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Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity,

bioimaging to electronics or photopolymerization. Indane-1-3-dione is among one of the most privileged scaffolds in

chemistry, as the derivatives of this structure can find applications in various research fields ranging from medicinal

chemistry, organic electronics, photopolymerization, to optical sensing and non-linear optical (NLO) applications. 
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1. Introduction

Indane-1-3-dione is among one of the most privileged scaffolds in chemistry, as the derivatives of this structure can

find applications in various research fields ranging from medicinal chemistry, organic electronics,

photopolymerization, to optical sensing and non-linear optical (NLO) applications. One of its closest analogues,

namely indanone, is commonly associated with the design of biologically active compounds . The most

relevant examples in this field are undoubtedly Donepezil, which is still under use for the treatment of Alzheimer’s

disease , or Indinavir, which is used for the treatment of AIDs disease . Interest for indanone derivatives is

notably motivated by the fact that this structure can be found in numerous natural products (Caraphenol B isolated

from Caragna sinica , Pterosin B isolated from marine cyanobacterium , another derivative extracted from

filamentous marine cyanobacterium Lyngbya majuscula) , sustaining the interest for these compounds . Due

to the similarity of structure with indanone, indane-1,3-dione is also of high current interest, and this molecule has

also been extensively studied as a synthetic intermediate for the design of many different biologically active

molecules . Beyond its common use in the design of biologically active molecules, indane-1,3-dione is also an

electron acceptor widely used for the design of dyes for solar cells applications, photoinitiators of polymerization or

chromophores for NLO applications . As an interesting feature, indane-1,3-dione possesses an active methylene

group, making this electron acceptor an excellent candidate for its association with electron donors by means of

Knoevenagel reactions . Ketone groups can also be easily functionalized with malononitrile, enabling to convert

it as a stronger electron acceptor. 

2. Chemical Modification of the Indane-1,3-Dione Core

2.1. Synthesis of Indane-1,3-Dione
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Indane-1,3-dione can be synthesized following different synthetic procedures. Furthermore, the most

straightforward one consists in the nucleophilic addition of alkyl acetate 2 on dialkyl phthalate 1 under basic

conditions, enabling to produce the intermediate 2-(ethoxycarbonyl)-1,3-dioxo-2,3-dihydro-1H-inden-2-ide anion 3.

Then, by heating under acidic conditions, this intermediate can be hydrolyzed and decarboxylated in situ,

producing indane-1,3-dione 4 in ca. 50% yield for the two steps . However, several procedures were also

reported to access 4 by oxidation of indane 5, using various oxidizing systems such as N-hydroxyphthalimide

(NHPI) and tert-butyl nitrite (t-BuONO) , H O  with a Mn catalyst , pyridinium dichromate (PCC) in the

presence of Adogen 464 and sodium percarbonate (Na CO ·1.5 H O ) . Furthermore, in these different cases,

reaction yields remained often limited (17 and 18% yields) while requiring expensive reagents so that the first

procedure remains undoubtedly the most popular one to obtain indane-1,3-dione 4 in acceptable yield

(see Scheme 1). Recently, a two-step procedure was developed, starting from 2-ethynylbenzaldehyde 6 . By

means of a Cu-catalyzed intramolecular annulation reaction, 3-hydroxy-2,3-dihydro-1H-inden-1-one 7 was

prepared in 87% yield and a subsequent oxidation of 7 with Jones’ reagent enabled to obtain 4 in 95% yield. As

alternative, o-iodoxybenzoic acid (IBX) can also be used as an oxidant, providing 4 in similar yield (92%) .

Several strategies were also developed to convert phthalic anhydride 8 into 4 using diethyl malonate 9 and

montmorillonite KSF clay  or ethyl acetoacetate 11 in the presence of acetic anhydride and triethylamine . In

the case of substituted indane-1,3-diones, two distinct routes were developed depending on the substituents

attached on the phthalic anhydrides. Thus, in the case of electron-withdrawing groups such as nitro and chlorine

(12–14), the condensation of malonic acid in pyridine proved to be a straightforward route to access 19–21 .

Conversely, in the case of electron-donating groups such as alkyl substituents (22, 23), a specific procedure was

developed, consisting  in a Friedel–Craft reaction of 4-methylbenzoyl chloride 22 or 3,4-dimethylbenzoyl

chloride 23 with malonyl dichloride 24, followed by an acidic treatment with concentrated hydrochloric acid

furnishing after purification of the two compounds 25 and 26 in 33 and 15% yield, respectively (see Scheme 2).
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Scheme 1. Synthetic routes to indane-1,3-dione 4.
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Scheme 2. Synthetic routes to substituted indane-1,3-diones 19–21 and 25, 26.

