Applications of Peptides in Health Management and Agriculture

Subjects: Biotechnology & Applied Microbiology

Contributor: Yixian Quah , Shi-Ruo Tong , Joanna Bojarska , Katrin Giller , Sheri-Ann Tan , Zyta Maria Ziora , Tuba Esatbeyoglu , Tsun-Thai Chai

Numerous bioactive peptides have been identified from edible insect species, including peptides that were enzymatically liberated from insect proteins and endogenous peptides that occur naturally in insects. The peptides exhibited diverse bioactivities, encompassing antioxidant, anti-angiotensin-converting enzyme, anti-dipeptidyl peptidase-IV, anti-glucosidase, anti-lipase, anti-lipoxygenase, anti-cyclooxygenase, anti-obesity, and hepatoprotective activities. Such findings point to their potential contribution to solving human health problems related to inflammation, free radical damage, diabetes, hypertension, and liver damage, among others. Bioactive peptides may have a positive impact on body functions and thus benefit human health. New information reporting their beneficial effects on the health of livestock and plants is also emerging. Bioactive peptides may be produced endogenously in humans, animals, and plants.

antioxidant	antimio	crobial	bioactivity	entomophagy	livestock	nutraceutical
peptide purificat	ion	protein h	ydrolysate	protein hydrolysa	ate	

1. Introduction

Bioactive peptides may have a positive impact on body functions and thus benefit human health [1][2]. New information reporting their beneficial effects on the health of livestock and plants is also emerging. Bioactive peptides may be produced endogenously in humans, animals, and plants. Furthermore, such peptides can also be released from protein sources by enzymatic hydrolysis or prepared by chemical synthesis ^{[3][4]}. While bioactive peptides identified from hydrolyzed food proteins often range between two and twenty amino acid residues, longer endogenous peptides that occur naturally in humans and animals have been discovered ^[5]. The composition and sequence of amino acids determine the activity of bioactive peptides ^[6]. Bioactive peptides play important roles in the cardiovascular, immune, nervous, digestive, and endocrine systems. They represent a new generation of bioactive regulators, displaying hormone or drug-like activities, and exhibiting antioxidant, anticancer, antithrombotic, antihypertensive, anti-obesity, anti-inflammatory, opioid, mineral binding, immunomodulatory, antiaging, and antimicrobial effects ^{[7][8][9][10][11]}. Bioactive peptides exhibit high specificity in terms of target tissues and consequently possess low or no toxicity. Importantly, they are effective at even relatively low concentrations, which is especially important in the treatment of chronic diseases ^[5].

2. Purification and Identification of Bioactive Peptides from Insect Protein Hydrolysates

In the past 10 years, enzymatic hydrolysis has been frequently adopted as a means of producing bioactive peptides from the proteins of edible insects. In such studies, silkworm pupae were relatively popular for the purpose of bioactive peptide discovery ^{[12][13][14][15][16]}. **Figure 1** shows a general workflow employed by many studies in the discovery of bioactive peptides.

Figure 1. General workflow commonly adopted by researchers in the discovery of bioactive peptides from insect protein hydrolysates.

Among the numerous commercially available proteases, alcalase, flavourzyme, and Promod 278P were found to effectively generate functional hydrolysate/peptides from edible insects, leading to the discovery of antioxidant, (ACE), anti-angiotensin-converting anti-dipeptidyl peptidase-IV (DPP-IV), enzyme anti-obesitv and hepatoprotective peptides (Table 1). However, alcalase received the most attention as it produced more potent peptides [12][13][17]. This could be because alcalase exhibits both endo- and exo-protease activities, which allows a broad specificity in hydrolysis sites ^[12], thus providing relatively extensive hydrolysis of the insect proteins. Furthermore, some studies used multiple proteases to generate insect protein hydrolysates, either through sequential hydrolysis with different proteases or in vitro simulation of gastrointestinal digestion in which a combination of multiple gastrointestinal proteases was used. Such use of multiple proteases could improve the degree of hydrolysis and yield more low-molecular-weight peptides when compared to only using a single enzyme in the hydrolysis of insect proteins [14][15][16][18].

