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Bactrocera dorsalis (Hendel, 1912) (Diptera: Tephritidae), commonly known as the oriental fruit fly, is a highly destructive

pest that globally infests fruits and vegetables, resulting in significant annual economic losses. Initially detected in Taiwan

Island, it has rapidly expanded its distribution range to various regions in mainland China since the 1980s, with a

continuous northward spread. To mitigate the damage caused by this pest, extensive efforts have been undertaken to

comprehend its ecological and physiological adaptations and develop management strategies.
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1. Introduction

Tephritid fruit flies are an economically significant pest species globally, including mainland China . They exhibit

endophagous feeding behavior, which causes both quantitative and qualitative yield reductions. As a result, they pose

significant threats to global fruit and vegetable production . The pest affects a broad array of fruit and fleshy vegetable

crops in tropical and subtropical regions. The presence of these pests was first observed in Taiwan Island, China, in 1912

. The genus Bactrocera, which comprises a minimum of 440 species , is primarily distributed throughout tropical

Asia, Australia, and the South Pacific . The wide host range, great climate tolerance, and strong dispersing capacities

of these species have led to their spread over the Asia Pacific region in the last century, covering all of South-East Asia

from India to Hawaii . The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is recognized as a

destructive and persistent fruit fly pest. B. dorsalis has been documented to infest over 250 host plant species ,

including mango (Mangifera indica L., Anacardiaceae), banana (Musa spp., Musaceae), guava (Psidium guajava L.,

Myrtaceae), orange (Citrus spp., Rutaceae), papaya (Carica papaya L., Caricaceae), peach (Prunus persica (L.) Batsch,

Rosaceae), grape (Vitis spp., Vitaceae), pomegranate (Punica granatum L., Lythraceae), lychee (Litchi chinensis Sonn.,

Sapindaceae), and longan (Dimocarpus longan Lour., Sapindaceae) . Numerous studies have documented the

economic damage caused by B. dorsalis. For instance, a study carried out in Thailand found that B. dorsalis infestation in

mango farms caused an average annual yield loss of 15.5% . Similarly, in India, fruit fly infestation led to a reduction in

the marketable yield of mango by 25–30% . According to an estimate, guava, sapota, citrus fruits, and mango in India,

incurred losses equivalent to USD 356 million . This significant economic loss is attributed to the fruit damage caused

by B. dorsalis, which can affect 30% to 100% of fruits, depending on the season .

In addition to yield reduction, B. dorsalis also leads to the quality degradation of fruits, causing phytosanitary issues and

triggering trade restrictions, thereby aggravating economic losses. A study conducted in Taiwan revealed that the

infestation of fruit flies resulted in trade restrictions on the export of guava to the United States and Japan, leading to an

estimated economic loss of USD 2.5 million per year . These studies demonstrate the substantial economic losses

caused by B. dorsalis and emphasize the necessity for implementing effective management strategies to mitigate the

impact of this insect pest on horticultural crops. In China, the economic losses caused by the fruit fly pest species in citrus

orchards have been widely reported, especially in Guangdong  and Fujian Provinces of China . B. dorsalis exhibits

three to eleven generations per year in China, with the majority of areas experiencing four to eight generations . In

the near future, there is the potential for B. dorsalis to expand into temperate northern and southern areas of China 

(Figure 1).
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Figure 1. The life cycle of B. dorsalis.

2. Pest Management of Bactrocera dorsalis

2.1. Mass Trapping

B. dorsalis could be mass-trapped using pheromone and food-based baits. Various pheromones and scent-based

compounds, including synthetic para-pheromones or male lures such as methyl eugenol (ME), have been developed to

attract and control B. dorsalis. These compounds mimic the natural pheromones produced by melon and oriental fruit

flies. These pheromones are used to attract and trap male flies, allowing for population monitoring and infestation

assessment . E-coniferyl alcohol (E-CF) has also been found to be effective in attracting female B. dorsalis . A

comprehensive investigation on current resistance and lure tolerance to fruit flies  assessed the response of B. dorsalis
males to non-ME lures. The experiment evaluated the mating and lure response of non-ME-responding (NMR) and non-

responding lines (NRLs) of B. dorsalis males. Results showed that NMR males had higher mating success rates

compared to NRL males and exhibited a greater attraction to non-ME lures, which have been implicated in the

development of tolerance mechanisms among B. dorsalis populations .

