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Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological

studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid,

curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer

effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on

the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a

prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated

mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the

expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the

expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs.

dietary polyphenols  cancer  ROS

1. Introduction

Human epidemiological studies have shown that diets high in plant polyphenols have beneficial effects on various

diseases including cancer . Researchers have discussed the anticancer effects of coffee, tea, wine, and curry

based on recent evidence from human studies, in which chlorogenic acid (CGA), (-)-epigallocatechin gallate

(EGCG), resveratrol (RES), and curcumin (CUR), respectively, are believed to be major contributors to the activity

 (Figure 1 and Table 1).
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Figure 1. Chemical structures of CGA, EGCG, RES, CUR, QUE, and GEN.

Table 1. Major food sources of polyphenols.

Quercetin (QUE) is a flavonol found in a variety of fruits and vegetables including apples, grapes, broccoli, green

tea, and onions  (Figure 1), and several human studies have shown that QUE-rich diets have anticancer

effects . For example, Ekström et al.  discovered that QUE intake had a strong inverse association with

the risk of noncardia gastric adenocarcinoma, with an adjusted odds ratio (OR) of 0.57 (95% confidence interval

[CI] = 0.40–0.83) when the highest quintile (≥11.9 mg/day) was compared to the lowest quintile (<4 mg).

Epidemiologic studies have also shown that a soy-rich diet reduces the risk of various diseases, including cancer,

and one of the main contributors is thought to be genistein (GEN), a phenolic compound  (Figure 1). Wang

et al.  discovered a lower risk of papillary macrocarcinomas in women who consumed 1860–3110 μg/day of

GEN (OR = 0.26, CI = 0.08–0.85) compared to women who consumed <760 μg/day in a population-based case-

Polyphenol Major Food Source

Chlorogenic acid (CGA) Coffee bean

(−)-Epigallocatechin gallate (EGCG) Green tea

Resveratrol (RES) Red wine

Curcumin (CUR) Curry

Quercetin (QUE) Onion

Genistein (GEN) Soy

[4][5]
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control study in Connecticut from 2010 to 2011. A meta-analysis conducted by Applegate et al.  revealed that the

pooled relative risk for GEN in the risk of prostate cancer was 0.90 (CI: 0.84–0.97).

Many epidemiological studies, on the other hand, have found that these foods have no anticancer effects . The

inconsistent results could be due to a number of confounding factors, including the quantity and quality of plant

foods consumed, as well as residual pesticides and acrylamide formed during preparation, cigarette smoking,

alcohol consumption, differences in ingredients, hormonal activities, microbiota, and genetic background .

Human intervention studies that are well-designed could provide significant evidence for the anticancer effects of

dietary foods containing these polyphenols.

The anticancer properties of these polyphenols have been demonstrated in a large number of cell-based and

animal studies, and their possible anticancer mechanisms have been proposed. Of them, one involving reactive

oxygen species (ROS) appears to be the most likely, in which these polyphenols can act as both an ROS-

generator and an ROS-scavenger .

2. Anticancer Mechanism of Tumor Suppressor miRs
Upregulated by Polyphenols

Table 2 summarizes the available data for tumor-suppressor miRs that are commonly upregulated by at least three

different polyphenols in cancer cells. Figure 2 shows that several molecules involved in the anticancer mechanism

are found in ROS-mediated pathways.  Table 2 also provides information on the modulatory effects of miRs

upregulated by these polyphenols on these molecules.

Table 2. Tumor-suppressor miRs upregulated by polyphenols, cell types examined, and effects of miR

upregulation.

[13]

[1][14]

[1][14][15]

[16]

miR CUR EGCG GEN QUE RES

Effects of miRs
Upregulated by
Polyphenols on

Molecules in
the ROS-
Mediated
Pathway:

↑, Upregulation;
↓

Downregulation

miR-
16

MCF-7
(breast cancer)
(Yang, et al.) 