 Table 1. Examples of purification and identification methodologies used in the discovery of bioactive peptides from insect hydrolysates.

Insect	Peptide Sequence (Validated Activity)	Enzymatic Hydrolysis	Peptide Purification Strategy	Peptide Identification ^F	Reference
Larva of the Japanese rhinoceros beetle (Allomyrina dichotoma)	EIAQDFKTDL (Anti-obesity) AGLQFPVGR (Hepatoprotective)	Promod 278P *, pepsin, trypsin, protease NP, pancreatin, alphalase NP, alkaline protease, alcalase, neutrase, protamex	UFIECRP-HPLC	• MS/MS analysis	[<u>19][20]</u>
Larva of the white-spotted flower chafer (<i>Protaetia</i> <i>brevitarsis</i>)	SY, PF, YPY, WI (Anti-ACE)	Flavourzyme	• UF • GFC	• LC- MS/MS	[21]
Mealworm (Tenebrio molitor)	LPDQWDWR, APPDGGFWEWGD (Anti-DPP-IV)	Flavourzyme *, alcalase, papain, trypsin	• GFC	• LC- MS/MS	[22]
Mealworm (Tenebrio molitor)	LE, AKKHKE (Hepatoprotective)	Alcalase *, flavourzyme, neutrase	 UF Solid- phase extraction RP-HPLC 	LC-MSLC- MS/MS	[<u>17]</u>
Asian weaver ant larva and pupa mixture (Oecophylla smaragdina)	FFGT, LSRVP (Anti-ACE) CTKKHKPNC (Antioxidant)	SGD (Pepsin and trypsin)	UFGFCRP-HPLC	• LC- MS/MS	[<u>18]</u>
Silkworm pupa (Bombyx mori)	AAEYPA, AKPGVY (Antioxidant)	Alcalase *, papain, trypsin	• UF • RP-HPLC	• LC- MS/MS	[13]
Silkworm pupa (Bombyx mori)	SWFVTPF, NDVLEF (Antioxidant)	Alcalase *, Prolyve, Flavourzyme, Brewers Clarex	• RP-HPLC	• LC- MS/MS	[<u>12]</u>

Insect	Peptide Sequence (Validated Activity)	Enzymatic Hydrolysis	Peptide Purification Strategy	Peptide Identification	Reference
Silkworm pupa (Bombyx mori)	FKGPACA, SVLGTGC (Antioxidant)	Acidic protease, followed by neutral protease	UFGFCRP-HPLC	• LC- MS/MS	[<u>16]</u>
Silkworm pupa (Bombyx mori)	ASL (Anti-ACE)	SGD (pepsin, trypsin, and α-chymotrypsin)	UFGFCRP-HPLC	• LC-MS	[<u>15]</u>
Silkworm pupa (Bombyx mori)	GNPWM (Anti-ACE)	Neutral protease	UFIECGFCRP-HPLC	• MALDI- MS/MS	[<u>14]</u>

3. Jakupczyk, A., Karas, M., Kypczynska-ткасzyk, K., ∠ieiinska, E., ∠ieiinski, D. Current trends of bioactive peptides—New sources and therapeutic effect. Foods 2020, 9, 846.

4. Chai, T.T.: Law, Y.-C.: Wong, F.-C.: Kim, S.-K. Enzyme-assisted discovery of antioxidant peptides Enzyme generating the most active hydrolysate, which was selected for peptide purification. ACE: Anglotensin-lfrom edible marine invertebrates: A review. Mar. Drugs 2017, 15, 42. converting enzyme, DPP-IV: Dipeptidyi peptidase-IV, GFC: Gel filtration chromatography, IEC: Ion exchange Graposonaptoulbe; VigBidjarska, alog Chai, TMAL; DEInagoly, Sssikadzhaarek Dksp Micheloukiastion; NSw, Mass spectanary, K., MSoldez, Carele Parmizs H. spectator Activo ball even on converting enzyme, Stole and converted and converted activo ball even on converting enzyme, DPP-IV: Dipeptidy peptidase-IV, GFC: Gel filtration chromatography, IEC: Ion exchange Shraposonaptoulbe; VigBidjarska, alog Chair, TMAL; DEInagoly, Sssikadzhaarek Dksp Micheloukiastion; NSw, Mass spectanary, K., MSoldez, Carele Parmizs H. spectator Activo ball even on converting endotes: High micheloukiastic Liquid Chrometogoraphoes SNDIesintelst2020; 20:014:00: Activo ball digestion, UF: Ultrafiltration.

6. Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive peptides: Signaling the future. J. Cosmet. **3**eApplications; in Human Health Management

A Mobarialet, Moi Kalabio dica Egohallony, including should be parative paratike paratikes is subscription of a second provided of the provided of the structure of the structur

Introductive Apactive and an interantio attering with the structure of the structu

BabbazalEAgridon Sicteos and for 2022, eA2, at 10236 bio active peptides and their potential applications in human

14. Tao, M.; Wang,	C.; Liao, D.; Liu, H.; Zha	ealth management. ao, Z.; Zhao, Z. Purification	, modification and inhibition
--------------------	----------------------------	--	-------------------------------

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application	References	mbyx
Cricket (Gryllodes 1 sigillatus)	IIAPPER	 ACE inhibition: IC₅₀, 6.93 μg/mL 	Anti-hypertension, antidiabetic, weight control, antioxidant,	[<u>26][27]</u>	ibitory
		 Lipase inhibition: IC₅₀, 49.44 μg/mL 	and anti-inflammation		า:
1		 α-Glucosidase inhibition: IC₅₀, 22.86 μg/mL 			es. Eur.
1		 Radical scavenging activity (ABTS 			of
1		assay): IC ₅₀ , 15.62 mg/mL			athong,)xidant
		 Antioxidant activity (DPPH assay): 			,
1		 Fe²⁺ chelating 			tic
2		activity: IC ₅₀ , 0.14 mg/mL			oring
		 LOX inhibition: IC₅₀, 8.21 mg/mL 			
2		 COX inhibition: IC₅₀, 8.16 mg/mL 			Choi, olysate

22. Tan, J.; Yang, J.; Zhou, X.; Hamdy, A.M.; Zhang, X.; Suo, H.; Zhang, Y.; Li, N.; Song, J. Tenebrio molitor proteins-derived DPP-4 inhibitory peptides: Preparation, identification, and molecular

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application References	6
2		ACE inhibition:		l from
		IC ₅₀ , 11.14 μg/mL		
2		Lipase inhibition:		
		IC ₅₀ , 104.95 μg/mL		
2				s from
		 α-Glucosidase inhibitions LC 		
2		45.60 ug/m		d linase
_		43.00 µg/me		nsects.
		Radical scavenging		
		activity (ABTS		
2		assay): IC ₅₀ , 15.69		ptides
		mg/mL		10
	LAFSTIK	Antioxidant activity		12-
		(DPPH assay):		
2		IC ₅₀ , 0.66 mg/mL		dible
		0.		:oll.
		• Fe ²⁺ chelating		
2		activity: IC_{50} , 0.456		
		IIIg/IIIL		
		• LOX inhibition: IC ₅₀ ,		ntomol.
		12.3 mg/mL		
3				Dhe and
		COX INNIBITION:		in
		1050, 0.39 mg/me		
3	VAPEEHPV	ACE inhibition:		ptides
		IC ₅₀ , 18.85 μg/mL		V 264.7
		Lipase inhibition:		
3		IC ₅₀ , 100.13 μg/mL		
				ood
		Radical scavenging		
3		activity (ABTS		re-
				-

peptides obtained from Pterophylla beltrani (Bolivar & Bolivar) protein isolates. J. Asia-Pac. Entomol. 2020, 23, 756–761.

