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Intelligent agriculture imposes higher requirements on the recognition and localization of fruit and vegetable picking

robots. Due to its unique visual information and relatively low hardware cost, machine vision is widely applied in the

recognition and localization of fruit and vegetable picking robots.  Visual sensors are used to acquire image

information and the three-dimensional positioning of targets. Machine vision algorithms are used for target

recognition. Common algorithms include image segmentation, object detection, and three-dimensional

reconstruction. Image segmentation algorithms can segment target objects in complex scenes, object detection

algorithms can timely detect target objects and other interferences in images, while three-dimensional

reconstruction algorithms can convert the two-dimensional image information obtained by the camera into three-

dimensional spatial information of the target.

machine vision  fruit and vegetable harvesting robots  image recognition  visual localization

1. Visual Sensors

According to Figure 1A, visual sensors can be divided into 2D image sensors and 3D image sensors based on

whether they simultaneously acquire depth information. The information obtained by 2D image sensors includes

color, shape, texture, and other morphological characteristics. On the other hand, 3D image sensors can extract

the three-dimensional information of complex target fruits and vegetables, obtaining richer data, such as the spatial

coordinates of the target fruits and vegetables. Common visual sensors include monocular cameras, stereo

cameras, structured light cameras, and multispectral cameras. Based on the selection of 49 publications,

structured light cameras are the most commonly used visual sensors, as shown in Figure 1B.
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Figure 1. (A) Classification of visual sensors. (B) Number of publications selected for each type of visual sensor.

(C) Census algorithm flow . (D) Three-dimensional information acquisition model . (E) Basic principles of depth

information acquisition by structured light cameras . (F) FPGA implementation of stereo matching .

Therefore, the selection of visual sensors for fruit and vegetable harvesting robots varies depending on the growing

environment. Please refer to Table 1 for specific information. This table summarizes the application principles and

advantages and disadvantages of commonly used visual sensing technologies for fruit and vegetable harvesting

robots.

1.1. Monocular Camera

In the field of agriculture, monocular cameras have been widely used for target localization in harvesting robots.

The main challenge in monocular 3D object detection is the lack of depth information to infer the distance of

objects . Therefore, combining visual algorithms can address this weakness. The Beijing Institute of Intelligent

Agriculture Equipment utilizes a monocular camera to calculate the accurate coordinates of peripheral fruits by

measuring the deviation between the top fruit center and the image center  (as shown in Figure 2A). The

University of KU Leuven in Belgium has designed an apple harvesting robot  that uses a monocular camera

mounted at the center of a flexible gripper, ensuring the alignment between the gripper and the camera, simplifying

the image-to-robot-end-effector coordinate transformation and reducing image distortion (as shown in Figure 2B).

When approaching an apple, the remaining distance to the apple is calculated through triangulation. The Graduate

School of Agricultural Science at the Iwate University  uses a monocular camera to locate the center of apple fruit

and the detachment layer of the stem under natural lighting conditions, establishing their geometric relationship

with a success rate of over 90%. Zhao et al.  identify apples using a monocular camera based on color and

texture features, achieving an accuracy rate of 90%. The Industrial and Systems Engineering Department at the

University of Florida employs a single-camera system to obtain the three-dimensional position of citrus fruits for
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localization . Its characteristics are shown in Table 1. In the future, the application of monocular cameras in

agriculture needs to be further improved by combining other technological means.

Table 1. Common visual sensors used in picking robots and their application principles and advantages and

disadvantages.

Monocular 3D object detection lacks depth information, and some researchers utilize the combination of monocular

vision and LiDAR for recognition and localization tasks. Cao  utilizes two subsystems, LiDAR and monocular

vision SLAM, for pose estimation. The visual subsystem overcomes the limitation of the LiDAR subsystem, which

can only perform local calculations on geometric features, by detecting the entire line segments. By adjusting the

direction of linear feature points, a more accurate odometry system is achieved. This system realizes more

accurate pose estimation. Shu  proposes a recognition and localization method that includes LiDAR feature

extraction, visual feature extraction, tracking, and visual feature depth recovery. By fusing inter-frame visual feature

tracking and LiDAR feature matching, a frame-to-frame odometry module is established for rough pose estimation.