Another research revealed that B. dorsalis causes significant economic losses in the fruit and vegetable industry by laying

eggs inside hosts. Chemical controls are not very effective due to the pest’s cryptic feeding habits, strong flight ability, and

resistance to insecticides. Olfaction-based trapping using ME has been the most cost-effective tool for monitoring and

controlling B. dorsalis populations for seven decades . However, laboratory selection for ME responsiveness has

resulted in the non-responsiveness of B. dorsalis, which may lead to the recolonization of the pest in some areas . The

study aimed to determine the levels of ME responsiveness in B. dorsalis field populations in China . Results showed

that the field populations had lower ME sensitivity compared to the susceptible strain, possibly due to odorant binding

protein (BdorOBP2, BdorOBP83b), and P450 gene expressions in olfactory organs . Protein-based baits and food

odors, such as yeast, vinegar, and fermentation products, can also attract both male and female oriental fruit flies. These

baits can be combined with pheromones to increase trap efficacy . Visual attractants, such as brightly colored sticky

traps, can also be used to attract oriental fruit flies, and they can complement other attractants for a more comprehensive

monitoring and control approach . It is important to note that attractants can be species-specific, and the most

effective ones for B. dorsalis may vary based on environmental conditions and other factors. Following are the steps

involved in bait-based physical control techniques for managing B. dorsalis infestations: (a) Monitoring: It includes

observations and record-keeping of the presence, distribution, and abundance of B. dorsalis in affected areas. (b)

Selection of bait material: It includes selection of appropriate bait material, such as food-based baits (fishmeal or yeast

hydrolysates, ME, raspberry ketone, cue lure, honey, or molasses) that have been successful in attracting fruit fly species.

(c) Formulation of bait: It includes formulating the selected bait material into an attractive and easily dispersible form by

adding a food-grade preservative for shelf-life extension and a hydroscopic agent to maintain its moisture content. (d)

Deployment of baits: It involves deployment of the baits using various methods, including bait stations, bait trees, or spray

applications, depending on the specific circumstances of each situation. (e) Collection and disposal of captured fruit flies:
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It involves regular monitoring to assess the effectiveness of the bait and removing and disposing of captured fruit flies to

prevent escape and further spread. (f) Evaluation: It includes assessing the success of the bait-based physical control

technique by monitoring oriental fruit fly population levels over time and comparing pre- and post-treatment populations to

determine the reduction in the number of fruit flies.

2.2. Biological Control

Parasitoids, hymenopteran wasps, lay their eggs inside hosts, consuming them from the inside and leading to their death.

Fopius arisanus (Sonan), a species of egg parasitoid, targets B. dorsalis . As a potential biological control agent, F.
arisanus effectively parasitizes the host eggs and reduces the pest population . It is well-adapted to tropical and

subtropical environments, distributed throughout Asia, Africa, and the Pacific region . Utilizing F. arisanus offers

advantages over chemical pest control, including specificity to the target pest, conservation of beneficial insects, and long-

term sustainability . In order to effectively utilize F. arisanus for biological control, it is important to understand its

biology, behavior, and life cycle, as well as its interactions with the host and other factors that may affect its efficacy.

Researchers have also developed mass rearing for F. arisanus to produce large numbers of individuals for release into

the field. F. arisanus is a promising biological control agent for the oriental fruit fly, offering a sustainable and

environmentally friendly approach to managing this destructive pest . Another parasitoid, Spalangia endius (Walker)

(Hymenoptera: Pteromalidae) is a solitary endoparasitoid that attacks fruit fly pupae, including B. dorsalis. This wasp lays

its eggs inside the pupae, and the emerging larvae consume the host pupae from within, killing the fruit fly . Using S.
endius for the biological control of B. dorsalis has advantages over other methods. It is highly specific in targeting fruit fly

pests and does not harm beneficial insects. Field trials have shown that this parasitoid can effectively reduce the number

of B. dorsalis adults, thereby minimizing crop damage . To effectively use S. endius for biological control,

understanding the biology and behavior of both the wasp and the fruit fly is crucial. The timing of wasp releases is critical

in achieving maximum parasitism rates. In general, releases should coincide with the emergence of fruit fly pupae, which

is the stage at which S. endius lays its eggs. Releasing large numbers of parasitoids can help control fruit fly populations

in a targeted area  (Table 1). Viruses, bacteria, and fungi can also infect and be lethal to the fruit fly adult and larvae

. Among the pathogens studied for use against B. dorsalis, viruses, especially baculoviruses, have been found to be

highly virulent to fruit fly species. They have demonstrated effectiveness in reducing fruit fly populations in both laboratory

and field studies.

