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The link between viticulture and climate change has become more evident in recent years. The temperature rise has been

a crucial factor in the early ripening of grapes, which has resulted in wines with imbalanced acidity, higher alcohol content,

and higher pH values. Consumers are seeking high-quality and healthy products, and this trend has extended to wine

consumption.
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1. Climate Change and Wine Quality

Climate change, primarily driven by anthropogenic influence, induces significant transformations in the Earth’s system 

, including temperature extremes and modifications in precipitation patterns . The latest Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC)  predicts a continued rise in global surface temperature and a

decrease in annual precipitation across emission scenarios, with intensifying and more frequent extreme events globally

. The Mediterranean region is particularly vulnerable to global warming, with projected severe climate events affecting

agriculture and leading to economic and food security challenges .

As indicated by Lamonaca et al. , detrimental outcomes, such as reductions in agricultural production and economic

conditions associated with an increase in food insecurity, are anticipated to exacerbate, significantly affecting the

agricultural sector . This emphasizes the considerable vulnerability of agriculture to climate change, including

viticulture.

In 2022, wine exports from these three European countries amounted to around EUR 23 billion, emphasizing the

economic importance of viticulture in Europe and globally, highlighting wine grapes as one of the most valuable fruit crops

worldwide . Additionally, global wine production in 2022 reached 258 million hectoliters, slightly lower than the

previous year’s output of 261 million hectoliters. Nevertheless, the vineyard area has decreased by approximately 1.18%

over the past five years (from 2018 to 2022) due to extreme weather changes , underscoring that climate factors,

particularly temperature, exert a more significant influence on vine development and berry composition relative to other

factors such as soil or variety . However, it is essential to acknowledge the multifaceted nature of these interactions,

and the impact can vary based on specific vineyard locations .

This demonstrates that, as stated earlier, due to the strong relationship between viticulture and climate, fluctuations in

temperature and frost events (early or late frosts) can directly impact grape production and the quality of the wine

produced . Increasing temperatures lead to premature grape ripening, culminating in an undesirable rise in sugar

levels and a decrease in organic acids and phenolic compounds. This results in higher alcohol content, reduced acidity,

and modified sensory profiles , ultimately altering wine quality and typicity . Given the potential

compromise of crop yields and viticulture productivity under future climatic conditions, the urgent adoption of cultivation

approaches and strategies is crucial to mitigate the effects of climate change on wine production and quality.

Moreover, recent data indicate a growing consumer preference for low-alcohol wines (9% to 13%). This preference is

associated with increased social awareness of the harmful effects of alcohol on human health (calorific intake and

possibility of alcohol-related diseases) as consumers seek a healthier lifestyle . This has led to an increase in

the volume of no and low-alcohol beverages of over 7% across the ten major global markets in 2022. This upward

trajectory is projected to outpace the growth observed in the past four years, with a forecasted Compound Annual Growth

Rate (CAGR) of over 7% from 2022 to 2026. This forecasted rate represents an increase compared to the 5% CAGR

recorded from 2018 to 2022 (Figure 1). In this context, wine producers are innovatively lowering alcohol content to meet

consumer demands and address challenges posed by high grape sugar concentration during winemaking. Musts with

high sugar content usually present difficulty in performing alcoholic fermentation, causing stuck or sluggish fermentation,

leading to prolonged and intricate processes or even complete stoppage . These issues arise from the
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osmotically stressful environment of high sugar concentrations, hindering water absorption and slowing yeast metabolic

activity. The resulting alcohol production can reach toxic levels for the yeast, and the must’s nutritional conditions and the

potential presence of fermentation inhibitors further contribute to the complications . Furthermore, in some countries,

such as the USA, Finland, Sweden, Ireland, and the United Kingdom, exceeding 14.5% (v/v) alcohol content results in

higher taxes .

Figure 1. Overview of global market trends for no-alcohol and low-alcohol beverages, including wine.

2. Techniques to Decrease Alcohol Content in Wines

In recent years, consumer preferences have evolved substantially as they have become increasingly demanding,

conscious of the characteristics of the goods they choose, and focused on products that promote a healthier lifestyle. This

trend extends to the consumption of wine, where consumers are more attentive and concerned about the health risks

associated with alcohol consumption. As a result, there is an increasing demand for wines with reduced alcohol content

, thus driving the production and sale of such wines. In this regard, winemakers have been actively seeking

technological strategies to decrease or eliminate the alcohol content of wines. Furthermore, given the context of climate

change, which has significantly contributed to the production of grapes with higher sugar levels and, consequently, an

increase in the alcohol content of wines, the search for innovative methods to meet this demand becomes imperative.

These strategies for winemakers to produce wines with reduced alcohol levels can be categorized in several approaches.

Still, more commonly, they are separated depending on when they are applied in the wine production process. Some

authors  indicate four different categories, while other authors  divide these strategies into three, as will be

discussed in this document (Figure 2).

