
LPC (Programming Language)
Subjects: Computer Science, Information Systems

Contributor: HandWiki Zhu

LPC (short for Lars Pensjö C) is an object-oriented programming language derived from C and developed originally by

Lars Pensjö to facilitate MUD building on LPMuds. Though designed for game development, its flexibility has led to it

being used for a variety of purposes, and to its evolution into the language Pike. LPC syntax places it in the family of C-

like languages, with C and C++ its strongest influences.

Keywords: programming language ; lpc ; lpmuds

1. Basic Structure

Almost everything in LPC is an object. However, LPC does not precisely use the concept of a class (MudOS has

something called a class, but it is really a struct). Instead, LPC objects are blueprint objects and clones of blueprint

objects, in a prototype-based programming model. One can treat a blueprint object much as a class in other object-

oriented languages.

Each object has variables (attributes) and functions (methods). The variables store the object's state; the functions are

executable routines that can be called in the object. An object is uniquely defined by the name of the file in which it comes

from, plus, if a clone, a numeric identifier. In a typical implementation, a clone of the file /lib/weapon.c which is the

third clone created in the current run session will be /lib/weapon#3 . The blueprint object corresponding to

/lib/weapon.c is simply /lib/weapon . In a MUD game, common objects include rooms, weapons, armor, and

non-player character (NPCs). Most mudlibs define inheritable objects for such common things. In the LPMud 2.4.5 mudlib,

for example, the parent object for all rooms is /lib/room .

In LPC, it is not possible to syntactically declare class-only or instance-only methods and attributes; all functions and

variables may be accessed identically in blueprints and in clones. For example, "/lib/user"->number_of_users()

would call the number_of_users() function directly in the blueprint instance of /lib/user.c . (However, a

controversial mechanism in many drivers called "shadowing" allows instance methods to be emulated to some extent by

permitting one object to "overlay" its function set onto another, in effect interposing itself between external function calls

and the shadowed object.) Direct external access to variables is also not supported; all interaction between objects is

carried out through function calls (notwithstanding that data structures pointed to by variables are independent of objects

and changes to them are visible in all objects referencing those data structures simultaneously, and that some drivers

have privileged functions allowing a cumbersome form of external variable access that permits inspection but not

mutation).

1.1. A Simple Room in a Typical Mudlib

Because LPC is generally used to code MUDs, 'rooms' are often created as objects that store information describing a

particular scene along with exits that point to other room objects. This is the most common usage of LPC. Other uses that

are not game related are possible.

The following example shows a very simple traditional room that leverages functions defined in the mudlib object

/lib/room . However, not all mudlibs define or determine rooms in the same way, so this is not the only method of

defining a room.

inherit "/lib/room"; void create() { ::create(); set_short("a simple room");

set_long("A simple room in a simple building."); set_description("This is a simple

room in a simple building. It is very nice."); add_exit("north",

"/realms/descartes/north_room"); }

object

int

string

array, declared as <type> *

mapping

float

mixed

status

The first line tells the object to inherit functionality from the /lib/room object. This example assumes the /lib/room

object defines functions for ::create(), set_short(), set_long(), set_description(), and

add_exit() .

This example contains a single function, create() . Most drivers call, or can be set to call, create() to allow an

object to initialize itself with startup values; it is the standard constructor. In this case, the example calls functions that set

up the basic room attributes in the inherited /lib/room . The functions called here are highly dependent on the mudlib

in use, since the mudlib defines the actual room parent.

1.2. Data Types

Common data types

Any LPC object, including both blueprints and clones. Available in all known drivers. Has no literal form as such.

object obj = clone_object("/std/weapon");

An integer, generally 32-bit (with many drivers, compiling to 64-bit architecture will result in 64-bit ints, but stability when

compiled to 64-bit architecture is not a common feature in LPMud drivers). Available in all known drivers. Literal form is

the bare number.

int number = 23;

A variable-length character string. One does not need to do any form of memory management or bounds

management; LPC handles that. Available in all known drivers. Literal form is the character string enclosed in double-

quotes.

string text = "Hello, world!";