3 Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application References in
		assay): IC ₅₀ , 3.49 mg/mL	
3		 Antioxidant activity (DPPH assay): 	
3		IC ₅₀ , 0.29 mg/mL	6–2020
3		 Fe²⁺ chelating activity: IC₅₀, 0.155 mg/mL 	
3		 LOX inhibition: IC₅₀, 7.56 mg/mL 	nt, A.; . USA
3		 COX inhibition: IC₅₀, 8.61 mg/mL 	ent
	KVEGDLK	 ACE inhibition: IC₅₀, 3.67 µg/mL 	
4		 Lipase inhibition: IC₅₀, 115.44 μg/mL 	, growth
4		 α-glucosidase inhibition: IC₅₀, 18.37 µg/mL 	berg, th 016, 25
4		 Radical scavenging activity (ABTS assay): IC₅₀, 2.88 mg/mL 	et al.
4		 Antioxidant activity (DPPH assay): IC₅₀, 8.73 mg/mL 	Chae, owth
4		 Fe²⁺ chelating activity: IC₅₀, 0.122 mg/mL 	
4	Appl Microbial Dist	ophical 2014 00 5005	2 5922
application	12 Abbi 1000000 BIOLE	2011101. 2014, 98, 580 <i>1</i>	-3022.

⊿Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application References	operties
		 LOX inhibition: IC₅₀, 10.08 mg/mL 		a
4 antimicrobia	I	 COX inhibition: IC₅₀, 8.43 mg/mL 		the
Maahuarra				
(Tenebrio molitor)		 ACE inhibition: IC₅₀, 12.09 μg/mL 		ropin a
		Lipase inhibition:		4482.
1		1050, 113.33 µg/me		
		 α-Glucosidase inhibition: IC₅₀, 20.37 μg/ml 		ial to
		20101 µ9/112		e meal
		Radical scavenging activity (ABTS		
		mg/mL		
5	NYVADGLG	0		ision of
		Antioxidant activity (DPPH assay): ICro. 0.99 mg/ml		
5		1050, 0.33 mg/me		bal
		• Fe ²⁺ chelating		
		activity: IC ₅₀ , 0.198 mg/mL		1ol. Biol
5		 LOX inhibition: IC₅₀, 9.27 mg/mL 		ogens. ands
		COV inhibition:		unuo,
5		 COX Infibition. IC₅₀, 9.75 mg/mL 		s from
5	AAAPVAVAK	ACE inhibition:		eptide
		IC ₅₀ , 8.31 μg/mL		
_		Lipase inhibition:		
p induced exp	rossion of a cocropin	A molittin antimicrobia	l nontido dono confore antifundo	igen-

resistance in transgenic tobacco. J. Exp. Bot. 2005, 56, 1685–1695.

5Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application References	
		 α-Glucosidase inhibition: IC₅₀, 10.92 μg/ml 	۱	t Sci.
5		 Radical scavenging activity (ABTS 	g	gy and
6		assay): IC ₅₀ , 0.94 mg/mL	,	, 181–
6		 Antioxidant activity (DPPH assay): IC₅₀, 1.02 mg/mL 	i	th
		 Fe²⁺ chelating activity: IC₅₀, 0.108 mg/mL 		
		 LOX inhibition: IC₅₀, 8.36 mg/mL 		
		 COX inhibition: IC₅₀, 9.02 mg/mL 		
	YDDGSYKPH	 ACE inhibition: IC₅₀, 5.81 μg/mL 		
		 Lipase inhibition: IC₅₀, 117.94 μg/mL 		
		 Radical scavenging activity (ABTS assay): IC₅₀, 1.02 mg/mL 		
		 Antioxidant activity (DPPH assay): IC₅₀, 1.91 mg/mL 		

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application References
		 Fe²⁺ chelating activity: IC₅₀, 0.107 mg/mL LOX inhibition: IC₅₀, 6.49 mg/mL COX inhibition: IC₅₀, 8.07 mg/mL 	
	AGDDAPR	 ACE inhibition: IC₅₀, 8.34 μg/mL Lipase inhibition: IC₅₀, 77.46 μg/mL α-glucosidase inhibition: IC₅₀, 19.47 μg/mL Radical scavenging activity (ABTS assay): IC₅₀, 1.89 mg/mL Antioxidant activity (DPPH assay): IC₅₀, 1.83 mg/mL LOX inhibition: IC₅₀, 7.03 mg/mL COX inhibition: IC₅₀, 9.01 mg/mL 	
Locust (Schistocerca gregaria)	GKDAVIV	 ACE inhibition: IC₅₀, 12.82 μg/mL Lipase inhibition: IC₅₀, 53.17 μg/mL 	