Baculoviruses are insect-specific viruses that replicate within the insect host and cause death. Among the baculovirus

isolates identified and characterized, the nuclear polyhedrosis virus (NPV) has been found to be highly virulent to several

insect species . NPV studies have demonstrated its ability to reduce the number of fruit fly individuals in laboratory

and field settings, thereby decreasing the damage caused by this pest. Moreover, NPV is safe for the environment and

non-target organisms, making it a promising option for fruit fly management . However, it is important to note that using

pathogenic microorganisms, including viruses, for insect pest management is still in its early stages, and more research is

needed to fully understand their potential and limitations. Baculoviruses, particularly NPV, have shown potential for

controlling B. dorsalis, and further research is needed to integrate them into pest management programs effectively. The

entomophagous fungus Beauveria bassiana (Sordariomycetes: Clavicipitaceae) is an entomopathogenic fungus that is

known to be an effective biological control agent against B. cucurbitae. This fungus infects the insects and causes

mortality . In China, B. bassiana effectively controlled B. dorsalis, achieving a mortality rate of over 80% in laboratory

experiments. Similarly, another study showed that B. bassiana effectively reduced the population density of B. dorsalis in

the field . B. bassiana can be used as a biological control agent in several ways: (1) Inoculative releases: This

involves releasing large numbers of fungal spores (conidia) into the environment, which then infect the insects. This

approach is most effective when used in conjunction with other management strategies, such as the use of pheromones

or host-plant resistance. (2) Injection or spraying: This process involves injecting or spraying a suspension of conidia

directly onto the insects, causing them to become infected. (3) Formulations: B. bassiana can also be formulated into

granules or dusts that can be applied to the host plants or environment, where they will encounter the insects. The

entomopathogenic bacterium Bacillus thuringiensis (Bt) is a naturally occurring soil bacterium that produces a toxic crystal

protein effective against many insect pests, including B. dorsalis . Entomopathogenic nematodes are parasitic

roundworms that can infect and kill fruit fly larvae . Further research and understanding of biology will improve their

integration into pest management programs (Table 1).

Table 1. Natural enemies of B. dorsalis.

Bio-Control Agents Name of Species Host Stages Reference

Predator Oecophylla longinoda Pupa/larva

 Pachycrepoideus vindemmiae Larva/pupa
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Bio-Control Agents Name of Species Host Stages Reference

Parasitoids Fopius arisanus Egg

 Psyttalia cosyrae Larva-pupal

 Diachasmimorpha longicaudata Larva

Nematodes Heterorhabditis taysearae Larva/pupa

 H. indica Larva/pupa

 Steinernema sp Larva/pupa

2.3. Sterile Insect Technique (SIT)

The sterile insect technique is a promising biological control for Bactrocera species, with a proven track record of success

in various countries worldwide. It is a sustainable and eco-friendly method of pest management that complements other

control strategies, providing long-term control of this economically important insect pest. The technique has been used for

decades to manage various insect pests, including B. dorsalis, commonly known as the oriental fruit fly. SIT involves

mass-rearing and sterilization of male insects, which are then released into the wild to mate with females. Mating with

sterilized males leads to the laying of eggs by female insects that do not hatch, ultimately leading to a decline in the pest

population . This technique was first employed in the 1950s to control the screwworm, Cochliomyia hominivorax, in

the southern United States and has since been effectively utilized against various other insect pests worldwide. Fruit flies,

including B. dorsalis, have been successfully managed using SIT in several countries, such as China, Australia, and

Hawaii . For instance, in Hawaii, SIT was implemented in the early 2000s to manage oriental fruit fly outbreaks in the

state’s agriculture industry. The program’s success resulted in a significant decline in the pest population . In Australia,

SIT has been incorporated into integrated pest management to control Mediterranean fruit fly C. capitata populations in

the country’s horticulture industry . The genetic sexing strain is a technique utilized to manipulate the sex ratios of a

population, leading to more effective and efficient pest management. It has been successfully applied worldwide, including

China, to manage B. dorsalis. This technique employs a genetic marker to distinguish between male and female fruit flies.

By releasing only sterilized males into the environment, the population growth of the pest can be suppressed without the

need for chemical insecticides .

In China, researchers have developed a genetic sexing strain for B. dorsalis using the temperature-sensitive lethal (tsl)

mutation. This mutation causes the death of females at a certain temperature, enabling the separation of male and female

fruit flies . The genetic sexing strain has been proven effective in suppressing the population growth of several fruit fly

species in field trials . This technique has also been applied to manage fruit flies in other countries, including Australia

and Thailand . These studies demonstrate the potential of the genetic sexing strain as an integrated pest

management tool for managing tephritid fruit flies.