An array of another data type. In most drivers, an array is defined using a type with the *

modifier, as in object *, string *, int * . Typically, only one * can be applied to a declaration, so if one

wanted an array of arrays, the declaration would be mixed * . LPC arrays are generally "rubberband" arrays that can

have their length modified after allocation. Arrays are almost universally available, though the preferred declaration

syntax differs in MudOS. Usual literal form is the list of values, separated by commas (optional after the last value),

enclosed in ({ and }) boundary markers.

int * numbers = ({ 1, 2, 3 }); string * words = ({ "foo", "bar", "baz" }); mixed *

stuff = ({ 1, "green", 48.2 });

See also: Comparison of programming languages (mapping)#LPC A hash map (associative array) of keys to

values. Supported by most drivers. Usual literal form is a ([boundary marker, followed by zero or more key-value

pairs with a colon between the key and value and a comma following the value (optional on the last key-value pair), and

a]) boundary marker.

mapping map = (["hello" : 1, "world" : 2,]);

A floating-point numeric value, generally "single-precision" rather than "double-precision". Available in all known

drivers.

float number = 3.1415;

Used to designate variables that may hold values of different types. Effectively, this disables compile-time type-

checking on the variable. LPC has strong dynamic typing; one would work with mixed type variables by checking type

information at runtime. Available in all known drivers.

mixed value = random(2) ? "hello" : 1;

Less common data types

Meant to hold a 1 or a 0 and thus represents true or false; equivalent in intention to a boolean type. In most drivers

it is implemented as an int, and so actually can hold other values. It is deprecated in MudOS, largely because of this

closure

symbol

quoted array

<type> array

class <name>

struct <name>

function

void

varargs

private

static

protected

nosave

nomask

inconsistency, and is not supported at all by Dworkin's Game Driver (DGD).

status flag = 1;

The most common function-pointer data type, mainly known to be supported by the Amylaar LPMud and LDMud

drivers. The basic literal syntax for obtaining a closure of a function is a hash mark, followed by a single quote, followed

by the function name. Constructing lambda closures is much more complex.

closure func = #'some_local_function;

Used by drivers supporting lambda closure construction (mainly the Amylaar LPMud and LDMud drivers) for

binding to variable namespace within lambda closures. Literal syntax is a single quote followed by the symbol name.

symbol var = 'x;

Also used by drivers supporting lambda closure construction, this is a special type used for designating

arrays so that they are not interpreted as closure instructions. Literal form is a single quote followed by an array literal.

Has no type declaration keyword, so variables intended to hold a quoted array would be declared mixed.

mixed quoted_array = '({ 1, 2, 3 });

The form of array declaration preferred under MudOS. The <type> * form is usually also available.

int array numbers = ({ 1, 2, 3 });

Unique to MudOS; behaves like a C struct. It is not a class in any object-oriented sense of the word.

class example { int number; string name; }; class example instance = new(class

example); instance->number = 23; instance->name = "Bob";

Unique to LDMud 3.3 and up; behaves like a C struct.

struct example { int number; string name; }; struct example instance = (<example>);

instance->number = 23; instance->name = "Bob";

The MudOS function-pointer type, similar to closure, which is usually supported as an alias. Anonymous functions

may be specified within (: :) boundaries, using $1, $2, etc. for arguments. LDMud also supports a variant of

this syntax for its closure values.

function op = (: return sqrt($1 * $1 + $2 * $2); :);

Pseudo-types and type modifiers

Used as the declaration type for the return value of a function, specifies that the function will not return a value.

Available in all known drivers.

A type modifier for function declarations; specifies that the function's argument list is intended to be variable-

length. Supported by most drivers. Some drivers support an extension to this behavior where a variable in the argument

list of a varargs function can itself receive the varargs modifier, causing it to act as a "catch-all" variable for multiple

arguments in the actual argument list, which it receives packed into an array.

A type modifier for object variable and function declarations; specifies that the affected entity should not be

available in the namespace of any inheritors or, in the case of functions, be callable by other objects. Supported by

most drivers.