Figure 2. Techniques to decrease alcohol content in wines and fermented beverages.

2.1. Non-Microbial Alcohol Reduction in Wines

2.1.1. Reducing Fermentable Sugars in the Grapes
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The first category, used during the pre-fermentation stage, focuses on reducing fermentable sugars. This limits the

amount of alcohol produced during fermentation, resulting in wines with lower alcohol content right from the start . It is

one of the most common methods for producing wines with lower or reduced alcohol content. Techniques such as juice

dilution and juice filtration with membranes or enzymes are employed at this stage. Additionally, viticultural practices such

as early harvesting, growth regulators, reducing leaf area to limit photosynthetic rate, and pre-harvest irrigation are cited

by Schelezki et al. . Specific viticultural methods can produce a wine with lower alcohol content and higher acidity,

which can then be blended with a more mature fermented juice. Although these methods are known to decrease ethanol

concentration by 3% (v/v), the resulting wines may have unpleasant, acidic, and unripe flavors .

Juice Dilution

The addition of water to the must to reduce the concentration of fermentable sugars effectively reduced the characteristics

of Cabernet Sauvignon and Shiraz wines. However, it is necessary to find a limit to avoid changes in the sensory profile of

wines, as demonstrated in other studies .

Juice Filtration with Membranes

Nanofiltration, ultrafiltration, or reverse osmosis membranes retain sugar from the must before fermentation. The filtered

juice is then fermented to produce wine with reduced alcohol content. Several studies have investigated this technology’s

use and reported positive results that do not affect essential compounds such as polyphenols, malic acid, and tartaric

acid, with no significant changes in the sensory profile of the wines .

Use of Enzymes

The use of enzymes, specifically glucose oxidase (GOX), has shown to be an effective technique in reducing the alcohol

content of wines by reducing glucose in grape juice before the fermentation process and has been the subject of

numerous studies . Derived from the fungus Aspergillus niger, the GOX enzyme promotes the conversion of

β-D-glucose into D-glucono-lactone, releasing H O , and subsequently catalyzes the conversion of D-glucono-lactone into

gluconic acid, producing gluconic acid . These reactions are responsible for the oxidation of fermentable sugars in the

juice, thus preventing ethanol formation during fermentation. Applying the GOX enzyme has been shown in assays to

decrease alcohol content by approximately 2% v/v  to 4.3% v/v . Petkova et al.  found a 28% reduction in glucose

after enzyme application, preserving some glucose and fructose for yeast fermentation in a second treatment. Additional

studies observed not only reduced alcohol content but also decreases in heptyl acetate concentration, certain alcohols

with floral notes, and ketones with floral and fruity notes in the wines .

Viticultural Practices

Early grape harvesting is another widely used pre-fermentation method to reduce alcohol in wines, involving either early

harvesting or blending mature grapes with early-harvested ones. This approach has shown promise, achieving about a

3% v/v decrease in ethanol content . In studies with Pinot Noir and Tannat grape varieties, this technique not only

lowered alcohol content but also decreased pH and total acidity without affecting other wine constituents .

Therefore, regarding viticultural practices, it is essential to carefully consider early harvest to maximize grape flavor

compounds for the final wine style. However, this approach may not be appropriate for all wine styles. Early harvest can

be beneficial when there is a rapid onset of berry shrivel. Still, options for color enhancement in red wines should be

considered depending on how early the harvest is conducted .

Using growth regulators also appears to be a viable option, as they can reduce the sugar concentration in the berries,

resulting in lower wine alcohol content . Naphthaleneacetic acid, used as an antitranspirant on Syrah grapes

during pre-veraison, led to delayed berry ripening. This delay allowed better management of sugar accumulation and

resulted in wines with no significant changes in sensory profiles .

Grapevine canopy management, a crucial viticultural practice for vineyard balance, significantly influences sugar

accumulation in grapes . Reducing leaf area through severe pruning or leaf removal at various growth stages

minimizes fermentable sugar accumulation, lowering ethanol content in the resulting wine . Zhang et al.  compared

basal and apical defoliation, observing lower alcohol content in Shiraz grapes and wines with minimal impact on aromatic

properties. Similar outcomes were reported by Poni et al. , achieving significantly reduced total soluble solids and

alcohol concentration without affecting phenolic composition through leaf removal above the grape cluster zone in

Sangiovese after veraison. Other studies have aimed to reduce the alcohol content in wine through leaf area reduction 

. However, shoot thinning in Carot Noir grapes (a red interspecific hybrid of Vitis) increased soluble solids and

alcohol content , as it did in Cabernet Sauvignon grapes . Demonstration that the effects of shoot thinning practices
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are unclear and depend on the grape variety. A previous study on shoot thinning found that shoot-thinned Marechal Foch

(a red interspecific hybrid of Vitis) vines showed higher total soluble solids (ᵒBrix) and berry anthocyanin concentrations

compared to un-thinned vines . However, the increase in berry anthocyanin did not result in higher anthocyanin

concentration in the final wine. Furthermore, shoot thinning did not affect the sensory perception of the “fruitiness” of the

wines . In contrast, a study focused on Corot noir and the implementation of shoot thinning provided inconsistent

results in grape and wine quality across a two-year evaluation (2008–2009). The evaluation was determined by soluble

sugars (ᵒBrix), pH, titratable acidity (TA), wine anthocyanin, berry, and wine tannin content. The study found that shoot

thinning increased berry ᵒBrix, wine alcohol concentration, and anthocyanin concentration only in the second year .