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application	References
		 α-Glucosidase inhibition: IC₅₀, 15.94 μg/mL 		
		 Radical scavenging activity (ABTS assay): IC₅₀, 1.97 mg/mL 		
		 Antioxidant activity (DPPH assay): IC₅₀, 1.3 mg/mL 		
		 Fe²⁺ chelating activity: IC₅₀, 0.101 mg/mL 		
		 LOX inhibition: IC₅₀, 8.95 mg/mL 		
		 COX inhibition: IC₅₀, 8.91 mg/mL 		
	AIGVGAIER	 ACE inhibition: IC₅₀, 14.4 μg/mL 		
		 Lipase inhibition: IC₅₀, 49.95 μg/mL 		
		 α-Glucosidase inhibition: IC₅₀, 13.04 µg/mL 		
		 Radical scavenging activity (ABTS assay): IC₅₀, 1.28 mg/mL 		

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application	References
		 Antioxidant activity (DPPH assay): IC₅₀, 0.51 mg/mL Fe²⁺ chelating activity: IC₅₀, 0.101 mg/mL LOX inhibition: IC₅₀, 20, 20 mg/mL 		
		 COX inhibition: IC₅₀, 8.96 mg/mL 		
	FDPFPK	 ACE inhibition: IC₅₀, 79.25 μg/mL 		
		 Lipase inhibition: IC₅₀, 96.75 μg/mL 		
		 α-Glucosidase inhibition: IC₅₀, 5.95 μg/mL 		
		 Radical scavenging activity (ABTS assay): IC₅₀, 0.08 mg/mL 		
		 Antioxidant activity (DPPH assay): IC₅₀, 0.35 mg/mL 		
		 Fe²⁺ chelating activity: IC₅₀, 0.137 mg/mL 		
		 LOX inhibition: IC₅₀, 2.85 mg/mL 		

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application References
		 COX inhibition: IC₅₀, 7.40 mg/mL 	
		 ACE inhibition: IC₅₀, 3.25 μg/mL 	
		 Lipase inhibition: IC₅₀, 94.91 μg/mL 	
		 Radical scavenging activity (ABTS assay): IC₅₀, 2.96 mg/mL 	
	YETGNGIK	 Antioxidant activity (DPPH assay): IC₅₀, 1.4 mg/mL 	
		 Fe²⁺ chelating activity: IC₅₀, 0.257 mg/mL 	
		 LOX inhibition: IC₅₀, 7.56 mg/mL 	
		 COX inhibition: IC₅₀, 8.83 mg/mL 	
Silkworm pupa (Bombyx mori)	ΑΑΕΥΡΑ	 Radical scavenging activity (ABTS assay): IC₅₀, 70.32 µg/mL Antioxidant activity (DPPH assay): IC₅₀, 70.83 µg/ml 	Antioxidant ^[13]
	AKPGVY	Radical scavenging	
		activity (ABTS	

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application References
		assay): IC ₅₀ , 34.32 µg/mL • Antioxidant activity (DPPH assay): IC ₅₀ , 58.50 µg/mL	
Silkworm pupa (Bombyx mori)	SWFVTPF NDVLFF	 Antioxidant activity in AAPH induced HepG2 cells: 36.96% Antioxidant activity in AAPH induced HepG2 cells: 30.43% 	Antioxidant ^[12]
Silkworm pupa (<i>Bombyx mori</i>)	FKGPACA SVLGTGC	 Radical scavenging activity (ABTS assay): IC₅₀, 0.312 mM Radical scavenging activity (ABTS assay): IC₅₀, 0.181 mM 	Antioxidant [<u>16</u>]
Silkworm pupa (<i>Bombyx mori</i>)	ASL	 ACE inhibition IC₅₀, 102.15 μM 	Anti-hypertension [15]
Silkworm pupa (Bombyx mori)	GNPWM WW	 ACE inhibition: IC₅₀, 21.70 μM ACE inhibition: IC₅₀, 10.76 μM 	Anti-hypertension ^[14]