HepG2
(liver cancer)
(Tsang, et al.)

  A549
(lung

cancer)
(Sonoki, et

al.) 
HSC-6
SCC-9
(oral

MCF7-ADR
MCF10A

MDA-MB-231-
luc-D3H2LN

(breast cancer)
(Hagiwara, et

al.) 
CCRF-CEM

↓Bcl-2 

[17]

[18]

[19]

[21]

[17][18]
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miR CUR EGCG GEN QUE RES

Effects of miRs
Upregulated by
Polyphenols on

Molecules in
the ROS-
Mediated
Pathway:

↑, Upregulation;
↓

Downregulation
cancer)

(Zhao, et
al.) 

(acute
lymphoblastic

leukemia)
(Azimi, et al.)

miR-
22

BxPC-3
(pancreatic
carcinoma)

(Sun, et al.) 
Y79

(retinoblastoma)
(Sreenivasan, et

al.) 
Downregulated *
MyLa2059, SeAx

(malignant
cutaneous
lymphoma)

(Sibbesen, et al.)

CNE2
(nasopharyngeal

carcinoma)
(Li, et al.) 

 

Tca8113
SAS
(oral

squamous
cell

carcinoma)
(Zhang, et

al.) 

 
↓VEGF via↓Sp1

miR-
34a

MDA-MB-231
MDA-MB-435

(breast cancer)
(Guo, et al.) 

SGC-7901
(gastric cancer)
(Sun, et al.) 

HCT116
(colorectal

cancer)
(Toden, et al.) 

BxPC-3
(pancreatic

cancer)
(Sun, et al.) 

Downregulated *
TE-7

(esophageal
adenocarcinoma)

SK-N-BE2
IMR-32

(malignant
neuroblastoma)
(Chakrabarti, et

al.) 
SH-SY5Y
SK-N-DZ

(malignant
neuroblastoma)
(Chakrabarti, et

al.) 
HCT116

HCT116-5FUR
(colorectal

cancer, 5FU
resistant)

(Toden, et al.)

CNE2

HNC-TICs
(tumor-initiating

cells of head
and neck
cancer)

(Hsieh, et al.)

DU145
(prostate
cancer)

(Chiyomaru, et
al.) 
AsPC-1

MiaPaCa-2
(pancreatic

cancer)
(Xia, et al.) 

  MDA-MB-231-
luc-D3H2LN

(breast cancer)
(Hagiwara, et

al.) 
DLD-1

(colon cancer)
(Kumazaki, et

al.) 
MCF-7

(breast cancer)
(Otsuka, et al.)

SKOV-3
OV-90

(ovarian
cancer)

(Yao, et al.) 

↓Bcl-2 

↓NF-κB via
Notch-1 
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2.1. miR-16

CUR, EGCG, QUE, and RES have been shown to have anticancer properties . These polyphenols have

been shown to increase the expression of the tumor suppressor miR-16. miR-16 has the ability to reduce the

expression of the target Bcl-2 . Claudin-2 expression is decreased by QUE-induced miR-16, which may

downregulate Bcl-2 . Bcl-2 is an anti-apoptotic protein, and its inhibition would result in an anticancer effect.

QUE may increase miR-16 expression to decrease Homeobox A10 expression, which is involved in cancer

proliferation, migration, and invasion . RES increased the expression and activity of Argonaute2, a central RNA

interference component, which resulted in anticancer effects by increasing the expression of several tumor-

suppressor miRs including miR-16 .

2.2. miR-22

CUR, EGCG, and QUE have been shown to upregulate miR-22, which may downregulate specificity protein 1

(Sp1), estrogen receptor 1 (ESR1) , erythoblastic leukemia viral oncogene homolog 3 (Erbb3) , and nuclear

receptor coactivator 1 (NCoA1) . Sun et al.  discovered that CUR increased miR-22 expression in PxBC-3

pancreatic cancer cells using oligonucleotide microarray analysis. Transfection with miR-22 mimetics reduced

expression of the target genes Sp1 and ESR1, whereas antisense inhibition of miR-22 increased Sp1 and ESR1

miR CUR EGCG GEN QUE RES

Effects of miRs
Upregulated by
Polyphenols on

Molecules in
the ROS-
Mediated
Pathway:

↑, Upregulation;
↓

Downregulation
(Subramaniam,

et al.) 
(nasopharyngeal

carcinoma)
(Li, et al.) 