2.1.2. Reduce or Limit Ethanol after Winemaking

The following category relates to post-fermentation procedures. In this phase, physical methods for alcohol removal,

including extraction, membrane separation, or distillation, are applied.

Alcohol Removal via Extraction Methods

Extraction can be carried out using gases, organic solvents (not for wine used commercially), or adsorbents.

The unique properties of carbon dioxide (CO ), including its ability to transform into a supercritical fluid under specific

temperature and pressure conditions, make it an effective compound for extracting organic compounds, such as ethanol

in wine. In its liquid state within the wine, CO  has an affinity for the carbon chain of ethanol, facilitating its dissolution. As

it transitions back to a gaseous state, it carries the dissolved ethanol, reducing the ethanol content in the wine .

According to Ruiz-Rodríguez et al. , extraction carried out with supercritical CO  in white, red, and rosé wines has

proven to be an advantageous alternative. Besides removing ethanol from beverages, it leaves no residues in the wines

and does not alter their aromatic profile or antioxidant activity. Furthermore, it is an economical, safe, and easy-to-handle

solvent . Other organic solvents like pentane and hexane are also used to remove ethanol from wines but may remove

other aromatic compounds, affecting the final taste of the wines . Hydrophobic adsorbents like zeolites are used in the

production of dealcoholized wine. Nikolaou et al.  reported a conversion rate of 69.2% of malic acid content and the

production of wines with low ethanol content. According to Akyereko et al. , this method enables the production of

wines with an ethanol content of 0.5% v/v.

Alcohol Removal through Membrane-Based Processes

The separation through the use of membranes refers to physical separation techniques aimed at reducing or eliminating

the alcohol content of wine through a semipermeable membrane. In this method, a natural osmotic pressure occurs due to

the difference in concentration between two solutions flowing through the semipermeable membrane (tangentially, in

parallel, or circularly). As a result, alcohol and water from the wine move from the more concentrated solution to the less

concentrated one, reducing or eliminating ethanol from the wine . The most commonly used membrane

separation techniques include nanofiltration, reverse osmosis (RO), osmotic distillation (OD), and pervaporation (PV).

Besides its application in pre-fermentation to lower the sugar content in the must, nanofiltration can also be employed for

alcohol removal from finished wines . The semipermeable membrane has a size ranging from 1 to 10 nm,

allowing the rejection of smaller molecules (such as sugars and proteins) at a pressure of about 75 bar, surpassing

ultrafiltration membranes . Some studies demonstrate the advantages and effectiveness of this technique compared to

the reverse osmosis technique, which, in addition to reducing the alcohol content of wine, preserves its organoleptic

characteristics with fewer losses in anthocyanins at lower pressures, making the process more cost-effective .

On the other hand, the RO process involves the application of high pressures, in the range of 60 to 80 bar, under which

water and ethanol molecules are forced through the semi-permeable membrane, leaving behind a retentate with the

remaining compounds. Simultaneously, a permeate flow is generated, containing higher amounts of water and ethanol

due to their smaller molecular size . However, adding water to the retentate is necessary to achieve efficient

dealcoholization, which becomes a disadvantage of this process since it is generally illegal or restricted in many wine-

producing countries. Additionally, this technique has other challenges related to dilution due to potential alterations in the

sensory properties of wines and the operation at high pressures .

Another membrane separation technique for producing low-alcohol wine is osmotic distillation (OD), also referred to as

evaporative perstraction (EP) or isothermal membrane distillation . This technique is based on two aqueous phases:

the wine containing volatile compounds and the water acting as the stripping liquid. Both circulate in countercurrent on

opposite sides of a hydrophobic hollow fiber membrane module. The mechanism of ethanol removal in this technique

involves the initial evaporation of ethanol due to increased temperature and the difference in partial pressure between
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ethanol in the wine and the space inside the membrane pores. Subsequently, the ethanol vapor diffuses through the

membrane pores and, upon emerging from these pores, mixes with the stripping water solution. When the ethanol vapor

comes into contact with the stripping water, it condenses into a liquid state . This evaporation, diffusion, and

condensation process allows ethanol removal from wine, with values ranging from 1.3% to 10.5% v/v, while preserving

some essential components . Reducing alcohol in wine can negatively affect its quality, causing loss of aroma,

oxidation, and spoilage due to microorganisms. Therefore, it is crucial to follow the manufacturer’s recommendations and

perform the alcohol reduction with care .