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application	References
Silkworm pupa (Bombyx mori)	PNPNTN	 Promoted Concanavalin A- induced splenocyte proliferation at 100 µg/mL 	Immunomodulation	[<u>29]</u>
Asian weaver ant (Oecophylla smaragdina)	FFGT LSRVP	 ACE inhibition: IC₅₀, 19.5 µg/mL ACE inhibition: IC₅₀, 52.7 µg/mL 	Anti-hypertension	
	СТККНКРМС	 Radical scavenging activity (ABTS assay): IC₅₀, 38.4 µg/mL Antioxidant activity (DPPH assay): IC₅₀, 48.2 µg/mL 	Antioxidant	[<u>18]</u>
Mealworm (Tenebrio molitor)	LPDQWDWR APPDGGFWEWGD	 DPP-IV inhibition: IC₅₀: 0.15 mg/mL DPP-IV inhibition: IC₅₀: 1.03 mg/mL 	Antidiabetic	[<u>22]</u>
Larva of the Japanese rhinoceros beetle (Allomyrina dichotoma)	EIAQDFKTDL	In vivo model: HFD mouse model • Reduction in body weight, TG, TC, LDL/VLDL, glucose, ALT, and AST levels.	Anti-obesity, weight control	[20]
		 Increased HDL level compared to 		

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application R	eferences
		 HFD vehicle control. In vitro model: 3T3-L1 cells Lipid accumulation assay: 30.22% of control (lowest among the identified peptides) 		
Larva of the Japanese rhinoceros beetle (<i>Allomyrina</i> <i>dichotoma</i>)	AGLQFPVGR	 In vivo model: HFD mouse model Inhibited fat deposition in the liver of HFD mouse Restored SOD, GPx, and GR gene expression levels, improving antioxidant capacity of liver cells. 	Anti-obesity, weight control, hepatoprotective	19]
Cotton leafworm (<i>Spodoptera</i> <i>littoralis</i>)	VF AVF	In vivo model: SHR rat model • A single oral administration of each peptide to SHR significantly reduced blood pressure.	Anti-hypertensive	<u>30]</u> ma tidu
Egyptian cotton leafworm (Spodoptera littoralis)	SGD hydrolysate	In vivo model: <i>Caenorhabditis</i> <i>elegans</i> • ORAC: IC ₅₀ , 0.052 mg/mL	Antioxidant [²⁸³ 61 ncr Irdii 371[38] efo 3ed

Despite the available data on the antimicrobial effects of insect-derived bioactive peptides, studies in livestock mainly investigated the effects of bioactive peptides derived from sources other than insects ^{[34][35]}. Beneficial effects of AMPs from various sources on health and performance have been shown, e.g., in poultry ^{[40][41]} and pigs