Zhang  designs a visual system that trains using a database obtained by coupling LiDAR measurements with a

complementary 360-degree camera. Cheng  based on distance, divides the depth map obtained from LiDAR

and monocular images into various sub-images and treats each sub-image as an individual image for feature

[9]

Types of
Sensors

Applications and
Principles Advantages Disadvantages Images

Monocular
camera

Color, shape, texture,
and other features

Simple system
structure, low cost, can

be combined with
multiple monocular

systems to form a multi-
camera system

It can only capture two-
dimensional image

information, has poor
stability, and cannot be used
in dark or low-light conditions

Stereo
camera

Texture, color, and other
features; obtaining the
spatial coordinates of
the target through the

principle of triangulation
imaging

By combining
algorithms, the

matching efficiency can
be improved, and three-
dimensional coordinate

information can be
obtained

It requires high sensor
calibration accuracy, and the
stereo matching computation
takes a long time. It is also

challenging to determine the
three-dimensional position of

edge points

Structured
camera

Obtaining three-
dimensional features

through the reflection of
structured light by the

object being measured

The three-dimensional
features are not easily
affected by background
interference and have

better positioning
accuracy

Sunlight can cancel out most
of the infrared images, and

the cost is high

Multispectral
camera

Identifying targets
based on the

differences in radiation
characteristics of

different wavelength
bands

It is not easily affected
by environmental

interference

It requires heavy
computational processing,

making it unsuitable for real-
time picking operations
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extraction. Each sub-image only contains pixels within a learning interval, thus obtaining rich pixel depth

information. Ma  uses the original image to generate pseudo-LiDAR and bird’s-eye view, and then inputs the

fused data of the original image and pseudo-LiDAR into a keypoint-based network for initial 3D box estimation.

1.2. Stereo Camera

Stereoscopic cameras capture depth information by simulating the parallax of human eyes. They utilize stereo

matching algorithms to determine the spatial positions of picking points (as shown in Figure 1C,D). The stereo

matching algorithm calculates the disparity by subtracting the horizontal coordinates of matching points in the left

and right images and then uses trigonometric measurement formulas to compute the baseline distance, the

average distance between the two cameras, and the distance between the branch skeleton feature points and the

cameras .

Based on the stereo vision approach, the depth can be determined by utilizing the disparity between two

monocular cameras . The University of Florida proposed the use of multiple monocular cameras for fruit

localization in the context of robotic harvesting . Edan  developed a stereo vision system using two monocular

cameras for the detection and positioning of watermelons. The Queensland University of Technology in Australia

 captured images of dynamic clusters of lychee using two monocular cameras and employed stereo vision

matching to calculate the spatial positions of interfered lychee clusters for picking (as shown in Figure 2C,F). The

depth accuracy range for the visual localization of lychee picking points was 0.4 cm to 5.8 cm. As shown in Figure

2D, the Chinese Academy of Agricultural Mechanization Sciences  used a mono-stereo vision sensor system to

obtain the three-dimensional coordinates of apples. Mrovlje  replaced two monocular cameras with a binocular

stereo camera system to calculate the position of objects using stereo vision matching.

Pal  uses the continuous triangulation method to generate a three-dimensional point cloud of the stereo camera.

Wei  obtains the three-dimensional information of apple tree obstacles through a binocular stereo camera. The

binocular stereo system used by Wuhan University of Technology  is implemented with the census stereo

matching algorithm and FPGA, as shown in Figure 1F. Guo  captures images of lychee clusters using a

binocular stereo vision system to obtain feature information such as the centroid and minimum bounding rectangle

of lychee fruits, thereby determining the picking points. Jiang  conducts recognition and localization research on

tomatoes and oranges in greenhouse environments using a binocular stereo vision system. The Dutch

Greenhouse Technology Company  calculates the three-dimensional coordinates of cucumber stems using a

stereo vision system. The Institute of Agricultural and Environmental Engineering  utilizes a binocular stereo

vision system to capture images of cucumber scenes and, thus, calculate the three-dimensional positions of

cucumbers. Shown in Figure 2G,H is a cucumber harvesting robot.