In contrast to OD, vapor permeation (PV) is a separation technique that employs dense and non-porous membranes to

separate components from liquid mixtures based on partial evaporation. In this technique, the liquid mixture comes into

direct contact with the selective side of the membrane (chemical affinity). In contrast, the permeate is collected in vapor

form on the opposite side of the membrane. Separation occurs due to a driving force, a vacuum, a sweep of inert gas

(such as nitrogen), or a temperature difference. This technique has three main steps: adsorption of the target component

onto the membrane, diffusion of this component through the membrane, and desorption on the permeate side . This

technique has been explored as a promising method for reducing the alcohol content in wines due to several advantages

applied in this context: it allows for the selective removal of ethanol from wine while preserving its aromatic profile, thus

avoiding significant losses in sensory quality; it is more energy-efficient compared to traditional distillation; there is a lower

possibility of contamination of the final product; it operates at lower temperatures than other dealcoholization methods; it

is a “clean” technique as it produces water and ethanol as byproducts that can be reused . Nevertheless, this

technique faces limitations, such as high investment costs, a limited membrane market, low permeation rates at low

temperatures, and the need to optimize operating conditions to achieve desired results .

Alcohol Removal: Thermal Processes in Winemaking

Thermal processes are widely employed to reduce the alcohol content in wines. Vacuum distillation (VD) and spinning

cone column (SCC) are methods based on the fundamental principle of heating and evaporation.

Vacuum distillation (VD) is another process for producing low-alcohol wines. It is a thermal process that, under vacuum

conditions, concerns evaporation, distillation, and condensation . VD entails heating the wine to relatively low

temperatures (typically between 15 °C and 20 °C) compared to traditional distillation. Heating is essential for evaporating

volatile compounds, particularly ethanol, from the wine. The alcohol vapor is then separated under vacuum conditions and

condensed into liquid form, yielding a distillate containing the extracted alcohol. After alcohol removal, the remaining wine

has a significantly lower alcohol content, and retention of the aromas and flavors present in the original wine can occur

under certain conditions . Furthermore, it allows for flexible adjustment of wine alcohol content based on producer and

consumer preferences. The recovered distillate can be added to the dealcoholized portion . Nevertheless, studies

indicate that while VD enhances volatile compounds, it may significantly reduce esters, alcohols, and terpenes, impacting

the wine’s aromatic complexity and sensory profile .

The SCC technique, widely used in the beverage industry for producing low-alcohol beverages, efficiently preserves

aromatic compounds . It involves rotating vertically stacked cones within a column . The alcohol removal occurs in

two phases: first, the wine undergoes SCC at a moderate temperature (26–28 °C) and reduced vacuum pressure (0.04

atm) to extract aromatic compounds. In the second phase, at higher pressure and temperature (38 °C), the alcohol

content is reduced, resulting in a low-alcohol or non-alcoholic wine, depending on the remaining ethanol. Aromas

recovered in the first phase enhance the final wine’s aroma . Studies highlight the effectiveness of SCC in reducing

wine alcohol content and recovering aromatic compounds from red, white, and rosé wines . Furthermore, a

study conducted by Puglisi et al.  suggests SCC, combined with adsorbents, as a profitable strategy for remediating

“smoke taint” in wines from grapes affected by wildfires. However, SCC technology is costly and involves expense

management .

Multi-Stage Membrane-Based Systems

Recently, an innovative approach has emerged for producing low-alcohol beverages, aiming to prevent the loss of

desirable aromatic compounds associated with single-membrane dealcoholization methods (such as NF, PV, RO, and

OD) and thermal separation processes . This approach uses an integrated membrane and distillation

system called a multi-stage membrane-based system . This technique combines two or more alcohol removal methods

to remove ethanol from wines and beers. Commonly used multi-stage membrane-based systems include nanofiltration

and pervaporation (NF–PV) systems , pervaporation units combined with distillation , and reverse osmosis-

evaporative pertraction (RO–EP) systems , with the RO–EP system being the most widely used. These combined

systems have proven highly efficient for producing low-alcohol wine, as they not only maintain aroma characteristics

[41][74]

[84][85][86]

[86][87][88]

[89][90]

[89][91][92]

[33][74][92]

[93]

[33]

[33][89]

[34][94]

[95] [55]

[96][97]

[74][95][96][97][98]

[99]

[34]

[23][74][84][85][93]

[74]

[100] [78]

[101]



similar to the original wine but often achieve improved versions compared to the original product . Despite

some losses of desirable aromatic compounds such as ethyl esters, acetate esters, and monoterpenes , the ability

of these systems to preserve the wine’s aroma and volatiles constitutes a promising strategy in the production of low-

alcohol or alcohol-free beverages, meeting the growing consumer demand for healthier and high-quality products.