Masec t	Peptide/Hydrolysate	Bioactivity *	Potential Application	References	. The first
		Radical scavenging			valophora
	[46]	activity (ABTS			'e peptide
		[<u>47]</u> assay): IC ₅₀ , 0.24			in D were
		mg/mL			s subtilis,
		Cellular antioxidant			-KKIEKV-
		activity was similar			fed to 21-
		to ascorbic acid			antibiotics
		(positive control)			nce were
					dose of 5
	9	Protective effect in			and feed
		vivo against acute			cropin AD
		Oxidative stress			e piglets.
		ACE inhibition:			oglobulins
		IC ₅₀ , 1.922 μg/mL) effect of
					previously
		 α-amylase 			ented the
Cricket	Cationic peptide fraction	inhibition: IC_{50} ,	Antidiabetic and anti-	[<u>31]</u>	otype [<u>48</u>].
sigillatus)	and SGD hydrolysates	96.75 µg/mL	hypertension		
		 α-Glucosidase 			properties
		inhibition: IC ₅₀ ,			microbes
		13.902 µg/mL			Excessive
					ealth and
		Antithrombotic			ies when
Yellow	DD HDLC fraction of	activity at 0.2		Ŀ	^{49]} . These
mealworms	pepsin and trypsin	mg/mL:	Antithrombotic	[<u>32</u>]	t proteins
(Tenebrio molitor)	hydrolysate	approximately 30%			might be
,					
Movicop				[<u>33]</u>	
katydid	SGD hydrolysate	ACE Inhibition:	Anti-hypertension		
(Pterophylla beltrani)	SGD Hydrolysale	IC ₅₀ , 0.49 IIIg/IIIL	Anti hypertension		
	<3 kDa fraction of SGD hydrolysate				linst plant
		ACE inhibition:	Antidiabetic, Anti-		e yield of
		IC ₅₀ , 1.44 mg/mL	[<u>52</u>]		he effects
			• a amulaco		
		inhibition: ICro 0.68			
					s section,

cecropin was also found to be functional against both phytopathogenic bacteria and fungi ^[53]. Other AMPs which can target plant pathogens with different modes of action, such as sarcotoxin, attacins, defensins, and metchnikowin, were isolated from various insects. However, these AMPs displayed broad-spectrum activities

Insect	Peptide/Hydrolysate	Bioactivity *	Potential Application	References are	more
[<u>54]</u>		mg/mL			

The creation of transgenic plants expressing insect AMPs to resist bacterial and fungal infections is widely * All bioactivities were results obtained from in vitro models unless otherwise stated. AAPH: 2,2'-Azobis(2implemented in the agricultural sector. The gene coding for the apidaecins, AMPs from honeybees, was genetically amidinopropane) dihydrochloride, ABTS: 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ACE: Angiotensinengineered into the genome of the potato plant. The transgenic potato demonstrated resistance to infections from converting enzyme, COX: Cyclooxygenase, DPPH: 2,2-Diphenyl-1-picrylhydrazyl, DPP-IV: Dipeptidyl peptidase IV, plant pathogens of the *Erwinia* genus and *Agrobacterium* species ^[55]. In addition, a tomato plant expressing GPx: Glutathione peroxidase, GR: Glucocorticoid receptor, HDL: High-density lipoprotein cholesterol, HFD: Highcecropin was shown to resist wilt and spot diseases caused by the pathogenic bacteria *Ralstonia solanacearum* tat diet, LDL: Low-density lipoprotein cholesterol, LOX: Lipoxygenases, ORAC: Oxygen radical antioxidant and *Xanthomonas campestris*, respectively ^[56]. The fusion of two or more AMPs to form chimeric AMPs prior to capacity, SGD: Simulated gastrointestinal digestion, SHR: Spontaneously hypertensive rat, SOD: Superoxide transformation into plants was reported to increase the potency of the recombinant peptides to overcome future dismutase, TC: Total cholesterol, TG: Triglycerides, VLDL. Very low-density lipoprotein cholesterol. infections ^{[57][58]}. Nevertheless, the production of foreign AMP genes within the host could interfere with the plant's own gene expression system, which may indirectly affect the plant's physiology and fitness ^[45].

There are also insect-derived neuropeptides that could confer plants with insecticidal properties against herbivorous insects. These neuropeptides generally modulate the insect's behavior and physiology by interfering with the arthropod's developmental processes, which include reproduction, energy metabolism, and growth ^[59]. The injection of the neuropeptide Allatostatin Manse-AST from the tobacco hornworm (*Manduca sexta*) into the larvae of the tomato moth (*Lacanobia oleracea*) led to reduced feeding, growth retardation, and a higher mortality rate of up to 80% ^[60]. This neuropeptide is made up of the sequence pEVRFRQCYFNPISCF-OH ^[61]; it can inhibit foregut peristalsis of insect larvae, producing the aforementioned insecticidal effects ^[60].