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Constructed wetlands (CWs) are artificially engineered treatment systems that utilize natural cycles or processes involving

soils, wetland vegetation, and plant and soil-associated microbial assemblages to remediate contaminated water and

improve its quality. CW treatment systems are typically categorized as free-water surface(FWSCWs), surface-flow

constructed wetlands (SFCWs), subsurface-flow constructed wetlands (SSFCWs), and hybrid constructed wetlands

(HCWs). Depending on the flow direction, Subsurface-flow CWs (SSFCWs) can be further classified into horizontal

subsurface-flow (HSSF) and vertical subsurface-flow (VSSF) systems.
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1. Role of Macrophytes or Vegetation

Planted vegetation is one of the essential components of CW technology, which helps remove pollutants from domestic

wastewater. The presence of plants in CW systems is the only reason they are called “green technologies”. Plant

(macrophyte) species used in CWs are usually the same species that live in the NWs. Plants suitable for CW use in CWs

must meet the following criteria listed below .

Plants must adapt to local environmental conditions.

Plants must be practicable under local climatic conditions and may tolerate/resist potential pests, insects, and

diseases.

Plants should tolerate various contaminants (e.g., N, OM, P, etc.) in the wastewater.

Plants should be easily adjusted in local CW environments to show relatively fast growth and spreading.

Plants should have a high pollutant elimination capacity.

The wetland vegetation’s roots, stems, and leaves act as substrates for the growth of microbes as they decompose OM

. This microbial community, called the “periphyton”, comprises “a complex mixture of algae, cyanobacteria, heterotrophic

microbes, and detritus attached to submerged surfaces in most aquatic ecosystems”. It can absorb pollutants, eliminate

them from the water column, and prevent further spreading of such contaminants. This periphyton and natural chemical

processes accomplish about 90% of contaminant removal and waste breakdown. The wetland plants eliminate around 7–

10% of the contaminants and serve as a C source for the microorganisms once they die and decay. Notably, the choice of

vegetation for a CW should consider the varied rates at which different aquatic plant species absorb/uptake HMs/TEs

from polluted ambient media.

2. Role of Substrate Materials

The filter bed of CWs plays an equally significant part in the overall performance of an artificial secondary wastewater

treatment system. Selecting substrate materials for the filter bed requires a crucial design parameter that can significantly

impact the bed’s performance. Growth media provide a physical basis for vegetation growth, additional sites for biofilm

growth and nutrient absorption, and promote sedimentation and filtration of contaminants . At present, most media have

gravel layers of various types of origin in the filter media, mainly with a sand layer at the top. The media play several

functions, as highlighted below.
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The media supports the growth of planted vegetation.

It stabilizes the bed (contact effect with the roots of developed plants).

It provides a media filtration effect.

It ensures high permeability and reduces possible clogging problems.

It provides an attractive attachment area for many microbes (biofilm formation) that are involved in pollutant removal

processes.

It supports many transformation and elimination processes.

3. Role of (Plant Root-Associated) Microbes

As a significant component of CWs, microbes are crucial in decontamination processes, including nutrient transformation

and organic pollutant degradation . Microbes can also remove HMs (that cannot be biodegraded) from domestic sewage

through their bioaccumulation, biosorption, and biotransformation (also called speciation, i.e., transformation of

species/valence states) . Microbes can even utilize antimicrobial compounds (antibiotics) as their sole C source .

Additionally, microbes in CWs can ameliorate abiotic and biotic stress tolerance and improve pollutant-removal efficiency

by augmenting phytoremediation processes .

For comprehending CWs’ performance patterns and exploring optimized strategies, a thorough examination of the

microbial community structure and their diversity, particularly for active/functional microbes in CWs, is necessary. With the

recent developments in molecular biotechnology techniques, it is now feasible to monitor/study and analyze “microbial

communities and species composition” in intricate ecosystems or environments , in their systematic review,

summarized the primary functional microbes of CW systems engaged in the elimination of antibiotics, emerging pollutants,

HMs, N, and P and investigated the impacts of these contaminants on microbial diversity. Their findings indicated that

Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria are the chief phyla of the functional microbes in CWs.

These active microbes help eliminate contaminants from CWs through diverse processes, including biodegradation,

biosorption, catalyzing chemical reactions, and stimulating plant growth and development. HMs and high N and P

concentrations in wastewater substantially impact microbial richness and diversity, while antibiotics result in considerable

fluctuations in microbial alpha (α) diversity.

Plants harbor a vast repertoire of beneficial microbes (actinomycetes, bacteria, fungi, etc.) in their endosphere (internal

plant tissues), rhizosphere (region of the soil/water surrounding the plant roots), and phyllosphere (area surrounding the

plant leaves). These free-living microbes or microbial root symbionts secrete various PGP secondary metabolites,

including biocontrol agents, biosurfactants, chelating agents, exopolysaccharides, nitrogenous compounds, organic acids,

phytoenzymes, phytohormones, and volatile compounds, all of which directly or indirectly promote plant health and

nutrition and alleviate abiotic (pollutant) stress in soil and water. These microbes with plant growth-promoting (PGP) traits

are usually called plant growth-promoting microbes (PGPM). When found associated with plant roots (including internal

root tissues), they are called plant growth-promoting rhizomicrobes (PGPRM) or endophytes. The PGPM/PGPRM, in turn,

derive their nutrients from the plant root exudates and photosynthates, which are rich sources of sugars and amino acids

. The antimicrobial products secreted by PGPM inhibit or kill a broad spectrum of disease-causing

phytopathogens, such as pathogenic bacteria, fungi, nematodes, and viruses . Therefore, the indigenous PGPM

associated with the planted vegetation in CWs could indirectly facilitate (phyto)pathogen removal and phytoremediation by

promoting plant growth.