2.2. Microbial Strategies for Producing Low-Alcohol Wines

The increasing trend of alcohol content in wines, linked to climate change, might result in changes in flavor and complexity

and, given the current consumer preferences, might negatively impact commercialization. Therefore, strategies limiting

alcohol production or its reduction must be defined. These techniques can be categorized into three fundamental

approaches, as mentioned earlier: pre-fermentation, fermentation processes, and post-fermentation techniques .

Focusing on microbial strategies, emphasis must be placed on the selection of fermentation microorganisms, their

proportion or time of inoculation on grape must, and the conditions during fermentation. The goal is to reduce or restrict

ethanol production during the fermentation phase. Specific yeast strains (genetically modified or non-Saccharomyces
yeasts) can also be used to reduce yeast biomass (keeping the fermentation rate of fermentable sugars as low as

possible) , or techniques such as interrupted fermentation are employed for this purpose.

2.2.1. GMO Microorganisms

Recently, genetic modifications or adaptive evolution and selection have developed modified yeast strains capable of

reducing wine alcohol content during fermentation . However, their use may pose challenges, such as

producing undesired secondary metabolites, like acetaldehyde and acetoin, that can affect wine characteristics .

Another challenge in using such yeast strains is consumer acceptance of genetically modified organisms in food and

beverages.

Given the relative simplicity of the yeast genome, its modification can be achieved. To obtain low-ethanol wine, the logical

step would be to limit the expression of the enzyme alcohol dehydrogenase (ADH), Figure 3, which catalyzes the final

step in ethanol production during alcoholic fermentation. However, this approach was deemed unpractical because strains

with ADH deletion could not grow under anaerobic conditions and the production of higher levels of acetic acid and

acetaldehyde . Hence, novel targets had to be found to redirect the metabolism from ethanol production to other

end-products . However, these changes in the metabolic pathways must be carefully monitored, as other products can

impact the overall quality of the wine .

Figure 3. Main target specific enzymes and genes in yeast cells that may lead to lower ethanol yields. HXT—hexose

transporter; Fps1p—aquaglyceroporin; GPD—glyceraldehyde-3-phosphate dehydrogenase; TPI1—triosephosphate

isomerase; PDC—pyruvate decarboxylase; ADH—alcohol dehydrogenase and ALDH—Aldehyde dehydrogenase. GOXp

—Glucose-oxidase—and Lact—lactonase—are expressions, in yeasts, of non-yeast genes.

One of the modifications that can be used to reduce ethanol production is linked to the overexpression of glycerol-3-

phosphate dehydrogenase isozymes, namely through Gpd1 and Gpd2 genes , Figure 3. Glycerol production usually

uses about 4% of grape juice carbon during fermentation by S. cerevisiae, generally in the initial stages of biomass

formation . Glycerol has two essential functions: to combat osmotic stress and to maintain the oxidation-reduction

balance. The reaction behind glycerol formation is linked to the correction of redox balance within cells . The

overexpression of these genes increases glycerol synthesis while decreasing ethanol synthesis . This increase in

glycerol production can reach as much as 548%, while the reduction in ethanol can be of great significance, as shown in

early works . Other results indicate an increase in glycerol production ranging from 109 to 275% and a reduction in

ethanol from 3 to 24%, depending on the experimental medium (yeast extract, peptone, dextrose medium, yeast nitrogen
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base medium, synthetic medium, grape juice or synthetic Leu-free) or the overexpressed gene (Gpd1 or Gpd2) .

However, other metabolites are also more produced and can cause changes in the quality of wine. Of those, succinate,

acetate, acetaldehyde, acetoin, and 2,3-butanediol , Figure 3, must be referred to, as their presence above the

sensory threshold may be detrimental to perceived wine quality . Mutant yeasts with modifications of GPD need

further genetic modifications to avoid excessive production of these metabolites. One modification is the deletion of

aldehyde dehydrogenases, namely the Ald6 gene, that contribute to the formation of acetic acid . This modification

decreased the formation of acetic acid, with increased glycerol production and lower ethanol yield . However, a

subsequent problem arose, as the deletion of Ald6 increased acetoin production, negatively affecting wine aroma. Ehsani

and collaborators  obtained a strain that produced lower ethanol levels (3%, v/v less) and higher glycerol production

with a reduced impact on sensory parameters in the final wine.

Other changes in glycerol metabolism can be achieved by changing the expression of genes linked to Fps1p, an

aquaglyceroporin channel that controls the intracellular glycerol concentration . The production of glycerol is

controlled by a regulatory domain located in the N-terminal extension of Fps1p. This domain regulates glycerol transport;

when removed, the channel becomes hyperactive. As a result, glycerol continuously leaks out of the cell, and the cell

compensates for the loss by producing more glycerol . Varela et al.  observed that the increased glycerol

production, due to deleting the regulatory domain of Fps1p, lowered ethanol formation considerably (Figure 3).