2.2. Chemical Engineering around the Ketone Groups

2.2.1. Functionalization with Cyano Groups

2-(3-Oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile 28  and 2,2′-(1H-indene-1,3(2H)-

diylidene)dimalononitrile 29  can be synthesized by a Knoevenagel reaction of malononitrile 27 on 4 in

ethanol using sodium acetate or piperidine as the bases. In the two cases, an excess of malononitrile was used,

and the selection between the di- and the tetracyano-substituted derivative could be obtained by controlling the

reaction temperature. Thus, the dicyano compound 28 can be obtained at room temperature contrarily to the

tetracyano one 29 that is synthesized by heating the reaction media. In the case of 28, reaction yields ranging

between 61 and 85% were determined, whereas 29 could be obtained with reaction yields ranging from 34 to 45%

yield. Functionalization of substituted indane-1,3-diones (30, 32, 34) with only one dicyanomethylene group was

also examined, and several situations were found. Thus, the Knoevenagel reaction furnished a mixture of

inseparable isomers 31,31′, 33,33′ and 35,35′ when 5-methyl-1H-indene-1,3(2H)-dione 30 , ethyl 1,3-dioxo-2,3-

dihydro-1H-indene-5-carboxylate 32  or 5-fluoro-1H-indene-1,3(2H)-dione 34  were used as the starting

materials (see Scheme 3).
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Scheme 3. Synthetic routes to 28, 31, 31′, 33, 33′, 35, 35′.

Conversely, 5-alkoxy-1H-indene-1,3(2H)-diones 36a furnished selectively 37a in 63% yield as a result of the

specific activation of one of the two ketones by mesomeric effects . A similar behavior was also observed during

the synthesis of 39 , 41  and 43 , their precursors 38, 40 and 42 being substituted with halogens. The

steric hindrance generated by the substituents was another strategy to control the regioselectivity, and the

synthesis of 45 is a relevant example of this (see Scheme 4) . Concerning the symmetrically substituted indane-

1,3-diones, those bearing halogens at the 5,6-positions were the most commonly studied, as exemplified with

compounds 47  or 49 .
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Scheme 4. Synthetic routes to 37a–37d, 39, 41, 43, 45, 47 and 49.

2.2.2. Self-Condensation of Indane-1,3-Dione: The Bindone Adduct

Bindone 50 is an electron acceptor widely used due to its stronger electron-withdrawing ability compared to that

of 29. It can be easily synthesized by self-condensation of indane-1,3-dione 4 in basic conditions (triethylamine ,

sodium acetate , sodium hydride ), or in acidic conditions (sulfuric acid ) (see Scheme 5).

[25]
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Scheme 5. Synthesis of bindone 50.

2.2.3. Formation of bis-Thiazoles and bis-Thiazolidinone

Indane-1,3-dione 4 and corresponding derivatives have been extensively studied for their biological activities

ranging from antitumor, antibacterian and anti-inflammatory activities . Parallel to this, 1,3,4-

thiadiazole groups also exhibit biological activities  so that their combinations were

examined . From a synthetic viewpoint, bis-thiazoles could be obtained in two steps starting from indane-1,3-

dione 4. By first reacting 4 with hydrazinecarboxamide 51 in ethanol, in the presence of triethylamine, 2,2′-((1H-

indene-1,3(2H)-diylidene)bis(hydrazine-1-carboxamide) 52 could be obtained. Then, upon reaction with a number

of N-aryl-2-oxopropane-hydrazonoyl chloride derivatives 53–55, bis-thiazoles 56–58 could be isolated with reaction

yields ranging from 78 to 89%. Using a similar procedure, reaction of 52 with ethyl (N-

arylhydrazono)chloroacetate 59–61 could furnish the corresponding bis-thiazolidinone 62–64 in high yields (79–

90%) (see Scheme 6).

[13][42][43][44][45]
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Scheme 6. Synthetic route to bis-thiazoles and bis-thiazolidinone starting from 4.