A type modifier for object variable and function declarations. For variables, specifies that they should not be

serialized. For functions, specifies that they should not be callable by other objects. Supported by most drivers, but

often deprecated in favor of more sensibly designed type modifiers.

A type modifier for function declarations; specifies that the function should not be callable by other objects,

though it still appears in inheritors' function namespace, unlike the behavior of private. Supported by many drivers.

A type modifier for object variable declarations; specifies that the variable should not be serialized. Supported by

many drivers; in such drivers, static for variables is generally deprecated in favor of nosave.

A type modifier for function declarations; specifies that it should not be permitted to override the function or

otherwise obscure it in the function namespace. It is similar to the final type modifier in Java or PHP. Supported by

public

virtual

deprecated

lfun

efun

simul_efun, sefun

kfun

auto

most drivers.

Generally the default behavior, allowing unrestricted access to a variable or function, it can also usually be applied

as a type modifier that prevents public access to the variable or function from being overridden later. Supported by most

drivers.

A type modifier for inherits; specifies that when a module occurs more than once in the inheritance tree, only one

instance of its variables should be maintained. Supported by many drivers.

A type modifier for object variable and functions declarations; specifies that the affected entity is deprecated

and should not be used anymore. Any usage will cause a warning. Supported by LDMud 3.5.x.

Most drivers also support applying type modifiers to inherit statements, causing the inherited object to behave with respect

to its inheritor as if the type modifier were applied to its functions and/or variables, as appropriate.

Where the term "object variable" is used above, this means a variable which is an element of an object (i.e. an attribute),

as opposed to a local variable (exists only within a function or block) or a global variable (nonexistent in LPC — if

someone speaks of a global variable in reference to LPC, they probably mean an object variable).

1.3. Passing Values

Primitive LPC types (int, string, status, float, etc.) are passed by value. Data structure types (object, array, mapping, class,

struct) are passed by reference.

This feature can be powerful, but it can also lead to security holes. In most MUDs, the people building the world are

generally less trusted than the staff running the game. If an object passes a mapping with sensitive values like access

control information, an author of another object can modify that and thus increase their access rights. Mudlib developers

and server administrators should thus be careful when passing complex types to lower access objects.

1.4. Function Types

LPC environments generally categorize functions into several major types according to how they are implemented:

An lfun, or "local function", is defined by a blueprint object. (Clones have the same function set as their blueprint.)

They are written in LPC. Functions in a given object can call other functions within the same object using the syntax

function_name() , while functions in other objects are usually called with the syntax object-

>function_name() . Overloaded lfuns defined in objects one is inheriting can be called with the syntax

::function_name() or object_name::function_name() .

An efun, or "external function", is defined by the driver. Efuns are written in C and compiled statically into the driver,

so they generally run much faster than other function types, but are more difficult to write and lack flexibility. They are

available in the namespace of all functions written in LPC, so, for example, the efun this_player() can be called

with the syntax this_player() , or efun::this_player() if one needs to bypass an lfun or simul_efun.

A simul_efun or sefun, "simulated external function", is written in LPC within the driver environment and

placed in a special object whose functions mimic efuns for purposes of syntax. So an sefun some_function() is

available as some_function() in the namespace of all LPC functions.

Dworkin's Game Driver (DGD) uses the term kfun, "kernel function", rather than efun. DGD kfuns are mostly identical

with efuns in other implementations.

DGD does not precisely have simul_efuns, but rather has an "auto object" that acts as if it is automatically inherited

by all other objects. This partially mimics the behavior of simul_efuns in other implementations.

1.5. Master Object

LPC implementations generally have a "master object", which is a specific LPC object that is loaded first by the LPC driver

and which essentially controls what will happen past that point. The master object will typically tell the driver where the

simul_efun object is, preload any objects which need to be present at startup, define what functions will be called when an

object is loaded, and otherwise configure the driver's operation. The driver will refer back to the master object when it

needs to interact with a central point of reference for the running environment, such as for accepting network connections,

handling errors, and validating attempts to perform privileged operations.

Retrieved from https://encyclopedia.pub/entry/history/show/73177