Another gene modification to reduce ethanol production can be deleting Pyruvate decarboxylase (PDC) genes. This

enzyme catalyzes the decarboxylation of pyruvate to acetaldehyde and CO , being three genes known in S. cerevisiae
(Pdc1, Pdc5, and Pdc6) up-regulated by the transcription factor Pdc2p; however, only Pdc1p and Pdc5p are known to be

active in yeast during fermentation , Figure 3. Modifying the PDC genes resulted in diverse outcomes. Deleting Pdc1
resulted in lower activity and increased pyruvate levels, which are undesirable, considering microbial stability and balance

of sulfur dioxide. Still, no reduction in ethanol, while deleting Pdc2, led to a considerable decrease in ethanol levels and

increased glycerol production while maintaining sufficient pyruvate decarboxylase activity to support glucose growth .

Further changes in this set of genes were performed by Cuello et al. , which resulted in a strain with reduced ethanol

production without effect on other fermentation kinetics.

Another gene editing that can be used to reduce the production of ethanol is modifying the expression of triose-phosphate

isomerase, encoded by the Tpi1, which is the enzyme catalyzing the interconversion between dihydroxyacetone

phosphate and glyceraldehyde 3-phosphate, the two products following the breakdown of fructose 1,6-bisphosphate ,

Figure 3. The lack of this gene resulted in high amounts of glycerol, with a reduced ethanol yield . However, the

deletion of the Tpi1 gene caused the inability of this strain to grow in a glucose medium, probably due to the reduced

content of NADH, which is produced during the conversion of glyceraldehyde 3-phosphate into pyruvate . A

complete loss of activity of the TPI1 enzyme seems like it would be more feasible, as a reduction in yeast growth with

attendant fermentation problems is likely to occur. Still, a partial reduction in its activity could provide an opportunity for

low alcohol-producing yeast. This partial reduction can be achieved by changing regulatory genes, like Gcr1 and Gcr2
(transcription factor for glycolytic genes), that can reduce the expression of Tpi1 , with mutations in other genes, like

Reb1 (an essential gene that maps on chromosome), Rap1 (Repressor Activator Protein), and Grc1 (component of the

minus-end located γ-tubulin ring complex) also able to reduce TPI1 activity . Avoiding glucose repression of respiration

has also been a target for producing low-alcohol wines. This approach relied on the use of a chimeric glucose transporter,

comprised of the amino-terminal part of HXT and the carboxy-terminal region of Hxt7 (HXT1, 2, 3, 4, 6, and 7 are

intramembrane transporter proteins known to be involved in the transport of glucose) . Using a yeast strain with

deleted Hxt1, 2, 3, 4, 6, and 7 resulted in a respiratory phenotype with low ethanol production , even though results

were achieved using low sugar concentrations medium (5%, w/v) compared to grape juice. This shifts the metabolism

from the Pasteur effect (under low O  concentrations, yeasts conduct alcoholic fermentation forming ethanol and CO , or,

under high O  concentrations, aerobic fermentation occurs with lower glucose consumption) to the Crabtree effect, where,

in the presence of high sugar content (about 200 g/L), regardless of O  presence, fermentation can occur .

A different approach is the expression, in yeasts, of non-yeast genes. Reducing the content of sugars in grape juice

before fermentation can be achieved by glucose oxidase (GOXp), an oxygen-dependent dehydrogenase that catalyzes

the first step of a two-step process associated with converting glucose to gluconic acid . Besides treating grape juice

with GOX to reduce the sugar content, a strategy that has several limitations, even though it can reduce up to 40% of

ethanol production , the introduction of the gene encoding this enzyme has already been performed in S. cerevisiae
. Microvinifications of Chardonnay juice samples resulted in wines containing 1.8–2.0% less alcohol, possibly due to

the use of glucose to produce D-glucono-δ-lactone and gluconic acid by GOX (Figure 3). Other authors overexpressed

the gene noxE from Lactoccocus lactis, encoding H O-forming NADH oxidase, NoxEp, that uses NADH, oxidizing it when

oxygen is available . The introduction of this NADH oxidase can decrease the available intracellular NADH pool,
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affecting alcohol dehydrogenase (ADH), hence resulting in reduced ethanol formation . This resulted in using only half

the available sugar but with paralleled changes in other metabolic pathways, increasing acetaldehyde production,

impairing growth, and fermentation performance. All these genetic manipulation approaches to low ethanol-producing

yeast, as well as others that might arise, will be dependent on the acceptability of both the industry and consumers of

using such yeast, pushing current research on the search for non-GMO alternatives .