2.3. Chemical Engineering around the Aromatic Groups

2.3.1. Polyaromatic Structures

To improve the electron-accepting ability of 4, an alternative to the substitution of indane-1,3-dione with

malononitrile consists in developing polyaromatic structures. Notably, naphthalene derivatives were prepared,

following the same synthetic route to that used for 4, consisting in the condensation of ethyl acetate 66 on diethyl

naphthalene-2,3-dicarboxylate 65 in solvent-free and basic conditions. After decarboxylation, 67 could be prepared

in 91% yield for the two steps . Introduction of lateral groups onto 67 is possible but involves a

specific route to be developed. A Diels–Alder reaction between l,3-diphenylbenzo[c]furan 69 and cyclopent-4-ene-

l,3-dione 70 furnishes the 1,3-diphenylbenzo[c]furan-cyclopent-4 ene-1,3-dione adduct 71. By dehydration in acidic

conditions (HCl/H SO ), 71 could be converted to 72 in 25% yield. Recently, the design of a helical-shaped

structure 75 was reported . If the structure is innovative, the synthesis is identical to that used for 4, starting from

dimethyl naphthalene-1,2-dicarboxylate 73 (see Scheme 7).

[12][56][57][58][59][60]

2 4
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Scheme 7. Synthetic routes to 68, 72 and 75.

2.3.2. Halogenated Indane-1,3-Diones

Halogenation of indane-1,3-dione derivatives subsequent to their synthesis is not possible such that such

derivatives can only be obtained by first introducing halogens onto their corresponding precursors. Notably, as a

first synthetic approach, halogenated phthalic anhydrides were converted as indane-1,3-diones using ethyl

acetoacetate, and a series of halogenated indane-1,3-diones 76–82 is presented in Scheme 8 .

Parallel to this, the strategy previously mentioned that AlCl -promoted acylation of a benzoyl chloride derivative

(83) with malonyl chloride 24 proved to be another effective approach to design chlorinated indane-1,3-dione

derivatives (84) (see Scheme 8).

Scheme 8. Examples of halogenated indane-1,3-diones 76–82, 84 reported in the literature.

[20][21][28][37][38][40][61]
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2.3.3. Introduction of Various Electron-Withdrawing Groups on Aromatic Ring

Nitration

As previously mentioned for halogenation, electrophilic aromatic substitution cannot be carried out on indane-1,3-

dione 4 such that a post-functionalization with nitro groups is required. To date, only few indane-1,3-diones bearing

nitro groups have been reported in the literature (see Scheme 9) .

Scheme 9. Synthesis of nitro-substituted indane-1,3-diones 19 and 21.

2.3.4. Cyanation

To the best of researchers' knowledge, no cyano-substituted indane-1,3-dione derivatives have been reported to

date. Furthermore, such acceptors are as crucial as the cyano groups, which are among the best electron-

accepting groups.

2.3.5. Introduction of Alkoxy-Carbonyl Groups

Here again, only the post-functionalization of naphthalic anhydrides was used to introduce CO R groups. An

example is provided below with 32 (see Scheme 10) . By using ethyl acetoacetate 11, anhydride acetic as the

solvent and triethylamine as the base, 32 could be obtained from 32a in 71% yield.

[21][22][62]

2
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Scheme 10. Ethoxy-carbonyl compound 32.

2.4. Chemical Engineering around the Methylene Group

2.4.1. Knoevenagel Reaction

Due to the presence of the two ketones groups on both sides of the methylene groups, indane-1,3-

dione 4 possesses a privileged group for realizing Knoevenagel reactions. In the case of indane-1,3-dione 4 and its

substituted derivatives, the condensation reaction can be carried out in the conditions initially used by Knoevenagel

in 1894 to condense benzaldehyde with ethyl acetoacetate 11, namely in ethanol with a catalytic amount of

piperidine . Typically, Knoevenagel reactions performed with 4 or 68 can be realized with reaction yields higher

than 70% (see Table 1 and Scheme 11) . As the main interest of this reaction, use of a highly polar solvent

favors the precipitation of dyes 95–114 upon cooling, and the reaction can be carried out in green conditions since

a non-dangerous solvent can be used. Additionally, the work-up can be limited to a simple filtration, avoiding the

use of complicated purification processes .

[61]
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Scheme 11. Synthesis of push–pull dyes 95–114.

Table 1. Reaction yields obtained for the synthesis of 95–114.