The advantages and disadvantages of stereo vision methods are shown in Table 1. When measuring targets, the

depth of target edges may be lost, and this phenomenon worsens as the distance decreases. Therefore, it is

difficult to accurately determine the three-dimensional positions of key points placed on target edges.
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Figure 2. (A) Tomato harvesting robot . (B) Apple picking robot . (C) Image processing of Lychee clusters in the

orchard. (a,c) Lychee image, (b,d) calculation of picking points . (D) Recognition and positioning system for

harvesting robots . (E) Components of harvesting robots . (F) Lychee harvesting robot . (G) Cucumber

harvesting robot in the IMAG greenhouse . (H) Cucumber harvesting robot in the IMAG greenhouse . (I)

Components of citrus harvesting robot . (J) Hyperspectral imaging system . (K) Region image acquisition .

(L) Tomato cluster harvesting robot system . (M) NIR image . (N) Visible spectrum image . (O) Camera

capturing pepper images with different levels of occlusion . (P) Recognition and positioning in the orchard .

(Q) Illumination system layout with three lamps . (R) Illumination system layout with three lamps . (S)

Strawberry end effector .
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1.3. Structured Camera

A structured light camera is a type of camera device that can capture surface details and geometric shapes of

objects. It consists of one or more monocular cameras and a projector. Figure 1E illustrates the basic principle of

obtaining depth information using a structured light camera . It projects a series of known patterns onto the scene

and performs correspondences between the projected frames and captured frames to obtain depth information

based on the degree of deformation . Structured light camera systems are widely used in the field of robotics

. They have the ability to measure depth with high precision and accuracy, as well as high speed , and can

obtain the three-dimensional coordinates of objects from the depth information in images .

The National Center of Research and Development for Harvesting Robots in Japan  utilizes a structured light

camera to determine the three-dimensional positions of picking targets (as shown in Figure 2E). The structured

light camera is equipped with two infrared cameras, an infrared projector, and an RGB camera. It uses the two

infrared cameras as a stereo camera to provide depth information and overlays color information with depth

information using the RGB camera. The infrared projector projects image information to improve the accuracy of

depth information. However, due to sunlight interference in outdoor environments during the daytime, most of the

infrared images are offset.

Sa  combined the detection results from color and near-infrared images to establish a deep fruit localization

system. Shimane University  constructed a cherry tomato harvesting robot equipped with a structured camera

that uses three position-sensitive devices to detect the reflected beams of crops. By scanning laser beams, the

shape and position of the crops are determined. Wang Z.  used a structured camera to measure the size

bounding box of mangoes. Rong  employed a structured camera to detect the pedicels of tomatoes. South

China University of Technology  utilized a structured camera for tomato target recognition and localization, as

shown in Figure 2L. They obtained the optimal depth value of the harvesting point by comparing the difference

between the depth average value and the original depth value of the picking point. The success rate of tomato

harvesting point localization reached 93.83%. Nankai University  used a structured camera to acquire depth

information on vegetables. The Henan University of Science and Technology  conducted edge recognition of

leafy vegetables using a RealSense D415 depth camera. They extracted coordinate values in pixel coordinates

and converted the pixel coordinates of the seedling edge to extremum coordinates. The researchers noticed that

the RealSense D415 depth camera had calibration errors and the errors increased with the distance between the

measured object and the depth camera. A ZED depth camera consists of left and right lenses and has a parallel

optical axis . The Graduate School of Science and Technology  at the University of Tsukuba used the ZED

depth camera to obtain image information of pear orchards. The right lens produced depth images, while the left

lens produced 4-channel RGB original images. When the operator’s distance to the pears was less than 50 cm, the

ZED depth camera could obtain the distance and position of the pears through its depth function. Yang  used the

Kinect V2 depth camera to obtain the three-dimensional coordinates of citrus picking targets. As shown in Figure

2I, they established the conversion relationship from the pixel coordinate system to the camera coordinate system

by calibrating the camera and obtaining the intrinsic and extrinsic parameter matrices. By setting the top left and
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bottom right points of the position bounding box as the target points, they determined the three-dimensional

coordinates of the target points. Their harvesting success rate reached 80.51%.