4. Role of Influent-Feeding Mode

Another critical design parameter of CW is the influent-feeding mode . The method of influent feeding in the CWs (for

example, continuous, batch, and intermittent) significantly affects the contaminant’s removal efficiency. As usual, batch-

feeding modes (alternating filler and drain cycles) can achieve better performance by promoting more oxidizing conditions

than continuous operation. In particular, N and P removal efficiency can improve in this wetland . Effect of physico-

chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands was studied by

Caselles-Osorio et al. .
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5. Role of Constructed Wetland (CW) as a Catalyst in Phytoremediation

In CW systems, physicochemical and biological processes remove toxic substances, including inorganic and organic

contaminants. A thorough knowledge of these processes is essential for designing different CW systems and

comprehending pollutants’ fate once they reach the wetlands. Theoretically, wastewater treatment in CWs occurs as it

moves through the wetland substrates and the rhizosphere of the plants. Notably, owing to the loss and release of O  from

the plant’s root systems (rhizomes, roots, and rootlets), a thin oxic layer surrounds each root hair . Both aerobic and

anaerobic microbes aid in OM decomposition. Gaseous nitrogen (N ) is released into the atmosphere due to microbial

nitrification and subsequent denitrification processes. P is coprecipitated with compounds of aluminum (Al), calcium (Ca),

and Fe present in the root-filter bed media . In SFCWS, SSs get filtered out while settling down in the water column,

whereas in SSFCWS, they are physically filtered out by the wetland media. In SSF and VF systems, bacterial and viral

pathogens are minimized through adsorption and filtration by the microbial biofilms present on the gravel or sand layers.

Plant growth, death, and microbial degradation contribute to the biogeochemical cycle occurring within a CW ecosystem.

Overall, CWs provide a safe and beneficial environment for plants to remove pollutants from wastewater without

endangering their health. During plant growth, aquatic macrophytes remove most pollutants while also providing a suitable

environment for the proliferation of microbes. Therefore, this integrated CW technology treats wastewater contaminants

more effectively than conventional treatment technology. The mechanism of removal of various pollutants through the

CWs is described below.

5.1. Removal of Total Dissolved Solids (TDS)

Total Dissolved Solids (TDS) are the number of materials dissolved in water and wastewater like carbonate (CO ),

HCO , NO , PO , SO , chloride (Cl ), sodium (Na ), Ca , magnesium (Mg ), organic ions, and other ions. These

materials may not be regarded as pollutants contributing to dissolved solids. A few ions in water are necessary for

sustaining aquatic life, and they are biologically utilized or chemically reactive in CWs. Aquatic macrophytes show a

coordinated action to increase the durability/treatment of high TDS stress, and halophytes can reduce wastewater TDS

content through their accumulation in plant tissues .

5.2. Removal of Biological Oxygen Demand (BOD)

Biological oxygen demand (BOD) indicates the DO amount aerobic macro/microorganisms require to decompose

dissolved organic materials in water at a specific temperature over a particular time. BOD is the most critical parameter for

measuring O  demand by microorganisms to degrade OM present in domestic wastewater. Its value is typically expressed

in milligrams (mg) of O  consumed per liter (l) of water sample during incubation at 20 °C for 5 days. BOD is frequently

employed as a proxy for the level of organic contamination in domestic wastewater . BOD removal followed the “first

order plug flow approach” described by Kadlec and Knight (1996) . This approach is designed for certain pollutants

extracted mainly through biological processes  (Akinbile and Yusoff 2012). In CWs, aerobic and anaerobic

degradations of soluble organic compounds are equally suitable for removing BOD. However, during the sequential “fill

and drain” process, the performance of BOD elimination was significantly better than during the previous traditional

operating period .

5.3. Removal of Total Nitrogen (TN)

Excessive discharge of N into the waterbodies makes them prone to eutrophication and “black-odorous”, which not only

deteriorates the overall water quality but eventually poses severe health risks to aquatic flora and fauna as well as

humans . In wastewater, TN refers to the amount of all N sources, including nitrite (NO ), NO , NH , and organic N

(org-N), and is usually expressed in mg/L. Biological processes are the main N removal mechanisms in CWs. N

elimination in CWs occurs via ammonification, nitrification, denitrification, volatilization, and plant uptake . N

removal through CWs with the help of partial nitrification and denitrification processes involves converting the nitrification

process, which oxidizes ammonium (NH ) to NO  and then NO , and the denitrification process, which converts NO

to N  (Figure 1). Ref.  has reported that microbes can eliminate around 90% of the N. Wetland plants can also convert

inorganic N to org-N through their metabolism.

2
[17]

2

[17]

3
2−

3
−

3
−

4
2−

4
2− − + 2+ 2+

[18]

2

2
[19]

[20]

[21]

[22]

[4][23]
2

−
3

−
3

[10][24][25]

4
+

2
−

3
−

3
−

2
[26]



Figure 1. Conceptual diagram of nitrogen (N) removal via surface flow-constructed wetlands (SFCWs) (Source:  with

modifications).

5.4. Removal of Nitrates (NO )

NO  is an essential parameter for a specific state of decomposition of OM in domestic wastewater. NO  uptake can

cause a severe health condition in infants because of oxygen deprivation called “methemoglobinemia” or “blue baby

syndrome” . In CWs, microbial denitrification and vegetation uptake primarily achieve NO  removal from domestic

wastewater. This mechanism of NO  elimination can occur biologically.

Biological Removal Mechanism(s)

This process of NO  removal occurs in two stages: (1) nitrification (where NH  is converted to NO ), and (2)

denitrification (where NO  is converted to NO ). The first stage is done resolutely aerobically; the organisms depend on

the oxidation of NH  for cell growth and energy. The second stage is completed by the facultative chemolithotrophic

bacteria that use organics for cellular growth and energy. The removal of NO  is typically very high in the wetlands .

The central N removal mechanisms by functional microbes in CWs are depicted in Figure 2.

Figure 2. Flowchart showing the primary processes of microbe-assisted nitrogen (N) removal in constructed wetland

(CW) systems (source:  with modifications).

