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Photodynamic therapy (PDT) is a promising therapeutic strategy for cancers where surgery and radiotherapy
cannot be effective. PDT relies on the photoactivation of photosensitizers, most of the time by lasers to produced
reactive oxygen species and notably singlet oxygen. The major drawback of this strategy is the weak light
penetration in the tissues. To overcome this issue, recent studies proposed to generate visible light in situ with
radioactive isotopes emitting charged particles able to produce Cerenkov radiation. In vitro and preclinical results

are appealing, but the existence of a true, lethal phototherapeutic effect is still controversial.
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| 1. Introduction

Photodynamic therapy (PDT) uses specific molecules, namely photosensitizing agents, photo-agents or
photosensitizers (PS), along with light illumination, in the presence of oxygen, to kill cancer cells, ultimately leading
to tumor eradication. PDT is also known as photoradiation therapy or photochemotherapy. PDT involves the
presence of PS, light and endogenous molecular oxygen (30,) to generate photochemical reactions. Over the past
few decades, diverse synthesized PS activation by visible and near-infrared (NIR) light has been widely
investigated [ The mechanism of PDT is based on type | and Il photo-oxidation reactions. At a specific excitation
wavelength (light photon absorption), the PS produces ROS causing oxidative cell damage which is highly

dependent on the 30, content within the tissue (2.

Unfortunately, due to shallow visible light penetration depth into tissues, the photodynamic therapeutic strategy
currently has largely been restricted to the treatment of surface localized tumors. Additional invasive strategies, i.e.,
interstitial PDT, through optical fibers are currently used for getting the visible light into the intended deep-seated
targets B4l Indeed, compared to ionizing-radiations, the light could not penetrate deeply because most tissue
chromophores absorb in the range of the visible light spectrum commonly used in clinical practice. Moreover, the
optimization of PDT modalities must consider numerous phenomena, regarding one or several main factors
(photosensitizer, light, oxygen) involved in the treatment efficacy. A specific dosimetry remains challenging owing to
their nonlinear interactions. Light penetration in the target tissue depends on its specific optical properties. If the
tissue is hypoxic or becomes hypoxic because of the PDT treatment which consumes 30,, the yield of singlet
oxygen 1O, will be lower than expected. Furthermore, making things tricky, PS concentration, light penetration and

tissue oxygenation can vary during treatments and one parameter can influence the others.
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To knock down the biotechnological barriers limiting the effectiveness of radiotherapy (i.e., curative X-ray dose to
the tumor tissue without increasing it in the healthy adjoining tissue) and PDT (low penetration of the light), it has
been proposed to use a bimodal therapy using biocompatible high-Z nanoparticles (NPs). This concept could
combine both radiotherapy and PDT strategies, two clinical proven modalities, while maintaining the main benefits
of each therapeutic strategy. Only PDT can generate 1O,, but unfortunately, the low penetration of light remains a
limiting factor. To treat deep lesions without an invasive approach, X-ray could be used as an excitation source
instead of normal light. This therapeutic approach is known as X-ray-induced PDT (X-PDT) RIBIIBIE The light
penetration limitation in the tumor tissue will be overcome and PS activation within the tumor cells will be
performed by radiotherapy. This methodology requires a material composition exhibiting appropriate physical
properties: high density for a good ionizing radiation interaction, high scintillation quantum yield and efficient energy
transfer toward the PS as well as a biocompatibility and adapted in vivo bio-distribution. However, most of the X-
PDT studies were mainly obtained with cancer cell lines or animal models bearing subcutaneous grafted cancer
cells, limiting therefore clinical relevance 29, The potential toxicity of nanoscintillators, in fact, mostly relies on
nanoparticles stability, which can be enhanced by an inorganic shell among other things. As an example, AGulX-
designed nanoplatforms which originally chelate gadolinium have been assessed in phase | and phase Il clinical
trials without evidence of any toxicity 2112 AGulX nanoparticle being a chelator, Gd3+ cations can be easily

replaced by another 3+ lanthanide.