1.4. Multispectral Camera

With the development of spectral imaging technology, multispectral cameras have been used for fruit identification.

By integrating spectral and imaging technologies in one system, multispectral cameras can obtain monochrome

images at continuous wavelengths . Safren  used a hyperspectral camera to detect green apples in the

visible and near-infrared regions, as shown in Figure 2J. Okamoto et al.  proposed a method for green citrus

identification using a hyperspectral camera with a spectral width between 369 and 1042 nm, as shown in Figure

2K. They achieved the correct identification of 80–89% of citrus fruits in the foreground of the validation set.

Queensland University of Technology in Australia  proposed a multispectral detection system for field pepper

detection. A set of LEDs was installed behind the multispectral camera to reduce interference from natural light. By

using a threshold with near-infrared wavelengths (>900 nm) to segment the background from vegetation and a

threshold with blue wavelength (447 nm) to remove non-vegetation objects in the scene, 69.2% of field peppers

were detected at three locations, as shown in Figure 2M–O. Bac  developed a robotic harvesting system based

on six-band multispectral data with a spectral width between 40 and 60 nm. The method produced fairly accurate

segmentation results in a greenhouse environment, but the constructed obstacle map was not accurate.

References  designed a greenhouse cucumber harvesting robot based on spectral characteristics. Cucumber

recognition was conducted by utilizing the spectral differences between cucumbers and leaves, achieving an

accuracy rate of 83.3%.

2. Machine Vision Algorithms

Image segmentation, object detection, and 3D reconstruction are key technologies for the recognition and

localization of fruit and vegetable harvesting robots. In Figure 3, different algorithms are shown, including branch

and leaf segmentation, fruit and vegetable image segmentation, fruit and vegetable image detection, branch and

leaf detection, and fruit and vegetable detection. These algorithms provide effective methods for image recognition

and localization of fruit and vegetable harvesting robots.
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Figure 3. Purposes of different image detection algorithms: (a) branch and leaf segmentation ; (b) fruit and

vegetable image segmentation ; (c) fruit and vegetable image detection ; (d) branch and leaf detection ;

(e) fruit and vegetable detection ; (f) flowchart for obtaining the MFBB mask . (g–j) Results of stem and calyx

recognition: (g) results of stem and calyx recognition at gray level; (h) 3D surface reconstruction image with a

standard spherical model image; (i) ratio image of 3D surface reconstruction image and the standard spherical

model image; (j) results of stem and calyx recognition .

2.1. Image Segmentation Algorithms

In the process of fruit and vegetable harvesting robots, segmentation algorithms are used to distinguish fruits and

vegetables from the background and separate them. Traditional feature-based algorithms for segmentation include

the following methods: depth threshold segmentation, shape-based segmentation, similarity measurement, and

image binarization segmentation. Machine learning algorithms can utilize a large amount of training data for model

learning and training, thereby improving the accuracy and robustness of segmentation. As shown in Table 2,

common machine learning segmentation algorithms include semantic segmentation algorithms and instance

segmentation algorithms. Figure 4 shows the application proportion of image segmentation algorithms in the

context of harvest recognition and localization. The selection of these segmentation algorithms depends on specific

application scenarios and requirements and can be chosen and combined based on the actual situation of fruit and

vegetable harvesting robots.
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Figure 4. The proportion of image segmentation algorithm applications in harvest recognition and localization.

Table 2. Image segmentation algorithms for harvesting recognition and localization.

