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Recently, great attention has been devoted to the problem of the undecidability of specific questions in quantum

mechanics. In this context, it has been shown that the problem of the existence of a spectral gap, i.e., energy

difference between the ground state and the first excited state, is algorithmically undecidable. Using this result

herein proves that the existence of a quantum phase transition, as inferred from specific microscopic approaches,

is an undecidable problem, too. Indeed, some methods, usually adopted to study quantum phase transitions, rely

on the existence of a spectral gap. Since there exists no algorithm to determine whether an arbitrary quantum

model is gapped or gapless, and there exist models for which the presence or absence of a spectral gap is

independent of the axioms of mathematics, it infers that the existence of quantum phase transitions is an

undecidable problem. 
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In the 1930s, Kurt Gödel proved that for some statements in mathematics it is impossible to demonstrate whether

they are true, or false. In this respect, one is faced with so-called undecidable statements. Since this pioneering

and seminal work, many examples of undecidable problems have been exhibited, and research in this area is still

fruitful because undecidable problems arise naturally in many branches of mathematics . Intriguingly, it is worth

finding out whether certain fundamental questions of physics, specifically in quantum mechanics, may be assumed

to fall in this category. In particular, a growing interest towards undecidability in quantum systems is nowadays

driven by the increased importance of quantum information .

Although rare, there are some noteworthy outcomes related to the impossibility of obtaining exact results for certain

physical models. We begin by mentioning the pioneering work of Komar , that proved the existence of

undecidable properties in quantum field theories. Specifically, he showed that there is, in general, no effective

procedure for determining whether two arbitrarily given states of a quantum system, having an infinite number of

degrees of freedom, are macroscopically distinguishable. In the framework of standard quantum mechanics, Moore

reported interesting statements on undecidability of the long-term behavior of a particle in-a-box problem . He

indeed showed that the motion with few degrees of freedom can be mapped into a Turing machine and recognized

that even if the initial conditions are known exactly, any question about their long-term dynamics is undecidable.

Again, in the context of quantum mechanics, Lloyd  showed that even though the time evolution operator for any

quantum-mechanical computer possesses a block diagonal form, the diagonal decomposition of the program state

is uncomputable if the quantum-mechanical system is capable of universal computation. It should be noted that

they are uncomputable in the sense that there is no algorithm that will approximate them to a certain, finite

precision, in finite time. Consequently, a quantum mechanical theory for a universe where local variables support

universal computation cannot supply their spectral decomposition, so that a “theory of everything” can be correct
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and basically incomplete at the same time. Furthermore, it is worth mentioning a very recent and elegant result on

the uncomputability of the phase diagram of condensed matter systems , where it is exactly demonstrated by

constructing a continuous one-parameter family of Hamiltonians that the phase diagram of the related many body

models is in general uncomputable. The undecidability of some problems was also investigated by Wolfram ,

who, assuming that physical processes can be reviewed as computations, showed that it is difficult to answer

questions about them. Specifically, using cellular automata he provided explicit examples of various formally

undecidable and computationally intractable problems, also suggesting that such problems are rather common in

physical models. It is also reported that quantum control problems, both for open and closed systems, are in

general not algorithmically solvable . This means that once a desired value for a given target has been chosen,

no algorithm can decide whether dynamics of an arbitrary quantum system can be manipulated by accessible

external interactions in such a way to reach that desired value. Moreover, undecidable systems exhibit a novel type

of renormalization group flow, revealing a form of unpredictability that is qualitatively different and more extreme

than chaotic renormalization group flows . Finally, it has also been recently shown that in quantum field theory

some questions are undecidable in a precise mathematical sense. In particular, it is demonstrated that no algorithm

can tell us whether a given two-dimensional supersymmetric Lagrangian theory breaks supersymmetry, or not .

Very recently, thermalization in isolated quantum many-body systems has also been shown to represent an

undecidable problem ; the resulting undecidability even applies to one-dimensional shift-invariant systems,

where nearest-neighbor interaction is considered and the initial state is a fixed product one.

Concerning classical results, undecidability and incompleteness were discussed by Richardson , who stated that

the theory of elementary functions is undecidable in classical analysis. From this deduction, da Costa and Doria

inferred that undecidability and incompleteness are found everywhere in mathematical physics, since, when

modelling physical phenomena, the function spaces which are usually considered all include the algebra of

elementary functions .

It should be noted that there are two ways in which one may speak of undecidability . In the first case, one says

that a single statement is called undecidable if it, or its negation, cannot be deduced starting from the axioms of the

underlying theory. In the second case, one can say that a family of problems with affirmative or negative answers is

called undecidable if no algorithm terminates with the right answer, independently of the problem belonging to the

family investigated. Hereafter, the word undecidability will be used in the sense given by the second meaning, and,

importantly, the undecidable problem we refer to can be traced back to the halting problem .

The aim of this paper is to discuss a new exact result on the undecidability in quantum mechanics. Starting from a

recent achievement on the undecidability of the spectral gap of a condensed matter system , here we will

prove that the existence of a quantum phase transition (QPT), as inferred from specific microscopic approaches, is

an undecidable problem.

To this end, we will first summarize the main achievements about QPT, with special attention towards the

theoretical methods used to trace back QPT, emphasizing their properties and range of validity. Then, we will

formally define the spectral gap for a generic microscopic model Hamiltonian, discussing a recent statement about
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its existence in quantum systems, and showing that the existence of such a gap is in general an undecidable

statement. Thus, combining these results, we infer that the existence of QPT within a generic microscopic model is

undecidable too, at least for low-dimensional systems.
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