According to most recent studies, microbes in CWs remove N primarily via ammonification, nitrification, and denitrification

processes . Ammonification in wastewater involves converting Org-N into NH ; the latter is eliminated through

other processes, including nitrification, plant uptake, and volatilization . Notably, the most common genera of

ammonifying bacteria are Bacillus, Chitinophaga, Isoptericola, and Sinorhizobium, as indicated in a review by Wang et al.,

2022b . As stated earlier, when it comes to nitrification and denitrification, microbes utilize NH  as an electron donor

during the process of nitrification and oxidize NH  to NO  and then to NO  before using it as an electron acceptor

during the denitrification process and finally reducing it to N O or N  . Moreover, the microbes participating in

nitrification are of two types: (1) “ammonia-oxidizing archaea” (AOA) and (2) “ammonia-oxidizing bacteria” (AOB), which

convert NH  to NO , and “nitrite-oxidizing bacteria” (NOB) that transform NO  to NO  .
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Mainly, AOA is more adaptable to low NH  and high salt conditions than AOB . As oxidation of NH  is the initial and

rate-limiting phase in the nitrification process, this may facilitate the AOA becoming the principal microbial group more

rapidly and expedite the nitrification process . The Nitrospinae, Nitrospirae, Proteobacteria, and Thaumarchaeota are

well-known phyla that participate in nitrification. All the presently recognized AOA are found in the Thaumarchaeota

phylum . Regarding denitrification, the popular denitrifying bacterial phyla in CWs include Actinobacteria,

Bacteroidetes, Firmicutes, and Proteobacteria . However, poor abundance and feeble competitiveness are common

issues for nitrifying bacteria in CWs’ microbial population . As a result, steady NH  oxidation will require a longer start-

up time, making the nitrification process a limiting step in N removal . Notably, recent reports have emphasized

“heterotrophic nitrification and aerobic denitrification” (HN-AD) bacterial significance in this context . In the start-

up/initial stage of CWs, these bacteria may carry out the transformation of NH  and NO , converting the N present in the

aqueous solution (i.e., dissolved N) to gaseous N (N ) for complete denitrification . Additionally, they proliferate more

quickly and can rapidly take over/dominate . The old belief that only autotrophic bacteria are capable of carrying out

nitrification and that denitrification can only occur in anaerobic environments has been disproved by the discovery of HN-

AD bacteria, making it more advantageous for OM and N removal . According to the reports by Wang et al. (2022b) ,

the HN-AD bacteria primarily belong to the genera Aeromonas, Dechloromonas, Ferribacterium, Hydrogenophaga and

Zoogloea. Moreover, new N removal mechanisms like “sulfur autotrophic denitrification” (SAD) and “denitrifying anaerobic

methane oxidation” (DAMO) have been identified in relation to the denitrification process . “Sulfur-oxidizing bacteria”

(SOB) use elemental S, sulfide (S ), and thiosulfate (S O ) as electron donors and NO  as an electron acceptor in

anoxic environments for reducing NO  to N  during SAD . Because of the readily accessible electron donors from S

and related S compounds, this pathway may predominate in removing N from water/wastewater with a low C/N ratio .

The phylum Proteobacteria contains the majority of “sulfur-autotrophic denitrifying” bacteria, with Sulfurimonas and

Thiobacillus as two of its well-known genera. In DAMO, CH  is the sole C source and electron donor for reducing NO  to

N  under anaerobic (O -deficit) conditions . More environmental advantages are made possible due to DAMO’s

inherent ability to lessen the “greenhouse effect” and reduce N O, the unneeded by-product, during N removal .

A novel mechanism called “AOA” or anammox exists for N removal apart from the conventional nitrification-denitrification

processes . Under anaerobic conditions, NO  is used as an electron acceptor in this pathway for directly

transforming NH  into N  . As a result, it provides an alternative denitrification mechanism when the O  and C/N

ratios are low . Almost every anammox bacteria reported is a member of the phylum Planctomycetes .

Concerning NO , among the various nitrogenous contaminants, NO -N is more prone to leaching and subsequently

degenerate the quality of water than the others . Thus, removing NO  is crucial to safeguarding freshwater systems

and subsurface water quality . Besides denitrification, there is another pathway for reducing NO , which is called

“dissimilatory nitrate reduction to ammonium” (DNRA) . The DNRA pathway converts NO  to NH , thereby reducing it

to available NH  suitable for utilization by other microbes, including ammonia-oxidizing archaea and AOB .

According to the published reports, it is more advantageous to the denitrification process in S -rich coastal and marine

habitats where salinity levels are high . Numerous investigations have revealed that a few denitrifying bacterial genera,

including Clostridium, Desulfovibrio, and Vibrio, can carry out the DNRA process . Nevertheless, it is currently

challenging to discriminate between DNRA and denitrifying bacteria, necessitating future advancements in molecular

biotechnology.

The phylum Proteobacteria has a sizable species number active in N transformation . This species is prevalent in CWs

and is the leading phylum in most systems, significantly removing N from various wastewater categories . The three

genera, viz., Nitrobacter, Nitrosomonas, and Nitrosospira, are related to the process of nitrification, while among

denitrifying bacteria, the genera Arenimonass, Tauera, Thermomonas, and Thiobacillus are frequently found. The three

prominent classes associated with N removal in CWs are Alphaproteobacteria, Betaproteobacteria, and

Gammaproteobacteria. They are rich in nitrifying bacteria, such as AOB and NOB, which are functionally crucial to CW

ecology and are primarily responsible for removing N .

Additionally, an increasing body of research has linked the functional genes of N-removing microbes to their operational

and quantitative analyses .

For instance, the plentitude of nirK- and nrfA-carrying microbes controls how well CWs performed at denitrification ; the

prevalence of the functional genes for nitrification, viz., amoA-ammonia-oxidizing archaea, amoA-AOB, and nxrA,

indicated the nitrifying-bacterial-growth status . A summary of the active gene pools related to the various N removal

processes, such as nitrification, denitrification, anammox, and DNRA, has been prepared . With active genes,

one may examine how microorganisms function in a particular habitat or ecosystem and offer a viable method for

researchers to continue studying functional microbes in CW systems.
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5.5. Removal of Phosphate (PO )

P is one of the primary elements contributing to the eutrophication process in waterbodies . Excess P discharge into

aquatic ecosystems from diverse sources encompassing agricultural, industrial, and residential sources can also

adversely affect aquatic organisms by modifying water pH, reducing DO levels, and triggering algal/phytoplankton growth

. P occurs naturally in inorganic and organic forms/phosphates (PO ). Soluble reactive P (SR-P) is the term used

to describe the analytical measure of biologically available orthophosphates. In general, insoluble forms of P (inorganic

and organic) and dissolved org-P are physiologically inaccessible until they are converted into soluble inorganic forms .