HepG2
(hepatocellular

carcinoma)
(Mostafa, et al.)

miR-
141

HCT116-5FUR
(colorectal

cancer, 5FU
resistant)

(Toden, et al.) 

Downregulated *
MM1.s

(multiple
myeloma)

(Gordon, et al.)

786-O
ACHN
(renal

carcinoma)
(Chiyomaru, et

al.) 

 

MCF7-ADR
MCF-7

MCF10A
MDA-MB-231-
luc-D3H2LN

(breast cancer)
(Hagiwara, et

al.) 

 

miR-
145

U-87 MG
(glioblastoma)
Mirgani, et al.)

DU145
22RV1

(prostate cancer)
(Liu, et al.) 

HCT116
HCT116-5FUR

(colorectal
cancer, 5FU

resistant)
(Toden, et al.)

Y79
(retinoblastoma)
(Wei, et al.) 

SKOV-3
A2780

(ovarian
cancer)

(Zhou, et
al.) 

BT-549
MDA-MB-231

MCF-7
(breast cancer)
(Sachdeva, et

al.) 

↑Caspase-3 

miR-
146a

U-87 MG
(glioblastoma)
(Wu, et al.) 

AsPC-1
(pancreatic

cancer)
CDF (analog)

(Bao, et al.) 

 

Colo357
Panc-1

(pancreatic
cancer)

G2535 (mixture
of genistein and

other
isoflavones)
(Li, et al.) 

MCF-7
MDA-MB-

231
(breast
cancer)
(Tao, et
al.) 

 
↓NF-κB 

↑Caspase-3 
↓EGFR 

miR-
200c

HCT116-5FUR
SW480-5FUR

(colorectal
cancer, 5FU

resistant)

HCT116-5FUR
(colorectal

cancer, 5FU
resistant)

    Cancer stem
cells of

nasopharyngeal
carcinoma

(Shen, et al.)

↑PTEN 

[31]

[26]

[35]

[42]
[43] [44]

[21]

[45]

[46]
[34]

[47]

[48] [49]

[48]

[50]

[51]
[52]

[53]

[50]

[53]

[53]

[54]

[3][57][58]

[18]

[19]

[20]

[21]

[23] [24]

[25] [23]



Anti-Cancer Effects of Dietary Polyphenols | Encyclopedia.pub

https://encyclopedia.pub/entry/25171 6/14

* The items shown in italics are different findings from other reported results (see Text).

Figure 2. ROS-mediated anti-cancer activities associated with miRs regulated by polyphenols.

expression. Sp1 is overexpressed in various cancers and has the potential to be a chemotherapeutic drug target

. Sp1 can upregulate VEGF to promote cancer cell growth, angiogenesis, and metastasis , downregulation

of miR-22 upregulated by these polyphenols may contribute to the anticancer effects of these polyphenols.

In malignant T cells, transfection of recombinant miR-22 resulted in the inhibition of its targets including NCoA1,

HDAC6, MAX, MYCBP, and PTEN . As PTEN is known to be tumor suppressing , its downregulation by CUR

does not appear to be consistent with CUR’s anticancer properties. Downregulation of other cancer-promoting

molecules such as HDAC6, required for efficient oncogenic tumorigenesis , and NCoA1, whose overexpression

increases the number of circulating cancer cells and the metastasis , may overwhelm PTEN’s efficacy in this

case.

Zhang et al.  showed that overexpression of miR-22 increased cancer cell apoptosis by targeting WNT1, and

that the miR-22/WNT1/β-catenin axis is the downstream pathway for QUE to exert an antitumor effect in oral

squamous cell carcinoma.

