Equation (1) .

 PEC  = (DOSE  × F )/(WASTEW  × DILUTION) (1)

where, PEC  predicted environmental concentration for surface water (mg/L); DOSE  is the maximum daily dose of the

active substance consumed per inhabitant (mg/inh·d); F  is the fraction of a population receiving the active substance;

WASTEW amount of wastewater per inhabitant per day (L/inh·d); DILUTION is the dilution factor

As per the EMA standard guidelines, if the PEC  value is < 10 ng/L, the pharmaceutical drug is unlikely to represent a

risk to the environment . Persistence, bioaccumulation, and other toxicity tests are not required for ANPs that fall under

this category. Lipophilic ANPs (log K > 4.5) are directly moved to phase II because of their bioaccumulative nature. In

contrast, the USA uses different ERA methodology where the drugs are first sorted based on its potency to enter the

environment. Various tests such as the water solubility test, dissociation constant test, octanol/water partition coefficient

(K ) test, and vapor pressure is conducted on the sorted drugs. The environment introduction concentration (EIC) is then

estimated using the following Equation (2) .

 EIC  = A × B × C × D (2)
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where, EICAQ: expected introduction concentration of an active moiety into the aquatic environment (ppb); A: amount

produced for direct use as active moiety (kg/year); B: inverse of liters per day entering the publicly owned treatment

works, (POTWs) (day/L); C: conversion factor (year/365 day); D: conversion factor (109 μg/kg). If the EIC < 1000 ng/L,

the drug is excluded from further testing. PEC is generally lower than EIC due to dilution factor.

When compared to EU and USA, Canada’s ERA assesses not only the harmful effects of the substance on human health

and environment but also their exposure potential . Canada’s ERA considers the lethality, mutagenicity, reproductive

effects, and organ toxicity of the drug. This detailed testing weighs the impact of ANPs and is not carried out in the EU or

USA. In Canada, PEC is calculated using the following Equation (3) .

PEC  = (kg of API/year)×(1 year/365 days)/(Wastewater L/day·capita)×(population) (3)

where, PEC : predicted environmental concentration in surface water (μg/L); kg of API/year: amount produced per year

(kg/year); Wastewater L/day·capita: volume of wastewater generated per day per capita (L/day). The substance tested is

designated to be toxic when PECsw divided by predicted no-effect concentration (PNEC) is ≥1.

One major obstacle in assessing the risk of ANPs in the environment is that the existing ERA procedures differ

significantly in the European Union (EU), USA, and Canada. The most notable distinction is that the EU and USA regulate

products (drug), whereas Canada regulates substances (active pharmaceutical ingredients (APIs)) . In EU and USA,

existing drugs or new drug applications before the introduction of the ERA guidelines are not required for assessment

whereas in Canada all substances entering or which may enter the environment are premised to be toxic until evaluation

. The EU and USA have implemented a tiered approach in which only the drugs that are suspected to be toxic are

transferred onto the next stage of assessment. Canada, on the contrary, has adopted a classification-based approach in

which the timing of notification is determined by the type of substances, i.e., polymer, chemical, or biological living

systems . However, in Canada, toxic and even non-toxic substances are checked for their accumulation impact to the

land and water. The criteria of toxicity testing even after ERA clearance is vital as accumulation or circumstances of

exposure to the substance may render the substance toxic. Table 1 gives a comparison of ERA procedures implemented

in the USA, EU, and Canada.

Table 1. Characteristics of Environmental Risk Assessment (ERA) regulatory approach implemented in USA, EU, and

Canada.

 USA EU Canada

Implementing
organization

Food and Drug Administration

(FDA)

European Medical

Agency (EMA)

Health Canada and Environment

and Climate Change Canada

Regulated
product

All drugs manufactured for sale

in EU member states
New Drugs New Substances

Timing of ERA
When applying for marketing

approval

New Drug applications

[56]
Before notification

ERA Methodology
Phase-tiered based approach

(Phase I; Phase II-Tier A and

Tier B)

Tiered based approach

(Tier 1, Tier 2, Tier 3)

Classification based approach

(polymers, living organisms,

chemicals)

Drug exclusion
criteria

PEC  < 10 ng/L EIC  < 1000 ng/L PEC < 100 ng/L

Risk Assessment
Criteria

PEC/PNEC  ≥ 1 EC /MEEC  < 10 PEC/PNEC ≥ 1
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Strengths

Responsibility lies with

government

Tiered approach

Responsibility lies with

government

Tiered approach

Responsibility lies with

government

Analyzes substances that are

presumed to be non-toxic.

Weaknesses

No ERA for existing drugs.

Non-consistent ERA procedure

between member states

No ERA for existing

drugs
Non-tiered approach

Notes: —Predicted environmental concentration (for details see Section 4 of the review); —Environment Introduction

Concentration (for details see Section 4 of the review); —Predicted no effect concentration (for details see ); —

Concentration of a drug that gives half maximal response; —Maximum expected environmental concentration.

Some ERA studies elucidated that ANP drugs that directly interact with DNA do not have any safe threshold

concentrations , and as such the stipulated PEC and EIC values may give false positives for certain ANP drugs. For

instance, Kidd et al.  showed that concentration of breast cancer drug 17α-ethynylestradiol (in the concentration

range 5–6 ng/L) impacted reproductive health in the fish (Pimephales promelas), that lead to a decline in its population at

a concentration lower than the EMA suggested toxic level (10 ng/L).

One major issue with accurate ERA is the persistence and accumulation of some ANP drugs in the environment over time.

The recalcitrant nature of some ANP drugs in activated sludge environment indicates the possibility of these compounds

being persistent in river water . The analysis of data provided by the German Environmental Agency confirmed that

nearly 30% of ANP compounds are persistent in the water phase . This persistence may gradually increase the actual

environmental concentration. Rowney et al.  showed that alkylating ANP drugs (0–145 ng/L), antimetabolite ANPs (0–

27.4 ng/L), and anthracycline ANPs (0–0.7 ng/L) were detected in the Thames catchment in the United Kingdom.

Similarly, the data available for the measured environmental concentration of cyclophosphamide in surface water varies

from a negligible 0.05 to 64.8 ng/L .

Since there are a large number of ANP drugs currently in the market, and several others in the pipeline (Figure 1), it is

necessary to categorize ANPs that are widely prescribed and are likely to persist in the environment. In addition to

persistence, the current ERA methodologies do not have any guidelines on dealing with the transformation products (TPs)

or human metabolites (HMs) of these drugs. It is not possible to design strategies to study the toxicity of TPs beforehand

as the generation of TPs depends on the type of remediation methods employed and environmental parameters such as

pH, temperature, type of remediation technique, etc. . Some studies have suggested that TPs or HMs, in some cases,

may be more toxic than the parent drug . Besse et al.  reasoned that the metabolites of ANP drug methotrexate could

be more toxic than their parent drug. Similarly, the TPs of certain medications can be more active, even more polar, and

therefore of higher mobility in aquatic environments than the parent drug . Consequently, it seems plausible to redesign

the current ERA methodologies keeping in mind the toxicity of HMs and TPs. Genotoxicity assessments of ANPs and their

relevant TPs should be conducted to allow for a better development of biodegradation or a combination of both biotic and

abiotic remediation techniques.
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