When 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile 28 and its analogues are involved in Knoevenagel

reactions, another amine should be used, and diisopropylethylamine (DIPEA), which is a none-nucleophilic base, is

the most popular one. As reported in several recent works, an unexpected nucleophilic addition of secondary

amines onto the cyano groups of the push–pull dyes can occur, giving rise to a cyclization reaction and producing

3-(dialkylamino)-1,2-dihydro-9-oxo-9H-indeno [2,1-c]pyridine-4-carbonitrile derivatives 115, according to the

mechanism proposed in Scheme 12.

compounds 95 96 97 98 99 100 101 102 103 104

reaction yields 88 84 88 74 94 89 92 85 84 88

compounds 105 106 107 108 109 110 111 112 113 114

reaction yields 74 85 75 82 92 87 81 78 89 85
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Scheme 12. Mechanism resulting in the synthesis of 3-(dialkylamino)-1,2-dihydro-9-oxo-9H-indeno [2,1-c]pyridine-

4-carbonitrile derivatives 115.

Numerous examples of undesired cyclization reactions have notably been reported with piperidine providing 3-

(dialkylamino)-1,2-dihydro-9-oxo-9H-indeno [2,1-c]pyridine-4-carbonitrile derivatives 115 instead of the expected

push–pull dyes . In 2019, an unprecedented nucleophilic addition of piperidine on 101 was also reported,

providing 102 after dehydration. The mechanism supporting the formation of this unexpected structure is depicted

in Scheme 13.

[62][63][64]
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Scheme 13. Mechanism supporting the formation of 117 starting from 116.

When 2,2′-(1H-indene-1,3(2H)-diylidene)dimalononitrile 29 and its derivatives are engaged in Knoevenagel

reactions, the high stability of their anions in basic conditions impedes the Knoevenagel reactions to proceed.

Therefore, acidic conditions should be used, and acetic anhydride is commonly used in this aim (see Scheme 14)

.

Scheme 14. Synthetic routes to 119 starting from 29.

Besides, several reports mention the use of the classical piperidine/ethanol conditions to condense 29 onto

aromatic aldehydes, despites the strong deactivation of the 29 anion in basic conditions. A few examples of

products obtained in these conditions are presented in Scheme 15 (121 , 123  or 125 ).

[65][66]

[67] [67] [68]
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Scheme 15. Knoevenagel reactions performed in classical ethanol/piperidine conditions.

To avoid the use of base, several authors replaced ethanol by solvents of higher boiling points such as

methylethylketone (see Scheme 16) . By refluxing 29 and 126 at elevated temperature, 127 could be obtained in

42% yield.

Scheme 16. Synthetic route to push–pull dye 127.

2.4.2. Oxidation Reaction

Among indane-1,3-dione derivatives, ninhydrin is well known, as it can be advantageously used as a revelator for

thin layer chromatography (TLC). Over the years, several strategies have been developed to access to these

structures . For instance, oxidation of indane-1-one 128 with selenium oxide (SeO ) can furnish

[69]

[70]
2
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ninhydrin 138 , but this reaction was not limited to 4, and the oxidation reaction tolerates various substituents

such as OMe, tert-Bu, Me, Br, CF  or NO  (see compounds 139–147, Scheme 17) . Direct oxidation of 4 was

also investigated to convert it, as 138 and ninhydrin 138 could be prepared in 48% yield using the dual oxidizing

system SeO /H O   in 40% yield for the two steps using iodobenzene diacetate  and 94% yield using N-

bromosuccinimide (NBS) in DMSO . However, all attempts to oxidize 4 as 138 using sodium hypochlorite failed,

and phthalic acid was isolated as the unique product of the reaction . The authors also demonstrated 138 to be

oxidized as phthalic acid, evidencing that sodium hypochlorite is a too strong oxidant. The oxidation reaction

with N-bromosuccinimide (NBS) in DMSO was not limited to indane-1,3-dione 4, and indane-1-one 149 and

indane-2-one 128 could also be oxidized using the same procedure, providing 138 in 82 and 85% yield,

respectively. Photooxidation of 4 in the presence of tetrabutylammonium hexafluorophosphate and oxygen using

Rose Bengal as the photosensitizer could convert 4 as 138 in 75% yield upon irradiation with a UV light .

Scheme 17. Synthetic route to ninhydrin 138.

2.4.3. Halogenation

[71]
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α,α-Dihalogenation reactions of carbonyl compounds have been extensively studied in the literature 

, and different procedures were thus developed for the halogenation of indane-1,3-dione 4.