The basic phenomenon of removing P in CWs depends on its accumulation by the sediments, substrates, and plants. For

removal, P can be processed physically, chemically, or biologically.

Physical Removal Mechanism(s)

In CWs, physical absorption through roots, leaves, and plant parts is usually deficient. Thus, macrophytes account for P

removal at the beginning of their growing period, and precipitation of soluble and insoluble P in the influent, followed by

sedimentation, is the physical form of removal occurring in the CW. Filtration through solid substances and fallen leaves in

CWs reduces P from wastewater .

Chemical Removal Mechanism(s)

The main P removal by chemical mechanism in the CWs occurs through adsorption and precipitation (precipitation in the

water column and adsorption by porous media) . Adsorption and precipitation within substrates are well-established in

performing the most critical roles in the PO  removal process . Other than this, sand, washed gravel, crushed rocks,

and peats can also participate in the adsorption process. CW bed fills, on the other hand, have a short-term P sorption

capability .

Biological Removal Mechanism(s)

The mechanism for removing P is through biological resources, but this process still does not allow much storage.

Microbes are crucial for eliminating P from CWs and can regulate the transformation of P into different forms . P uptake

through microorganisms is relatively fast since bacteria, fungi, and algae can multiply rapidly. Maximal P transformation

mediated by microbes involves the mineralization of organic PO  to inorganic PO  (a process also referred to as

“decomposition”) or the conversion of insoluble, mobile, primary PO  that are more readily utilized by organisms . A

comprehensive review on microorganism in constructed wetlands list the major functional microorganisms responsible for

P removal in CWs .

“Phosphorus-accumulating organisms” (PAOs) are primarily responsible for biological P removal in CWs. PAOs can

absorb wastewater PO  and store it within their cells under oscillating oxic and anoxic environments . Under

anoxic conditions, PAOs degrade intracellular polyphosphates and uptake volatile fatty acids from the surrounding media.

These fatty acids are subsequently stored as polyhydroxyalkanoates/poly-β-hydroxyalkanoates (PHAs) .

In contrast, PAOs utilize PHAs under oxic conditions to provide energy and absorb PO  creating polyphosphate storage

. The process of microbial P removal in CWs is generally realized because the amount of P absorbed by PAOs will be

higher than that of P discharged . Pseudomonadota (formerly Proteobacteria), which plays a significant role in P

elimination, is the major phylum . Of these, the majority of the bacterial/microbial species linked to biological P

removal are found in the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria . TP removal

in CWs is facilitated by the Rhizobiaceae and Rhodobacteraceae of the class Alphaproteobacteria, which can uptake

volatile fatty acids under oxic conditions and transform them into PHAs . The genera Candidatus, Dechloromonas, and

Rhodocyclus constitute the principal members of the class Betaproteobacteria. Among them, the bacterial group

Candidatus Accumulibacter is a representative PAO dominant in large-scale wastewater treatment facilities and

laboratory-scale reactors. Under anaerobic conditions, Dechloromonas can reduce perchlorate, assemble polyphosphate,

and take up C . Additionally, it has been demonstrated that Rhodocyclus significantly contributes to P elimination .

Pertinent research has identified three genera, viz., Acinetobacter, Klebsiella, and Pseudomonas, belonging to

Gammaproteobacteria . Pseudomonas is an efficient P-removal bacterium due to its considerable capacity to absorb

wastewater P and store it as polyphosphates within its cell biomass . According to , Pseudomonas can eliminate up

to 80.6 percent of TP from household sewage. Notably, the first bacterial isolate from biomass belonged to the genus

Acinetobacter, with a solid capacity to remove P . Besides Proteobacteria, other taxa like Gemmatimonadacea can

absorb surplus PO  under oxic conditions .
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The P-removal ability of PAOs primarily relies on their bioaccumulation and utilization of intracellular polyphosphates ,

which are directly correlated with exopolyphosphatase (ppx) and polyphosphate kinase (ppk) activities . For achieving

biological P removal, the enzymes ppk and ppx can catalyze aerobic P uptake and anaerobic P release, respectively .

Elevated temperatures, however, inhibit their functions; based on an earlier study, the ideal temperature ranges between

20.0 °C and 35.0 °C .

Moreover, besides PAOs, “phosphorus-solubilizing bacteria” (PSB) and “denitrifying phosphorus-accumulating organisms”

(DNPAOs) have been identified in CW systems. Examples of PSB include the genera Corynebacterium and Enterobacter,
which produce organic acids like citric and oxalic acids for converting the insoluble form of soil P into its soluble form for

plant uptake . DNPAOs may absorb polyphosphate in anoxic environments using NO  or NO  as electron acceptors

. There have been reports of DNPAOs in Alphaproteobacteria (including the genus Paracoccus) and Anaerolineae .

Interestingly, organophosphate hydrolases from the genera Brevundimonas and Chlorobaculum hydrolyze

organophosphate esters, and Variovorax utilizes insoluble PO  as a P source for its growth .

5.6. Removal of Heavy or Trace Metals

HMs are widely dispersed in aquatic ecosystems and regarded as toxic environmental contaminants as they are hard to

break down and, if left untreated, can build up in the food web , resulting in biomagnification and causing health risks to

humans. CWs have been extensively used to eliminate dissolved metal(loid)s or TEs. Although these pollutants are

frequently found in mine drainage, treatment wetlands have been built for stormwater, landfill leachates, and other

sources (such as leachates/FDG washwater at coal-fired power plants and domestic sewage), which also contain

dissolved trace elements . Through the exploitation of diverse processes like biomineralization, biosorption, and

biotransformation (valence transformation), microbes in CW systems can efficiently remove HMs/TEs . The principal

HM-removal pathways/processes by functional microbes in CWs are shown in Figure 3. The phyla and genera of

functional microbes are reviewed by Wang et al., 2022b .