Algorithms
Image

Segmentation
Algorithms

Module Cite
References Object Detection

Time
Detection
Accuracy

Traditional
segmentation

Depth
thresholding

segmentation
HSV thresholding

Tomato,
orange

2.34 s
83.5–
93%

Similarity
measure

segmentation
NCC,K-means

Tomato,
orange,
lychee,

cucumber

0.054–
7.58 s

85–98%

Image
binarization

segmentation
Otsu Grape 0.61 s 90%

Shape
segmentation

algorithm

Hough circle
transform

Banana,
apple

0.009–
0.13 s

93.2%

Machine
learning

Semantic
segmentation

algorithms

PSP-Net semantic
segmentation, U-

Lychee,
cucumber

- 92.5–
98%

[61][62][63]
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(1) Depth thresholding segmentation. Depth threshold segmentation is a method of dividing an image into

different blocks by extracting key features. When the value of a specific pixel in the image is greater than the set

threshold, it is assigned to the corresponding block for segmentation. The Beijing Intelligent Agriculture Equipment

Center highlights the differences between fruit clusters and the background using the R-G color difference model

and performs depth threshold segmentation on the fruit cluster region , achieving an accuracy rate of 83.5%.

Zhao successfully segmented tomato fruits using an adaptive threshold segmentation algorithm, achieving a

recognition rate of 93% . Chongqing University of Technology used the HSV threshold segmentation algorithm

to identify citrus targets . The combination of deep threshold segmentation algorithm and other algorithms can

improve the results of recognition and localization. Suzhou University proposed an algorithm that combines Mask

R-CNN and deep threshold segmentation for the recognition and localization of row–frame tomato picking points,

and the results showed that the deep threshold algorithm helps in filtering the background, with a successful

localization rate of 87.3% and an average detection time of 2.34 s . Zhejiang University of Technology performed

initial segmentation on an image based on the deep threshold algorithm .

(2) Similarity measure segmentation. Image segmentation methods based on similarity measurement involve the

process of classifying or clustering data objects by computing the degree of similarity between two objects. As

shown in Figure 3a, Zhejiang University of Technology achieves cucumber image segmentation and detection by

individually calculating the normalized cross-correlation (NCC) matrix with the target image , with an accuracy

rate of 98%. The Suzhou Industrial Park Sub-Bureau proposed a fruit target segmentation algorithm based on a

color space reference table, which does not require complex operations on the background and can effectively

remove the background, thereby improving the real-time operability of the picking robot .

The clustering segmentation algorithm is a type of image segmentation method based on similarity measurement,

which divides pixels in the image into different clusters, each representing a particular image region or object.

When combined with thresholding and other algorithms, clustering segmentation algorithms can achieve better

segmentation results. South China University of Technology combines K-means clustering segmentation algorithm,

depth threshold segmentation algorithm, and morphological operations to obtain the image coordinates of tomato

cluster picking points . The detection time is 0.054 s with an accuracy rate of 93.83%. The experimental results

showed a significant reduction in noise within the region of the stem of interest after removing part of the

background using the K-means clustering segmentation algorithm. In the literature, K-means clustering

segmentation and Hough circle fitting were applied to achieve image segmentation of citrus fruits . The detection

time is 7.58 s with an accuracy rate of 85%. South China Agricultural University used an improved fuzzy C-means

clustering method to segment images of lychee fruits and their stems and calculated the picking points for lychee

clusters to determine their spatial positions . The detection time is 0.46 s with an accuracy rate of 95.3%.

Algorithms
Image

Segmentation
Algorithms

Module Cite
References Object Detection

Time
Detection
Accuracy

Net semantic
segmentation

Instance
segmentation

algorithms

Mask R-CNN and
YOLACT

Tomato,
strawberry,

lychee

0.04–
0.154 s

89.7–
95.78%
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(3) Image binarization segmentation. The Otsu algorithm is a classic image binarization method that uses the

grayscale histogram to determine the optimal threshold and convert the image from grayscale space to binary

space. Shandong Agricultural University utilizes the Otsu algorithm and maximum connected domain to quickly

identify and segment target grape images in two-dimensional space . This method achieves fast and effective

separation of grapes and backgrounds based on Otsu, with a recognition success rate of 90.0% and a detection

time of 0.061 s.