2.2.2. Yeast Selection for Low Alcohol Production

One alternative to avoid GMO yeasts, designed for low-ethanol production, is to isolate those that naturally present that

trait. However, this effort for S. cerevisiae can be complex, as biochemical and physiological characteristics and the

underlying genetics of this yeast have been pushed by natural selection to favor the yield of ethanol . This has

resulted in a slight variation in this phenotype , with currently available S. cerevisiae wine yeasts resulting in similar

ethanol production when fermenting the same must . Hence, the option would be selecting non-Saccharomyces (NS)

yeasts that preferentially consume sugars by respiration rather than fermentation . Therefore, evaluation of ethanol

production variation among NS yeasts has been addressed. Using non-Saccharomyces yeasts has garnered significant

interest from the scientific community and winemakers, as the available data state (e.g., ). These yeasts can

divert carbon or sugar metabolism into other pathways, thus avoiding ethanol production during fermentation 

. Several studies have shown significantly reduced wine ethanol levels when using these yeasts. For instance,

Magyar and Toth  identified Saccharomyces uvarum, Candida stellata, and C. zemplinina strains with exciting

properties. These strains produced, in laboratory fermentations, similar residual concentrations of sugars but with

considerable chances in alcohol production, namely for C. zemplinina, with approximately half the alcohol content that

was recorded for S. cerevisiae.

Another exciting work was performed by Gobbi et al. , using Zygosaccharomyces bailii, Z. sapae, Z. bisporus, C.
zemplinina, C. stellata, Hanseniaspora uvarum, Saccharomycodes ludwigii, Dekkera bruxellensis, and S. cerevisiae, for

fermentation tests with grape juices. Results showed significantly low ethanol production in Z. bailii, Z. sapae, Z. bisporus,

and C. zemplinina, but more prominently when using H. uvarum, confirming data observed by other authors . Low

ethanol production has also been reported for strains of Metschnikowia pulcherrima, Schizosaccharomyces malidevorans
and C. stellata , Torulaspora delbrueckii , Pichia kudriavzevii and Z. bailii . Schizosaccharomyces pombe
reduced 0.65% of ethanol in the fermentation of white Airén grapes , and some Saccharomyces species can also

provide low ethanol-producing strains. A reduction of 0.7% was achieved with the use of S. uvarum , with S.
kudriavzevii also presenting interesting results . However, some adverse effects have also been linked to the use of

these alternative strains if partial aeration strategies during fermentation are applied to allow the use of sugar to be

consumed via respiration rather than alcoholic fermentation, namely the formation of undesirable volatile compounds,

including acetic acid , even though positive effects on sensory characteristics also occur .

Additionally, non-Saccharomyces yeasts play a multifaceted role in wine fermentation, potentially enhancing its sensory

profile and aromas and contributing to wine stability and complexity . Some

non-Saccharomyces possess antimicrobial properties, including the production of Killer factors (mycocins), which inhibit

the growth of undesirable yeasts (Zygosaccharomyces genus, Brettanomyces bruxellensis, among others), providing an

additional advantage . These “Killer factors”, such as CpKT1 and CpKT2 produced by Candida pyralidae, have

demonstrated effectiveness in controlling the population of undesired yeast strains, such as B. bruxellensis, in

winemaking conditions, without adversely affecting the fermentation processes of S. cerevisiae or the tested lactic acid

bacteria . Other “Killer factors”, such as KTCf20 and Pikt (produced by Wickerhamomyces anomalus), Kwkt (produced

by Kluyveromyces wickerhamii), PMKT and PMKT2 (produced by Pichia membranifaciens), have also demonstrated

potential in controlling unwanted yeast strains in vinification environments .

2.2.3. Co-Inoculations and Sequential Inoculations (Non-Saccharomyces and S. cerevisiae)

Considering some of the previously referred advantages and drawbacks of using different yeasts, two approaches to

reducing the ethanol content in wine are co-inoculation of those yeasts or their sequential introduction in fermentation.

The first approach (co-inoculation) involves concurrent inoculations of non-Saccharomyces or other Saccharomyces non-

cerevisiae yeasts at high cell concentration with S. cerevisiae, and the second approach (sequential inoculation) consists

of the start of fermentation with non-Saccharomyces or other Saccharomyces non-cerevisiae yeasts, occurring for a given

duration and inoculating S. cerevisiae to take over and complete the fermentation .

The critical factors affecting fermentation and oenological outcomes of this approach are the time leading to the

inoculation of S. cerevisiae (in sequential fermentations) and the ratio of S. cerevisiae and other yeast . Besides

ethanol changes, non-Saccharomyces or other Saccharomyces non-cerevisiae yeasts are essential due to their
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contribution to wine aroma and flavor, with several yeasts already described as contributors to that profile. Padilla et al.

 and Ivit et al.  point out several yeasts as having great oenological interest and used in co- or sequential

inoculations, which will be briefly reviewed here.