Recently, another therapeutic strategy has been proposed, direct PS activation through Cerenkov radiation,
referred as Cerenkov-induced PDT (CR-PDT) [£38l14], Ran et al., in their proof-of principle article, postulated that
such a treatment could be a synergy between the radiotherapeutic and phototherapeutic effect, the latter involving
solely PSs activation (121, However, despite the various recent studies demonstrating a real benefit in terms of
tumor growth decrease, there is still a debate about the presence of a cytotoxic phototherapeutic effect L8], Indeed,
the number of photons absorbed by the PS being lower than those involved in PDT, the amount of 1O, produced is
dramatically low.

| 2. Cerenkov Light

Cerenkov light is a luminescence signal produced by charged particles. Two conditions must be present to enable
such an effect: the medium must be dielectric and the charged particle must travel faster than the phase velocity of
light in that medium. Cerenkov photons are produced by successive polarization/depolarization of the medium
along the particle path, yielding constructive interferences 7. To make it clearer, Cerenkov radiation can be

compared with sound barrier crossing, but for light.

The Cerenkov photon yield can be computed with the Frank—Tamm formula 18:
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where dN/dx is the number of photons emitted per step length; n is the refractive index of the considered medium;
o is a time constant defined as 1/137; and 3 is the ratio between the actual particle velocity and light speed in
vacuum. Only particles, where n > 1, will be able to produce Cerenkov light. 3 is directly related to the particle

energy following the formula:

1
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Thus, to allow Cerenkov radiation, the initial particle’s energy must be:
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In biological tissues, where the refractive index is considered around 1.4, this energy threshold is around 250 keV.

This threshold is much lower than most of the radionuclides emitting 3* or B~ particles.

The Cerenkov spectrum is a continuous spectrum from UV to infra-red light where the number of photons per
wavelength is proportional to 1/A%. Cerenkov photons are not emitted isotropically from the particle, but within a
cone aligned with the direction of the travelling particle. The cone aperture of the distribution (Figure 1) is related to

the particle velocity as

1
e
cos B

Radioactive focus

Figure 1. lllustration of Cerenkov effect in a dielectric medium. A charged particle is emitted from the radioactive
focus. Its velocity in the medium is higher than light in that medium yielding Cerenkov light production in a cone.
The cone orientation is colinear to particle trajectory and its aperture is defined by particle velocity. As the particle is

faster than light, Cerenkov photons appear behind it.
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Gill et al. highlighted the luminescence vyield of several isotopes commonly used in nuclear medicine and biology
(291 They used simulations (including the true resolution of Franck—Tamm formula at each length step) to determine
the quantity and spatial distribution of Cerenkov light for each assessed element. Moreover, they validated their
simulation kernel by true experiments for five radionuclides covering energies from 0.611 up to 2.3 MeV. Table 1
summarizes the photon yield of the most common radionuclides used in nuclear medicine and Figure 2 presents
the corresponding Cerenkov spectra for the same isotopes. It is noteworthy that most of them are dedicated to
positron emission tomography. Monte Carlo simulations assessed the spatial distribution of Cerenkov photons in
biological medium. Mitchell et al. computed the volume where the charged particles energy was still higher than the
Cerenkov threshold, allowing for the conclusion that many [3 emitters produced Cerenkov light in a 2 mm-diameter
sphere 18],

Figure 2. Cerenkov spectrum for 18F, 88Ga and 8%Zr decay in biological medium. Spectra were defined between

100 and 650 nm. To ease reading, number of photons are expressed relatively to 18F at 100 nm.

Table 1. Cerenkov photon yield for main nuclear medicine elements. Data extracted from 6.

Element Z Halflife Main Emission Type Photon Yield E;.x (MeV) Epean (Mev)

c 6 20.4 min b* 6.87 0.970 0.390
18 9 110 min b* 1.32 0.63 0.252
68Ga 31 67.7 min b* 33.9 1.92 0.844
82Rb 37 1.27 min b* 80.8 3.378 1.551
74 40 78.4 h b* 2.29 0.909 0.396
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Element Z Halflife Main Emission Type Photon Yield E.x (MeV) Enean (Mev)

90y 39 64.1 h b~ 47.3 2.28 0.935
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