(4) Shape segmentation algorithm. Shape segmentation refers to the use of specific shapes to segment

meaningful regions and extract features of the targets. South China Agricultural University successfully segmented

the contour of banana stalks through edge detection algorithms . The detection time is 0.009 s with an accuracy

rate of 93.2%. The Zhejiang University of Technology and Washington State University use the Hough circle

transform method to identify apples, as it can better recognize all visible apples . The detection time ranges from

0.025 to 0.13 s, with an error rate of less than 4%. However, traditional image segmentation algorithms are

sensitive to lighting changes in natural environments, making it difficult to accurately extract information about

obstructed fruits and branches.

(5) Semantic segmentation algorithms. Semantic segmentation algorithms are machine learning algorithms that

associate each pixel in the image with labels or categories to identify sets of pixels of different categories. Jilin

University employs the PSP-Net semantic segmentation model to perform semantic segmentation of the main trunk

ROI image, extract the centerline of the lychee trunk, and obtain the pixel coordinates of the picking points in the

ROI image to determine the global coordinates of the picking points in the camera coordinate system . The

accuracy rate of this method is 98%. Combining semantic segmentation algorithms with other algorithms can

achieve better segmentation results. Nanjing Agricultural University proposes a mature cucumber automatic

segmentation and recognition method combining YOLOv3 and U-Net semantic segmentation networks. This

algorithm uses an improved U-Net model for pixel-level segmentation of cucumbers and performs secondary

detection using YOLOv3, yielding accurate localization results . The accuracy rate of this method is 92.5%.

(6) Instance segmentation algorithms. Instance segmentation not only classifies pixels but also classifies each

object, thus enabling the simultaneous recognition of multiple objects. In the identification and positioning of fruit

and vegetable picking, the main instance segmentation algorithms used are Mask R-CNN and YOLACT.

Northwestern A&F University proposed an improved Mask R-CNN algorithm for tomato recognition , with a

processing time of 0.04 s per image. The accuracy rate of this method is 95.67%. As shown in Figure 3b, detection

is performed using YOLACT, Mask R-CNN, and the improved Mask R-CNN, with the improved Mask R-CNN

producing more accurate detection results.

Beijing Intelligent Agricultural Equipment Center proposed a tomato plant main stem segmentation model based on

Mask R-CNN . The accuracy rate of this method is 93%. It locates the centerline of the main stem based on

the recognized mask features and then calculates the image coordinates of the harvesting points by offsetting

along the lateral branches from the intersection points of the centerline. The University of Lincoln in the UK

proposed a Mask R-CNN segmentation detection algorithm with critical point detection capability, which is used to
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estimate the key harvesting points of strawberries . Yu Y achieved three-dimensional positioning of strawberry

harvesting points by extracting the shape and edge features from the mask images generated by Mask R-CNN .

The accuracy rate of this method is 95.78%. South China Agricultural University proposed a method for main fruit

branch detection and harvesting point localization of lychees based on YOLACT . The detection time is 0.154 s

with an accuracy rate of 89.7%. As shown in Figure 3f, this method utilizes the instance segmentation model

YOLACT to obtain clusters and masks of the main fruit branches in the lychee images and selects the midpoint as

the harvesting point. At the same time, it uses skeleton extraction and least squares fitting to obtain the main axis

of the lychee’s main fruit branch mask, thereby obtaining the angle of the lychee’s main fruit branch as a reference

for the robot’s harvesting posture. The use of machine-learning-based image segmentation algorithms allows for

the separation of targets and backgrounds, enabling robots to more accurately recognize and locate crops. By

automatically learning rules from data, the crop recognition and localization capabilities of robots are improved.