One of the most important genera is Hanseniaspora, which comprises at least ten species, H. uvarum and H.
guilliermondii being the most common. Several Hanseniaspora species have been tested in sequential or co-inoculated

fermentation with S. cerevisiae, with a recorded reduction in the ethanol content of wines. Reductions of around 1% were

achieved using sequential inoculation of H. uvarum and S. cerevisiae in synthetic grape juice , and, in white

(Sauvignon blanc) and red (Pinotage) musts, reductions in ethanol were also achieved of around 1.3% and 0.8%, for

white and red musts, respectively . Furthermore, three strains of H. uvarum, in sequential or co-inoculated

fermentations with S. cerevisiae, resulted in lower ethanol concentration when compared to fermentations with the latter

only . Also, in synthetic grape juice, a reduction in alcohol was recorded with sequential inoculation of H. osmophyla
and S. cerevisiae  and white (Sauvignon blanc) and red (Pinotage) musts; the use of H. opuntiae also resulted in less

production of ethanol . However, some studies point out the increase in acetic acid when fermentations are performed

using Hanseniaspora yeast strains .

Another important yeast already known to have essential winemaking traits is Schizosaccharomyces pombe. Besides

being able to moderate wine acidity by metabolizing malic acid, this strain enhances the color of red wine and reduces

Ochratoxin A, biogenic amines, and ethyl carbamate . In addition, some S. pombe strains used in sequential

fermentation resulted in lower ethanol content , even though a lack of reduction or even increase in alcohol has been

reported when using S. pombe, or even the presence of unsuitable aroma produced by the fermentative metabolism of S.
pombe .

An alternative non-Saccharomyces yeast of great importance is Metschnikowia pulcherrima. This non-Saccharomyces
yeast is commercially available from many suppliers and is known to improve several organoleptic characteristics of wines

. Furthermore, the production of wines with lower ethanol in sequential fermentations with S. cerevisiae has been

reported in several works, either with grape juice , synthetic grape must , Chardonnay and Shiraz musts , and

in white grape must (mixture of Malvasia and Viura varieties) . A reduction of up to 1.6% in ethanol was recorded in

Shiraz wines , with a drop of alcohol further confirmed in later works . The use of M. pulcherrima and S. uvarum
mixed inoculum, sequentially used with S. cerevisiae, reduced 1.7% v/v of ethanol compared to wine fermented with S.
cerevisiae . When immobilized, the sequential inoculation of M. pulcherrima could also reduce ethanol content in

synthetic or natural grape juice . However, results are linked to several conditions, namely aeration regimes, that must

be carefully monitored .

Lachancea thermotolerans (previously Kluyveromyces thermotolerans) is a commercially available yeast that positively

influences wine’s sensory profile and total acidity . Besides organoleptic advantages, reduction in ethanol content has

been achieved in sequential or co-inoculation. A fermentation started with L. thermotolerans and a sequential inoculation,

after two days, with S. cerevisiae, led to a reduction in ethanol up to 0.7% v/v . Mixed or sequential

fermentation with L. thermotolerans and S. cerevisiae also reduced alcohol production . Further works prove that

sequential fermentations with L. thermotolerans and S. cerevisiae can reduce the ethanol content in must of Tempranillo

grapes. Mixed fermentations of S. pombe and L. thermotolerans can lower the ethanol content in wine but may also

increase the acetaldehyde content . The sensory threshold for acetaldehyde ranges from 100–125 mg/L. Typically,

table wines have acetaldehyde levels below 75 mg/L immediately after fermentation. However, if the levels exceed 125

mg/L, it can result in unpleasant odors such as ‘over-ripe bruised apples’, ‘stuck ferment’ character, or ‘sherry’ and ‘nut-

like’ characters.

Torulaspora delbrueckii was one of the first commercially accessible non-Saccharomyces yeasts, as they had similar

fermentation patterns as S. cerevisiae and were able to enhance aroma composition and positively impacting properties

for traditional methods of sparkling wine . Several studies have proven that its use in mixed or sequential fermentation

reduced ethanol. Most of these studies refer to reductions of 0.5% or below . Higher reductions of

ethanol were recorded in other works, like 1% less alcohol using Chardonnay  or less than 1.5% using chemically

defined grape juice . However, to achieve higher levels of alcohol reduction, T. delbrueckii must be used in regular

fermentations with high aeration processes .

Another yeast commonly studied due to positive contributions during fermentations is Starmerella bombicola (formerly

known as Candida stellata). Early works by Soden et al.  with mixed and sequential fermentations with C. stellata and

S. cerevisiae resulted in less alcohol than the mono-inoculated S. cerevisiae control. Further works with sequential

fermentations using Starmerella bombicola and S. cerevisiae in Chardonnay juice yielded lower ethanol concentrations
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when compared to S. cerevisiae fermentations . Immobilizing Starmerella bombicola is a practical approach to

reducing the final ethanol content in grape must. Studies have shown that using this yeast species in the Trebbiano

Toscano grape-must and the Verdicchio grape-must significantly reduce the final ethanol content .
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