2.3. miR-34a

CUR upregulation of miR-34 resulted in Bcl-2 downregulation, cell cycle arrest, and/or c-Myc downregulation 

. RES increased apoptosis and miR-34a expression in ovarian cancer cells . miR-34a inhibition experiments

revealed that miR-34a downregulates Bcl-2, upregulates Bax, and activates caspase-3.

EGCG has been shown to exert anticancer effects by upregulating tumor-suppressing miRs including miR-34a and

downregulating oncogenic miRs such as miR-92, miR-93, and miR-106b .

In an experiment with HNC-TICs cells from head and neck cancer, GEN inhibited their proliferation, downregulated

epithelial–mesenchymal transition (EMT), and induced upregulation of miR-34a, which resulted in ROS production

. Caspase-3 activation induced by overexpression of miR-34a was inhibited by N-acetylcysteine, indicating that

ROS are involved in the anticancer effects of GEN.

In, GEN induced apoptosis in prostate cancer PC3 and DU145 cells, increased miR-34a expression levels, and

reduced those of oncogenic HOX transcript antisense RNA (HOTAIR), a target of miR-34a . HOTAIR is a non-

coding RNA that has been shown to induce cell cycle arrest in the G /M phase . The GEN-mediated

upregulation of miR-34a in pancreatic cancer cells also inhibited the Notch-1 signaling pathway , whose

activation promotes cancer cell growth and metastasis . Inhibition of Notch-1 would result in down regulation

of NF-κB, leading to cancer suppression .

RES increased the expression of tumor suppressor miR-34a, 424, and 503 in breast cancer cells . HNRNPA1, a

heterogeneous nuclear ribonucleoprotein associated with tumorigenesis and progression, was directly

downregulated by miR-424 and miR-503, but indirectly by miR-34a . According to Kumazaki et al. , RES

upregulates miR-34a, which causes downregulation of the target gene E2F3 and its downstream SIRT1, leading to

inhibition of colon cancer cell growth.

miR CUR EGCG GEN QUE RES

Effects of miRs
Upregulated by
Polyphenols on

Molecules in
the ROS-
Mediated
Pathway:

↑, Upregulation;
↓

Downregulation
(Toden, et al.) 

MiaPaCa-2
MiaPaCa-2-GR

BxPC-3
(pancreatic

cancer)
CDF (analog)

(Soubani, et al.)

(Toden, et al.)
MCF7-ADR

MCF-7
MCF10A

MDA-MB-231-
luc-D3H2LN

(breast cancer)
(Hagiwara, et

al.) 
HCT116

(colorectal
cancer)

(Dermani, et
al.) 
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Thus, polyphenols appear to upregulate miR-34 in general, but Subrama-niam et al.  found that CUR decreased

expression of miR-34a in esophageal cancer TE-7 cells. One possible explanation for the difference is that the p53

status of different cell lines differs, as TE-7 cells are p53-deficient and p53 is an upstream regulator of miR-34a.

2.4. miR-141

CUR upregulated the expression of EMT-suppressing miRs such as miR-34a, 101, 141, 200c, and 429 in 5-

fluorouracil (5FU)-resistant HCT116 cells, but not in 5FU-resistant SW480 cells . EMT is a crucial step in the

generation of cancer stem cells and the progression of cancer. The extent to which miR-141 contributes to EMT

suppression is not known.

Chiyomaru et al.  discovered that treatment of renal carcinoma cells with GEN increased miR-141 expression

and decreased HOTAIR, which is known to promote malignancy. HOTAIR expression was reduced in cells

transfected with pre-miR-141. By increasing the expression of a number of tumor-suppressive miRs, including miR-

16, 141, 143, and 200c, RES reduced the viability of breast cancer cells and inhibited cancer stem-like cell

characteristics . The miR-141 inhibitor reduced the efficacy of RES’s inhibitory effect against cancer invasion,

implying that miR-141 plays a role in RES’ anticancer effect.