2.2. Object Detection Algorithm

The object detection algorithm is a key algorithm in the recognition and localization work of fruit and vegetable

harvesting robots. Researchers have conducted extensive research on the stability, real-time performance, and

accuracy of object detection algorithms. Among them, the YOLO object detection model has the characteristics of

fast detection speed, small model size, and easy deployment. Figure 5 shows the commonly used YOLOv7 model

structure, while the proportion of YOLO model optimization methods applied in harvest recognition and localization

is depicted in Figure 6. In order to improve the performance of the algorithm, researchers have taken some

optimization measures, as shown in Table 3, such as adding residual modules (ResNet), changing or replacing the

backbone feature extraction network, combining the K-means clustering algorithm, adding attention mechanism

modules, improving activation functions, etc.
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Figure 5. YOLO Model.

Figure 6. The proportion of applied YOLO model optimization methods in harvest recognition and localization.
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Table 3. YOLO model optimization algorithm.

(1) Introducing residual modules ResNet. The Residual Network (ResNet) module allows the YOLO object

detection model to perform deeper processing. The idea behind ResNet is to establish direct connections between

preceding and subsequent layers to aid gradient backpropagation . Chongqing University of Posts and

Telecommunications introduced residual modules based on YOLOv4 and constructed a new network that

enhances small object detection in natural environments . The accuracy rate of this method is 94.44%, with a

detection time of 0.093 s. South China Agricultural University incorporated the residual concept into the YOLOv3

model, addressing the issue of decreased detection accuracy due to increased network layer depth . The

accuracy rate of this method is 97.07%, with a detection time of 0.017 s.

(2) Modifying or replacing the backbone feature extraction network. The role of the backbone feature

extraction network is to extract more feature information from the image for subsequent network usage. Several

studies have proposed improved backbone feature extraction network schemes. Hunan Agricultural University 

designed a new backbone feature extraction network based on YOLOv3 for fast detection of citrus fruits in natural

environments. The accuracy rate of this method is 94.3%, with a detection time of 0.01 s. Qingdao Agricultural

University  combined the fast detection capability of YOLOv3 with the high-precision classification ability of

DenseNet201, enabling precise detection of tea shoots. The accuracy rate of this method is 95.71%. DenseNet201

utilizes multiple convolutional kernels on smaller-sized feature maps to extract rich features and mitigate gradient

vanishing problems. Shandong Agricultural University  replaced the YOLOv5 model with multiple LC3, DWConv,

and Conv modules, reducing network parameters while enhancing the fusion of shallow-level features, facilitating

the extraction of features from small objects. DWConv divides standard convolution into depthwise convolution and

pointwise convolution, promoting information flow between channels and improving operation speed. The accuracy

Specific Methods Cite
References Object Detection

Time
Detection
Accuracy

Introducing residual modules ResNet Tomato, lychee
0.017–
0.093 s

94.44–
97.07%

Modifying or replacing the backbone
feature extraction network

Citrus, tea tooth,
cherry, apple,
green peach

0.01–
0.063 s

86.57–97.8%

Applying the K-means clustering
algorithm for combining predicted

candidate boxes

Tomato, citrus,
lychee, cherry

tomato
0.058 s 79–94.29%

Incorporating attention mechanism
modules

Apple, tomato
0.015–
0.227 s

86.57–97.5%

Enhancing the activation function

Apple, tomato,
lychee, navel

orange,
Emperor orange

0.467 s 94.7%
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rate of this method is 94.7%, with a detection time of 0.467 s. Dalian University  replaced CSPDarknet53 in

YOLOv4 with DenseNet to decrease gradient vanishing, strengthen feature transmission, reduce parameter count,

and achieve the detection of cherry fruits in natural environments. Northwest A&F University  replaced

BottleneckCSP with BottleneckCSP-2 in YOLOv5s for accurate detection of apples in natural environments. The

accuracy rate of this method is 86.57%, with a detection time of 0.015 s. The Shandong University of Science and

Technology  designed a lightweight backbone feature extraction detection network, LeanNet, that uses

convolutional kernels with different receptive fields to extract distinct perceptual information from the feature map. It

generates local saliency maps based on green peach features, effectively suppressing irrelevant regions in the

background of branches and leaves for the detection of green peaches in natural environments. The accuracy rate

of this method is 97.3%.