Figure 3. Illustration showing the principal mechanisms of removal of heavy metals (HMs) by microbes in constructed

wetland (CW) systems (Source:  with modifications).

Ironically, HM ions usually harm microbes because they break cell membranes, damage DNA, impede enzyme activity,

and interfere with cellular functions . For this reason, HM tolerance is crucial for microbes in HM removal in CWs. The

genera Sideroxydans and Thiomonas can oxidize Fe  to Fe , making its precipitation easy and rendering it less toxic

. Additionally, Yu et al. (2020)  discovered that the dominant genera Pseudomonas and Serratia displayed resistance

to Cd  and Zn  when tested utilizing concentration gradients of these two HMs, leading to increases in their removal

rates of 10.13 percent and 8.57 percent, respectively. Analysis of subcellular compartments further revealed the presence

of bioaccumulated HMs primarily in the microbial cell membrane and cell wall. The exopolymers from Pseudomonas can

bind to HMs and prevent their transport inside the biofilm through diffusion, attaining extracellular sequestration, which

shields bacterial cells from HM stress .
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Moreover, the presence of anionic functional groups on the cell surfaces of Pseudomonas and Serratia may further

facilitate Cd  and Zn  adsorption . These results suggest that culturing resistant bacteria/microbes is a feasible

strategy for removing HMs from wastewater and call for further study. However, Serratia minimizes HM toxicity by

secreting a variety of enzymes and proteins, including amino acids, histidine-binding proteins, HM-binding proteins, redox

enzymes, and transporter proteins capable of effluxing HM ions ; this is unable to aid in the elimination of HMs by CWs.

Hence, there is a difference between resistant and functional microbes, and further investigation into microbial HM

removal mechanisms is necessary before a conclusion can be drawn. According to , functional microbes also evolved

over a longer time in the control CW system that was not exposed to resistant microbes. The system’s microbial

community structure most likely changed spontaneously, facilitating tolerance to HM stress. Contrarily, when exposed to

HM-containing environments, systems supplemented with resistant microbial inoculants may display a less prominent

microbial community evolution to achieve a dominant strain, saving biofilm stabilization time .

The elimination of HMs is also significantly influenced by plant-microbe interactions. Plants and microbes have coexisted

for a long time, and microbes have formed intricate relationships with plants . Particularly, endophytic and rhizospheric

bacteria (PGPR) can facilitate plant growth and development through nutrient (Ca, Fe, Mg, N, and P) uptake,

phytohormone production, and tolerance towards pollutant stress . This, in turn, can reduce harmful metal-induced plant

stress and help plant metal accumulation . Conversely, the primary role of macrophytes in CW systems is to supply

additional OM and O  needed for the growth of microbes . Therefore, healthy plant growth also offers a better habitat

for microbial proliferation . These symbiotic interactions enhance HM removal in CWs. For example, Syranidou et al.

(2016)  showed that inoculating Juncus acutus L. with a particular endophytic bacterial consortium eliminated emerging

contaminants and HMs more quickly and effectively than uninoculated plants. In another study by Vassallo et al. (2020) ,

it was shown that eight rhizobacterial isolates from P. australis roots belonging to the genera Bacillus, Planococcus, and

Pseudomonas thrived in domestic sewage with high levels of HMs (45 mg/L and 0.09 mg/L of Fe and Se, respectively),

and the more HM concentrations present, the more rapid they grew. In conclusion, due to their high levels of HM

resistance and ability to improve phytoremediation effectiveness, PGPR has been demonstrated to be a trustworthy

functional microbe for HM removal.

5.7. Removal of Pathogens

Pathogens commonly found in household/municipal sewage capable of inflicting different acute or chronic diseases in

humans encompass varied microbial genera like Escherichia, Salmonella, and Vibrio among bacteria, Ascaris among

intestinal nematodes, Enteroviruses and Rotaviruses among viruses, etc. Notably, the genera used as pollution indicators

in domestic sewage include Clostridium, Citrobacter, Enterobacter, Escherichia, Klebsiella, and Streptococcus . Severe

disease conditions caused by various microbial pathogens and their toxins, along with other contaminants in wastewater,

are amoebiasis (Entamoeba histolytica), botulism (Clostridium botulinum), campylobacteriosis (Campylobacter), cholera

(Vibrio cholerae), cryptosporidiosis (Cryptosporidium parvum), giardiasis (Giardia lamblia), hemorrhagic diarrhea

(Escherichia coli), hepatitis A (Hepatitis A virus), typhoid (Salmonella typhi), scabies, shigella infection (Shigella spp.), and

other parasitic (helminthic and protozoan) infections (Endolimax nanus, Entamoeba coli, and whipworm) .

In a CW system, all kinds of pathogens, including bacteria, fungi, helminths, protozoa, viruses, etc., are anticipated to be

somewhat eliminated; however, an SSFCW is expected to remove pathogens more thoroughly than SFCWs. Usually, a 1-

2 log  reduction in pathogen count can be expected in a FWSCW, but in systems with dense vegetation, the elimination

of bacteria and viruses may be <1 log  reduction. CWs frequently contain flora that helps eliminate other pollutants

(nutrients) like N and P. As a result, the role of sunlight in killing bacteria and viruses is diminished in these systems since

heavy vegetation prevents the exposure of pathogens to direct sun rays. According to published reports, in a well-

designed and adequately operated/maintained FWSCW, pathogen removal is around <1-2 log , 1-2 log , 1-2 log , and

<1-2 log  for bacteria, helminths, protozoa, and viruses, respectively. In contrast, the expected elimination of pathogenic

bacteria, helminths, protozoa, and viruses in SSFCWs is relatively higher and is reported to be 1-3 log , 2 log , 2 log ,

and 1-2 log , respectively .