Notably, traditional reagents of halogenation including N-chlorosuccinimide (NCS) or NBS in ethanol could

provide 150 and 151 in 95% and 92% yields . Several green syntheses were also developed, all based on

mechanical ball milling. Using this approach, halogenating agents such as trichloroisocyanuric acid or

tribromoisocyanuric acid could furnish 150 and 151 in 98 and 97% yields . Similarly, mechanosynthesis

of 150 could be efficiently achieved by employing sodium bromide and oxone (98% yield)  or ammonium

bromide and oxone (see Scheme 18) .

Scheme 18. Different routes for halogenation of indane-1,3-dione 4 at the methylene position.

The conversion of nucleophilic halogens to electrophilic ones could be realized by reacting Lewis acids such as

ZnBr  or AlCl  with lead tetraacetate . High reaction yields were also obtained during the synthesis of 150 while

using KBr/KBrO  (86% yield) , 1,3-dibromo-5,5-dimethylhydantoin in acetic acid (88% yield) .

Similarly, 151 could be obtained while reacting 4 with 1,3-dichloro-5,5-dimethylhydantoin in acetic acid (89% yield)

. Finally, selectfluor  (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo [2.2.2]octane bis(tetrafluoroborate)) was the

most widely studied fluorinated agent for fluorination of 4 in water while using a surfactant (Genapol LRO) (74%

yield) , sodium dodecyl sulfate in water (93% yield) , or acetonitrile as solvent (60% yield) (see Scheme 19)

. Furthermore, numerous drawbacks concerning the electrophilic fluorination with selectfluor  were reported

in the literature. Notably, parallel to the formation of the expected F  cation, formation of radical species (F ) by

[78][79][80][81][82]

[83][84][85][86][87][88]

[89]
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[85]

[91]
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single electron transfer has also been proposed, even if the mechanistic studies have not fully elucidated the

mechanism. Nevertheless, formation of an intermediate monofluorination state could be demonstrated .

Scheme 19. Fluorination reactions of indane-1,3-dione 4.

In the case of indane-1,3-dione 4, fluorination was proposed as occurring by means of an attack of the double bond

of enol onto selectfluor , followed by a deprotonation with the resulting diazoniabicyclo [2.2.2]octane species. By

iterating the reaction a second time, 152 could be obtained (see Scheme 20) . Considering that there is still a

lack of efficiency for the α,α-dibromination of 1,3-diketones, the photoredox catalysis was envisioned as a possible

alternative to conventional chemistry to improve the selectivity during bromination . Light is also a

traceless reagent so that light-promoted chemistry perfectly fits with the concepts of green chemistry. For

bromination, light-activated radical reactions are also extensively described in the literature, enabling to efficiently

generate bromine radicals.

[98]

®

[97]
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Scheme 20. Mechanism involved in the fluorination of 4.

In 2019, an interesting reaction was developed to accelerate the formation of bromide radicals and, in this aim, N-

bromosuccinimide (NBS) was irradiated in the presence of bromoacetic acid and under visible light . By this

unique combination, two concurrent bromination mechanisms could be evidenced, the first one consisting in an

electrophilic bromination resulting from the photoassisted formation of bromine, and the second one consisting in a

radical bromination process resulting from the formation of bromide radicals promoted by light (see Scheme 21).

Scheme 21. Mechanism supporting the coexistence of a radical and an electrophilic bromination pathway for the

bromination of 4.

[103]
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By the presence of these double sources of brominating agents, the exceptional reaction yield of 99% could be

obtained as well as accounts from the coexistence of both the electrophilic and the radical bromination reactions

(see Scheme 22).

Scheme 22. Synthesis of 150 using NBS as the bromination agent.

2.4.4. Cyanation

In 1977, an interesting procedure was developed to introduce a cyano group at the methylene position of indane-

1,3-dione. Inspired by the synthesis of indane-1,3-dione 4 starting from dialkyl phthalate and ethyl acetate, an

analogue procedure was proposed, where ethyl acetate 51 was replaced by acetonitrile (see Scheme 23) .

Using sodium methanoate as the base, 153 could be obtained in 78% yield.

Scheme 23. Synthetic route to 153.

2.4.5. Nitration

Nitration of the methylene group of indane-1,3-dione 4 can be performed in one step, by using nitric acid as the

reagent . Furthermore, 154 could be obtained in 78% yield (see Scheme 24).

[104]

[105]
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Scheme 24. Synthetic route to 154.
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