(3) Applying the K-means clustering algorithm for combining predicted candidate boxes. Based on YOLOv3,

the feature extraction capability of the model can be enhanced by performing K-means clustering analysis on the

predicted bounding boxes of leafy objects . South China Agricultural University  proposed a small-scale

lychee fruit detection method based on YOLOv4. This method utilizes the K-means++ algorithm to cluster the

labeled frames to determine anchor sizes suitable for lychees. The K-means++ algorithm solves the problem of the

K-means algorithm being greatly affected by initial values. The accuracy rate of this method is 79%. Guangxi

University  proposed an improved YOLOv3 algorithm for cherry tomato detection. This algorithm uses an

improved K-means++ clustering algorithm to calculate the scale of the anchor box, thereby extracting more

abundant semantic features of small targets and reducing the problems of information loss and insufficient

semantic feature extraction of small targets during network transmission in YOLOv3. The accuracy rate of this

method is 94.29%, with a detection time of 0.058 s.

(4) Incorporating attention mechanism modules. The attention mechanism module can focus more on the pixel

regions in the image that have a decisive role in classification while suppressing irrelevant regions. Northwest A&F

University  added the SE module to YOLOv5s for fast apple recognition on trees. The accuracy rate of this

method is 86.57%, with a detection time of 0.015 s. Jiangsu University  integrated the CBAM module into

YOLOX-Tiny to achieve fast apple detection in natural environments. The accuracy rate of this method is 96.76%,

with a detection time of 0.015 s. Shandong Agricultural University  proposed the SE-YOLOv3-MobileNetV1

algorithm for tomato ripeness detection, which achieved significant improvements in terms of speed and accuracy

by introducing the SE module. The accuracy rate of this method is 97.5%, with a detection time of 0.227 s.

(5) Enhancing the activation function. Activation functions provide nonlinear functionality in the network

structure, playing an important role in network performance and model convergence speed. Improved activation

functions can enhance the detection performance of the model. For example, Dalian University  replaced the

activation function with ReLU in their research on the YOLOv4 object detection model. This improvement increased

inter-layer density, improved feature propagation, and promoted feature reuse and fusion, thereby improving

detection speed. The accuracy rate of this method is 94.7%, with a detection time of 0.467 s. In addition, other

studies  have achieved fruit target detection by deepening the network model and processing the dataset

to identify regions of interest.
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2.3. A 3D Reconstruction Algorithm for Object Models

The goal of a 3D reconstruction algorithm is to convert 2D images or point cloud data into 3D object models. The

target three-dimensional reconstruction algorithms in crop harvesting recognition and localization are shown in

Table 4.

Table 4. Object three-dimensional reconstruction algorithm in crop harvesting recognition and localization.

The Norwegian University of Life Sciences  identified harvestable strawberries by fitting the 3D point cloud to a

plane. As shown in Figure 3e, they used coordinate transformation, density-based clustering of base points, and

position approximation methods to locate segmented strawberries. This algorithm can accurately determine

whether the strawberries are within the safe harvest area, achieving a recognition accuracy of 74.1%.

Nanjing Agricultural University  proposed a fast reconstruction method for greenhouse tomato plants. They used

the nearest point iteration algorithm for point cloud registration from multiple viewpoints, which has high accuracy

and stability. The accuracy rate of this method is 85.49%. Shanghai Jiao Tong University  utilized a multispectral

camera and a structured camera to reconstruct the upper surface of apple targets in 3D. Figure 3g–j shows the

schematic diagram of stem and calyx recognition results. The height information of each pixel can be calculated

using triangulation, providing a reference for identifying the picking points of apple stems, with a recognition

accuracy of 97.5%. Norwegian University of Science and Technology, Trondheim , presented a more real-time

and accurate 3D reconstruction algorithm based on ICP. This method can generate 3D point clouds with a

resolution of 1 mm and achieve optimal results through 3D registration and reference trajectory optimization on a

linear least squares optimizer. The GPU implementation of this method is 33 times faster than the CPU, providing a

reference for the recognition and localization of fruit and vegetable harvesting robots.
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