The removal efficiencies stated above as log  can alternatively be understood in terms of how removal efficiencies are

often/generally reported in terms of percentages (%); for instance, 1 log  removal corresponds to 90% removal efficiency

(RE), 2 log  removal corresponds to 99% RE; 3 log  removal corresponds to 99.9% RE; 4 log10 removal corresponds to

99.99% RE, and so on . Various studies have been conducted in the last two decades on domestic wastewater

treatment and developing alternative, low-cost, and sustainable strategies that can effectively reduce pollutant

concentrations to acceptable/permissible environmental standards (Table 1).
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Table 1. A detailed synopsis of the wastewater operational parameters and macrophyte- and microbe-assisted treatment

efficiencies of FWSCWs, SSFCWs, HSSFCWs, VSSFCWs, and HFCWs using selected case studies from the last two

decades (2003–2022).

Sl.
No.

Latin and
Common Names
of Plant
(Macrophyte)
Species

Percentage
Removal of
Inorganic
and Organic
Pollutant(s)
(%)

Percentage Removal of
Pollutant Indicator
Organism(s)/Pathogen(s)
(%)

Microbes Involved in
the Removal of
Nutrient(s)/Pollutant(s)

Constructed-
Wetland-Based
Phytoremediation
Set-
Up(s)/System(s)
Used

Type of
Treated
Wastewater

Reference(s)

1.

Salix atrocinerea
Brot. (grey
willow) and

Typha latifolia L.
(cattail)

BOD  (87.5)
COD (89.0)
SS (66.5)

Fecal bacteria (99.9) -
Full–scale, pilot-
plant constructed

wetland

Domestic
wastewater

2.

Control unit (A):
Phragmites
mauritianus
Kunth (reed
grass) and T.

latifolia

COD (33.6,
56.3, and

60.7)
NH -N

(11.2, 25.2,
and 23.0)

NO -N (23.9,
38.5, and

23.1)
NO -N

(32.2, 40.3,
and 44.3)

TC and FC (43.0–72.0) -

Horizontal
subsurface-flow

constructed
wetland

Domestic
wastewater

3.

Control unit (A):
Colocasia

esculenta (L.)
Schott (taro) and

T. latifolia

COD (64.7,
74.8, and

79.4)
NH  (74.0–

75.0)
P  (72.0–

77.0)
SO  (74.0–

75.0)

- -

Engineered
wetland

Domestic
wastewater

T. latifolia
NH  (74.0)

PO  (69.0)
SO  (72.0)

- -

4.

Phragmites sp.

BOD  (93.0)
COD (88.0)
TDS (93.0)
TSS (93.0)

FC (76.0–99.0) Fecal
Streptococci (49.0–85.0)

Note: These were
removed in two phases
in four distinct seasons

-

Subsurface-flow
constructed

wetland

Municipal
wastewater

Typha sp.

BOD  (63.0)
COD (50)

TDS (58.0)
TSS (58.0)

FC (50.0–99.0)
Fecal Streptococci

(33.0–85.0)
Note: These were

removed in two phases
in four distinct seasons

-

5.

Pontederia
crassipes Mart.

[formerly
Eichhornia

crassipes (Mart.)
Solms]

(common water
hyacinth) and
Phragmites

australis (Cav.)
Trin. ex Steud.
(common reed)

BOD  (72.1)
COD (67.2)

Org-N (59.3)
SS (64.6)
Settleable

solids (91.8)
TN (38.0)
TP (43.0)

- -
Surface-flow
constructed

wetland

Secondary-
treated

domestic
wastewater

6.

Typha
angustifolia L.
and Scirpus
grossus L.f.
(club-rush or

bulrush)

BOD  (68.2)
NH -N
(74.4)

NO -N
(50.0)

TP (19.0)
TSS (71.9)

- - Free-water
surface wetland

Secondary-
treated

municipal
wastewater
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7.

Lemna minor L.
(common

duckweed), P.
australis,

Schoenoplectus
tabernaemontani

(C.C. Gmel.)
Palla (syn.

Scirpus validus
Vahl) (softstem
bulrush), and

Typha orientalis
C. Presl

(cumbungi)

BOD  (70.4)
NH -N (40.6)

SS (71.8)
TP (29.6)

TC and FC (99.7 and
99.6, respectively) - Constructed

wetland
Sewage

water

8.

 Acorus
gramineus Sol.

ex Aiton
(Japanese sweet

flag),  Iris
pseudacorus L.

(yellow flag)

BOD  (
71.3,  72.5)

COD (
61.71, 

61.5)
TN (11.24–

21.95)
TP (33.15)

- - Constructed
wetland

Domestic
wastewater

9.

 Iris
pseudacorus L.
and  Acorus

gramineus
Soland

BOD  (72.5,
71.3)

COD (61.1,
61.7)

TN (70.9,
70.7)

TP (86.9,
84.8)

 HMs (Cd,
Cr, and Pb)
—15.3, 21.3,

and 24.5,
respectively)

- - Model wetlands

Rural or
urban

domestic
wastewater

10. T. angustifolia

BOD  (80.78)
NH -N
(95.75)

TN (66.5)
TP (58.59)

- - Free-water
surface wetland

Secondary-
treated

municipal
wastewater

11. Canna and
Heliconia

TSS (88.0)
COD (42–83) - -

Horizontal
subsurface-flow

constructed
wetland

Domestic
wastewater

12. P. australis and
T. latifolia

BOD  (>86.0)
COD (>86.0) - -

Vertical-flow
constructed

wetland

Domestic
wastewater

13. Canna BOD  (94.0)
TN (93.0) - -

Vertical
subsurface-flow

constructed
wetland and
horizontal

subsurface-flow
constructed

wetland

Sewage
water

14.

Cyperus
alternifolius L.

(umbrella
papyrus)

COD (83.6)
NH -N
(71.4)

TN (64.5)
TP (68.1)

TSS (99.0)

- -
Hybrid-flow
constructed

wetland

Municipal
wastewater

5

3 [77]

A

B

5
A

B

A

B [78]

A

B

5

A

[78]

5

4
+

[79]

[80]

5 [81]

5 [82]

4
+

[83]



Sl.
No.

Latin and
Common Names
of Plant
(Macrophyte)
Species

Percentage
Removal of
Inorganic
and Organic
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15.
Acorus calamus

Linn. (sweet
flag)

COD (73.0–
93.0)

TN (46.0–
87.0)

TOC (40.0–
66.0)

TP (75.0–
90.0)

- -
Vertical-flow
constructed

wetland

Domestic
wastewater

16.