Gordon et al.  reported that treatment of multiple myeloma, MM1.s cells, with the carcinogen benzo[a]pyrene

upregulated the expression of miR-15a, 16, 25, 92, 125b, 141, and 200a, all of which are p53 targets. EGCG

inhibited the expression of tumor-suppressive miR-141 which upregulates p53. The finding appears inconsistent

with EGCG’s anticancer activity. It is possible that EGCG’s downregulation of oncogenic miR-25 may be more

effective in the anticancer effect than downregulation of miR-141 in these cells.

2.5. miR-145

Curcumin encapsulated in a non-toxic nanocarrier inhibited the proliferation of glioblastoma U-87 MG cells,

increased miR-145 expression, and decreased the expression of transcription factors Oct4, SOX-2, and Nanog, all

of which are upregulated and result in increased metastasis, invasion, and recurrence .

CUR inhibited the proliferation, invasion, and tumorigenicity of prostate cancer stem cells HuPCaSCs

(CD44 /CD133   subpopulation isolated from prostate cancer cell lines Du145 and 22RV1) by increasing the

expression of miR-145, which prevents cell proliferation by decreasing Oct4 expression . In colorectal cancer

cells, EGCG increased apoptosis and cell cycle arrest, and upregulated miR-145 .

In GEN-treated retinoblastoma Y79 cells, miR-145 was found to be significantly upregulated . The siRNA

downregulated miR-145 and the target of miR-145 has been identified as ABCE1 which has oncogene-like

properties. By increasing the expression of miR-145, QUE was found to induce apoptosis in human ovarian

carcinoma cells. The increased expression levels of cleaved caspase-3 induced by QUE were further increased by

overexpression of miR-145 .

[31]

[42]

[44]

[21]

[43]

[45][69]
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2.6. miR-146a

CUR upregulated miR-146a in human U-87 MG glioblastoma cells, and overexpression of miR-146a increased

apoptosis and decreased NF-κB activation in cells treated with the anticancer drug temozolomide . miR-146a

expression is lower in pancreatic cancer cells compared to normal human pancreatic duct epithelial cells. GEN

treatment increased miR-146a expression with decreasing EGFR and NF-κB expression in these cancer cells.

Transfection of miR-146a inhibited these cells’ invasive ability by downregulating EGFR and NF-κB, implying that

upregulation of miR-146a is involved in the anticancer effect of GEN . The results of experiments with or without

transfection of miR-146a mimic or anti-miR-146a revealed that QUE increased miR-146a, leading to apoptosis

induction through downregulation of EGFR and activation of caspase-3 in a study of QUE’s anticancer effect .

2.7. miR-200c

Experiments on overexpression or silencing of miR-200c in pancreatic cancer MiaPaCa-2 cells showed that a CUR

analog upregulated PTEN expression, increased levels of MT1-MMP, and reduced tumor cell aggressiveness

through upregulation of miR-200c . Toden et al.  discovered that CUR improved the efficacy of 5-FU in

suppressing tumor growth and EMT in 5FU-resistant colorectal cancer cells. miR-200c, a key EMT-suppressing

miR, was upregulated by CUR, and miR-200c was found to downregulate BMI1, SUZ12, and EZH2 in a

transfection experiment.

Upregulation of miR-200c was also observed in RES-treated nasopharyngeal carcinoma cancer stem cells ,

EGCG-treated 5FU-resistant colorectal cancer cells , and RES-treated breast cancer cells . Dermani et al. 

discovered that RES increased the expression of miR-200c and decreased the viability of colorectal cancer cells.

Transfection with anti-miR-200c increased vimentin and ZEB1 expression, while decreasing E-cadherin expression

and apoptosis. These changes were reversed by RES, indicating that RES induces apoptosis and inhibits EMT in

colorectal cancer by regulating miR-200c.
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