2.4. Molecular Control

The management of B. dorsalis is challenging due to its high resistance to insecticides. To overcome this challenge, it is

crucial to identify new targets for insect pest control. Transient receptor potential (TRP) channels play a crucial role in

various physiological processes in insects, including nociception, thermo-sensation, and olfaction . In recent years,

there have been extensive studies on the identification and characterization of TRP channels in various insect species,

including B. dorsalis. In one study , 15 TRP channel genes were identified in the genome of B. dorsalis. The expression

patterns of these genes were analyzed in different tissues, such as the antennae, brain, midgut, Malpighian tubules, and

fat body. The results revealed that TRP channels were differentially expressed across various tissues, with some TRP

genes being predominantly expressed in specific tissues. Additionally, another study  investigated the role of TRP

channels in insecticide resistance in insects. They used RNA interference (RNAi) to knock down the expression of TRP

channels in B. dorsalis. The findings showed that knockdown of TRP channels significantly reduced insecticide resistance

in B. dorsalis, suggesting the potential utilization of TRP channels as targets for insect pest control . The

identification, characterization, and expression analysis of TRP channel genes in the oriental fruit fly will provide crucial

information for the development of new and effective strategies for the management and control of this pest.

2.5. RNA Interference (RNAi)

RNA interference (RNAi) is a highly effective technique for gene silencing through the use of double-stranded RNA

(dsRNA) . It has shown promise in knocking down insect pests as a more environmentally friendly option. Previous

studies have demonstrated successful silencing of genes rpl19, v-ATPase-D, noa, and rab11 in adult B. dorsalis through
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the feeding of corresponding dsRNA. Other potential target genes involved in midgut digestion and detoxification have

also been identified . However, using RNAi for controlling the oriental fruit fly faces challenges, including effectively

delivering dsRNA to the insect and potential risks to non-target organisms. The delivery of dsRNA has not been fully

implemented yet, and the possible impacts on non-target organisms and host fruits and vegetables must be carefully

considered. There is a risk of reducing the expression of genes in natural enemies and other beneficial insects due to the

high similarity in rpl19 sequences between these insects and B. dorsalis. Therefore, minimizing the impact of dsRNA on

non-target insects and host fruits and vegetables is a priority in ongoing efforts to use RNAi for controlling B. dorsalis. In a

research article addressing the problem of insecticide resistance in B. dorsalis, a global pest affecting various crops,

researchers focused on the role of UDP-glycosyltransferases (UGTs) in resistance development . These enzymes are

involved in metabolically processing both plant secondary metabolites and synthetic insecticides. The study identified 31

UGT genes in the genome of B. dorsalis, with 12 of them highly expressed in key tissues such as the antennae, midgut,

Malpighian tubules, and fat body. Furthermore, exposure to four different insecticides caused a significant upregulation of

17 UGT genes. To investigate further, RNA interference was used to knock down five selected UGT genes, resulting in

reduced oriental fruit fly mortality in response to insecticides from 9.29% to 27.22% .

2.6. CRISPR-Cas9

The clustered regularly interspaced palindromic repeat (CRISPR-Cas9) system is a revolutionary tool for precise and

efficient genome editing in various organisms . In a study of B. dorsalis, researchers targeted a specific gene known as

the Sex Peptide Receptor (Bdspr) using CRISPR/Cas9 technology . The Bdspr gene plays a critical role in the

regulation of female reproduction, including ovary development and egg laying. By introducing mutations into this gene,

the researchers aimed to examine its effects on female fecundity and reproductive functions in B. dorsalis. Several

research experiments showed that CRISPR/Cas9-mediated disruption of the Bdspr gene, when the insects were fed with

the ds-spr gene, led to significant changes in the number and size of ovarioles, a reduction in the number of eggs laid,

and a decrease in overall female fecundity. This indicated the importance of the Bdspr gene in the normal functioning of

the female reproductive system in B. dorsalis. The study also demonstrated that the CRISPR/Cas9 system is an effective

tool for studying gene function and disrupting specific genes in insects. In the future, this information could potentially be

used to develop new strategies for controlling the population of oriental fruit flies, a major agricultural pest causing

significant damage to crops worldwide . The CRISPR/Cas9-induced mutation of the Bdspr gene in the oriental

fruit fly underscores the significance of this gene in female reproduction and highlights the potential of genome editing

technology for advancing the field of insect pest management.

In another study focused on understanding the functional role of the white gene in pigmentation in B. dorsalis, the white

gene was cloned, and knockout strains were created using the CRISPR/Cas9 genome editing system. The results

revealed that the mutants lost pigmentation in the compound eye and their head spots. Further analysis using quantitative

reverse-transcription PCR showed lower expression levels of the Bd-yellow1 gene in the head of mutants compared to the

wild-type strain, while there were no significant differences in the expression of the other six genes. As the yellow gene is

crucial for melanin biosynthesis, the reduced expression of Bd-yellow1 in mutants led to a decrease in dark pigmentation

in the head spots. This study provides evidence for the first time that the white gene may play a role in cuticle

pigmentation by affecting the expression of the yellow gene .
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