Anthurium
andraeanum

Linden (flamingo
flower), Strelitzia

reginae Aiton
(crane flower),
Zantedeschia
aethiopica (L.)
Spreng. (calla

lily),
and Agapanthus

africanus L.
(African lily)

BOD  (81.94)
TN (49.38)
TP (50.14)

TSS (61.56)

TC (99.30) -

Vertical
subsurface-flow

constructed
wetland

Secondary-
treated

municipal
wastewater

17.

Canna, Cyperus
papyrus L.

(papyrus or Nile
grass), and P.

australis

BOD  (90)
COD (88.0)

TSS (92)

TC, FC, and E. coli (94.0–
99.0) -

Vertical-flow
constructed

wetland

Municipal
wastewater

18.
Canna indica L.

(Indian shot) and
T. orientalis

BOD  (62.8)
NH -N
(80.72)
NO -N
(12.8)

TN (51.1)

- -
Hybrid-flow
constructed

wetland

Municipal
wastewater

19.

Scirpus
alternifolios

(umbrella
papyrus)

BOD  (84.9)
COD (89.8)

NH -N (82.2)
TKN (82.7)
TP (76.5)

TSS (98.1)

- -

Vertical
subsurface-flow

constructed
wetland

Wastewater

20. T. angustifolia
NH -N
(95.2)

TP (69.6)
- -

Subsurface-flow
constructed

wetland

Artificial
wastewater

21. Canna and P.
australis

BOD  (92.8,
93.6)

COD (91.5)
NH  (62.3,

57.1)
TSS (92.3,

94.0)

- -

Vertical-flow and
horizontal-flow

constructed
wetlands

Municipal
wastewater

22.

Alternanthera
sessilis (L.)
R.Br. ex DC.

(Brazilian
spinach), C.
esculenta, P.

australis, Pistia
stratiotes L.

(water lettuce),
Persicaria

hydropiper (L.)
Delarbre (syn.

Polygonum
hydropiper L.)
(water pepper),
and T. latifolia

BOD  (90.0)
NH -N (86.0)
NO -N (84.0)
TDS (78.0)
TE (As, Co,
Cr, Cu, Mn,
Ni, Pb, and
Zn—85.0,
49.0, 35.0,
95.0, 87.0,
39.0, 92.0,
and 55.0,

respectively)
TSS (65.0)

- -
Subsurface-flow

constructed
wetland

Sewage
wastewater
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23. T. latifolia

COD (53.0–
70.0)

NH  (12.0–
15.0)

P (18.0–25.0)

- -
Surface, up-flow

constructed
wetland

Sewage
wastewater

24. Phragmites

COD  (75.7)
NH -N (96.8)

TN (96.7)
TP (90.4)

-

N was removed by
Paenibacillus sp.,

Pseudomonas
oleovorans,

Pseudomonas
pseudoalcaligenes,

Pseudomonas stutzeri
(LZ-4),

Pseudomonas stutzeri
(LZ-14), Pseudomonas

stutzeri (XP-2), and
Pseudomonas

pseudoalcaligenes
(Note: These microbes

remove N from
wetlands with
processes like

adsorption, filtration,
precipitation,

sedimentation, and
volatization);

Pseudomonas
mendocina LR

contributed to the
maximal N removal

(97.35%)

Laboratory-scale
constructed

wetland
microcosm

River water
and

domestic
wastewater

25. Canna and
Phragmites

NH -N,
NO -N and
TKN (52.99)

- -
Vertical-flow
constructed

wetland

Secondary-
treated
sewage

wastewater

26.

I. pseudacorus,
P.

australis, and T.
latifolia

BOD  (41.0)
Dissolved P

(59.0)
HM (Pb—

98.0)
NH -N
(66.0)

TP (46.0)
SS (66)

- - Constructed
wetland

Mine water
and

Sewage

27.

Agapanthus
africanus (L.)

Hoffman.
(African lily),
Canna ffuses,

C. indica,
Watsonia
borbonica

(Pourr.)
Goldblatt

(Cape bugle lily),
and Z.

aethiopica

BOD  (90.0)
NH  (84.0)
PO  (92.0)

- -

Horizontal
subsurface-flow

constructed
wetland

Sewage
water

28. Aquatic plants

BOD  (87.9)
COD  (90.6)
NH -N (66.7)

TN (63.4)
TP (92.6)

- -
New-type, multi-

layer artificial
wetland

Domestic
wastewater

29. Canna ×
generalis

NO  (51.9)
P (8.9)

Phenolic
compounds

(1.0)

- - Constructed
wetland

Domestic
wastewater

3
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30.

A. calamus,
C. indica, Iris

japonica Thunb.
(butterfly
flower), P.

australis, T.
angustifolia, and

Zizania
caduciflora

(Trin.) Hand.-
Mazz. (wild rice)

TP (79.6,
87.9,

90.3, and
93.2)

- -

Integrated
vertical-flow
constructed

wetland

Synthetic
domestic

wastewater

31. P. australis

BOD  (84.0)
COD (75.0)
NH  (32.0)
TP (22.0)

TSS (75.0)

- -

Vertical
subsurface-flow

constructed
wetland

Sewage
water

32. C. indica

BOD  (88.11,
80.51, and

89.78)
NH -N
(94.81,
39.39)

TN (56.17,
50.0, and

55.06)
TP (94.82,
93.04, and

93.31)

- N was removed by
denitrifying bacteria

Hybrid vertical
down-flow

constructed
wetland

Domestic
wastewater

33. A. calamus and
P. australis TN (45.2) -

N was removed by a
large number of

rhizospheric bacteria
(out of that, 17.9–

26.8% non-
rhizospheric bacteria
removed N from the

soil)

Horizontal
subsurface-flow

constructed
wetland

Domestic
wastewater

34.

Centella asiatica
(L.) Urb. (Indian
pennywort), E.
crassipes, P.
australis, T.
latifolia, and

Chrysopogon
zizanioides (L.)

Roberty
(vetiver grass)

BOD  (81.0
and 82.0)
TKN (63.0
and 69.0)
TSS (79.0
and 89.0)

- -
Hybrid

constructed
wetland

Domestic
wastewater

35.

Typha
domingensis

Pers. (southern
cattail)

BOD  (56.0)
TKN (41.0)
TP (37.0)

TSS (78.0)

- - Constructed
floating wetland

Domestic
sewage

36. P. australis

BOD  (93.0)
COD (91.0)
TN (67.0)
TP (62.0)

TSS (95.0)

TC, FC, and fecal
Streptococci (64.0, 63.0,
and 61.0, respectively)

-
Hybrid

constructed
wetland

Wastewater

37.

Typha and
Commelina

benghalensis L.
(Benghal

dayflower)

NO  (84.0)
PO  (77.0)

TC and FC, E. coli,
Enterococcus,

Clostridium, and
Salmonella (65.0–70.0)

-
Horizontal-flow

constructed
wetland

Primary
and

secondary-
treated
sewage
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38.

Pennisetum
purpureum
Schumach.

(Napier grass)
and T. latifolia

BOD  (up to
87) (inlet
BOD  of

748–1642
mg L )

COD (up to
81) (inlet

COD of 835–
2602 mg L )

- -

Horizontal
subsurface-flow

constructed
wetlands

Industrial
(brewery)

wastewater

39.

C. indica and
Typha angustata
Bory & Chaub.

(accepted name:
Typha

domingensis
Pers.)

BOD, COD,
NH -N, TDS,
TKN, TP, and
TVS (  65.0–

 62.0, 
64.0–  61.0,

 21.0–
58.0,  34.0–

 33.0, 
15.0–  35.0,
and  54.0–

 40.0) [at
first stage]

and (  88.0–
 84.0, 

90.0–  90.0,
 52.0–

82.0,  58.0–
 61.0, 

50.0–  47.0,
and  71.0–
64.0) [for the

second
stage

reactor]
Note: The
nutrient

removal was
measured at
two different

hydraulic
loadings at 

0.150 m
day  and at

 0.225 m
day

- -

Two-stage
vertical-flow
constructed

wetland

Domestic
wastewater

40. C. papyrus and
P. australis

BOD  (80.69)
COD (69.87)

NH -N
(69.69)

TP (50.0)

TC and FC (98.08 and
95.61, respectively) -

Vertical-flow
subsurface
constructed

wetlands

Municipal
wastewater

41. A. calamus and
C. indica

BOD  (78.74
and 81.79)
TDS (18.96
and 22.31)
TN (56.33
and 60.37)

PO  (79.57
and 81.53)

- -

Pilot-scale
vertical

subsurface-flow
constructed

wetland

Primary-
treated

domestic
sewage
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5

−1
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Myriophyllum
elatinoides

Gaudich. (water
milfoil)
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NO  (95.16)
TN (90.36)
TP (96.14)

-

Bacteroides and
Firmicutes carried out
denitrification; N was

removed by
Pseudomonas,

Dechloromonas,
Desulfobacca, and
Desulfomicrobium;

PO  was removed by
Chlorobaculum,

Methanobacterium,
and Rhodoblastus

Multi-stage,
surface-flow
constructed

wetland

Domestic
sewage

43.

C. esculenta and
Dracaena

sanderiana
Sander ex Mast.
(Chinese water

bamboo)

BOD  (74.0)
NH -N (90.0)
TSS (76.0)

TC (59.0) -

Novel vertical-
flow and free-
water surface
constructed

wetland

Dormitory
sewage

44. A. calamus and
reeds

TN (15.0)
TP (18.0) -

Bioremediation and
degradation of diesel,
petroleum, and other

alkanes could be
achieved by Tistrella;

N was removed by
Achromobacter,
Aeromicrobium,

Aquicella,
Azospirillum,

Fluviicola,
Halomonas,

Limnohabitans,
Methylophilacterium,

Perlucidibaca,
Pseudomonas,
Rhodobacter,

Rhodospirillaceae,
and Variovorax;

S
compounds were

removed by
Desulfovibrio and

Rhodocista
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wetland

Domestic
sewage

45.
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alternifolius, and
Thalia dealbata

Fraser ex
Roscoe

(powdery
alligator-flag)

COD (95.2)
NH -N (98.1)

PO -P
(85.3)

TN (87.9)
TP (86.1)

- -
Hybrid

constructed
wetland

Domestic
sewage
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Chrysopogon
zizanioides L.
(vetiver and

khus)

BOD  (83.36)
COD (92.34)

NH -N
(89.41)
NO -N
(90.72)
PO -P
(92.81)

TCr (95.20)
TN (93.54)

TSS (94.66)

- -

Horizontal
subsurface-flow

constructed
wetland

Tannery
wastewater

4
+

3
−

4
2−

[40]

5/

4
[109]

[59]

4

4
−

[110]

5

4

3

4
−

[111]



Notes: BOD : biochemical oxygen demand measured in a 5-day test; COD: chemical oxygen demand; C: carbon; FC:

fecal coliforms; HM: heavy metal(s); NH : ammonia; NH : ammonium; NO : nitrate; Org-N: organic N; PO :

phosphate; SO : sulphate; SS: suspended solids; TC: total coliforms; TCr: total chromium; TDS: total dissolved solids;

TE: trace element(s); TN: total nitrogen; TP: total phosphorus; TSS: total suspended solids; TVS: total volatile solids.
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 Commelina
benghalensis L.

(Benghal
dayflower) and 

T. latifolia
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(61.0 and

59.0)
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(58.0 and
53.0)
 NH

(60.3 and
51.5)
 NO -N

(60.3 and
51.5)

PO (61.0
and 64.0)

 TC (41.0 and 39.0)
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-
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constructed

wetland

Domestic
wastewater
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NH -N
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temperature-resistant
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community structure
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subsurface-flow
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wetland
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polluted

lake water
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subsurface-flow
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wetland

Domestic
wastewater
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Microbial-
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P-rich
Saline

wastewater

A

B

A,B

A,B

A,B
4

+

A,B
3

A,B

4
2−

A,B

A,B

A,B
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