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The term graphene was coined using the prefix “graph” taken from graphite and the suffix “-ene” for the C=C bond,

by Boehm et al. in 1986. The synthesis of graphene can be done using various methods. The synthesized

graphene was further oxidized to graphene oxide (GO) using different methods, to enhance its multitude of

applications. Graphene oxide (GO) is the oxidized analogy of graphene, familiar as the only intermediate or

precursor for obtaining the latter at a large scale. Graphene oxide has recently obtained enormous popularity in the

energy, environment, sensor, and biomedical fields and has been handsomely exploited for water purification

membranes. GO is a unique class of mechanically robust, ultrathin, high flux, high-selectivity, and fouling-resistant

separation membranes that provide opportunities to advance water desalination technologies. The facile synthesis

of GO membranes opens the doors for ideal next-generation membranes as cost-effective and sustainable

alternative to long existing thin-film composite membranes for water purification applications. 

graphene  synthesis process  polymeric membranes  environmental remediation

composites

1. Introduction

Graphene is a purified form of graphite that recently gained enormous popularity in the energy , environment

, membranes , sensor , and biomedical fields . It is

a sp  hybridized, hexagonally arranged, chain of polycyclic aromatic hydrocarbon with a honeycomb crystal lattice

. It is the most recent element of carbon allotropes and is actually the basic building block of other important

carbon allotropes, including 3D graphite, 1D carbon nanotubes (CNTs), and 0D fullerene (C60), as shown

in Figure 1.
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Figure 1. Structural representation of 2D graphene with different dimensions. [Reprinted with permission from ref.

, Wan, X., Huang, Y., & Chen, Y. (2012). Focusing on energy and optoelectronic applications: a journey for

graphene and graphene oxide at large scale. Accounts of chemical research, 45(4), 598–607. Copyright ©

American Chemical Society].

The name graphene was coined by Boehm in 1986 , taking the prefix “graph” from graphite and the suffix “-ene”

for sp  hybridized carbon, and was finally accepted by the International Union for Pure and Applied Chemistry in

1997 . Furthermore, it became famous worldwide in 2004 when Geim and Novoselov obtained a

single sheet of graphene on solid support, for which they were honored with the Nobel Prize in Physics in 2010 .

The main achievements of graphene in a timeline of history from 1840 to 2018 are shown in Figure 2.
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Figure 2. Schematic representation of a graphene timeline.

2. General Methods of Graphene Synthesis

Generally, graphene can be synthesized using two different routes, viz, bottom-up and top-down , as

depicted in Figure 3.

Figure 3. Schematic representation of the general methods for graphene synthesis.
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3. Graphene Oxide (GO)

In comparison to graphene, graphene oxide is considered a more versatile and advanced material. GO has a

broad range of oxygen containing functional groups such as carboxyl, hydroxyl, epoxy, carbonyl, and keto groups

on its surface.

GO has shown great potential in a variety of fields by virtue of its high surface area , unique mechanical strength

, and excellent optical and magnetic properties . In comparison to other carbon-based nanomaterials, GO is

considered a green oxidant, as it is enriched with oxygen-containing functional groups . Further, GO has an

aromatic scaffold, which acts as a template to anchor active species behaving as an organo-catalyst . 

3.1. Synthesis of GO

In 1840, German scientist Schafhacutl was given the first report on the synthesis of graphene oxide and graphite

intercalated compounds . For the very first time, he attempted to exfoliate graphite and tried to purify impure

graphite “kish” from iron smelters . To date, several methods, as shown in Table 1, have been proposed.

Table 1. List of different methods used to synthesize graphene oxide.
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Methods Year Starting
Material

Different Oxidants
Used

Reaction
Time for

GO
Synthesis

Temperature
°C Features References

Brodie 1859 Graphite KclO , HNO
3–4
days

60
First attempt to
synthesize GO

Staudenmaier 1898 Graphite
KclO , H SO ,

HNO
96 h

Room
temperature

Improved
efficiency

Hummers 1958 Graphite
KmnO , H SO ,

NaNO
<2 h <20–35–98

Water-free, less
than 2 h of

reaction time

Fu 2005 Graphite
KmnO , H SO ,

NaNO
<2 h 35

Validation of
NaNO

Shen 2009 Graphite Benzoyl peroxide 10 min 110
Fast and non-

acidic

Su 2009 Graphite KmnO , H SO 4 h
Room

temperature
Large-size GO
sheets formed

Marcano and
Tour

2010
&

2018
Graphite

KmnO , H PO ,
H SO

12 h 50
Eco-friendly

resulting in a high
yield

3 3
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The most preferred methods are Brodie , Staudenmaier , and Hummers , as shown in Figure 4. From

these familiar methods, a number of variations have been derived to improve the overall yield and quality of the

GO. In 1859, Brodie used graphite as the starting material for the synthesis of graphene oxide (GO). In his

experimental work, he used KclO  (strong oxidizing agent) along with nitric acid and heated the content at 60 °C for

3–4 days . The GO obtained was soluble in pure or basic water. The chemical composition showed mainly

carbon, oxygen, and hydrogen with the general formula C H O . After nearly four decades, in 1898, Staudenmaier

and Hoffmann modified Brodie’s method and trimmed down the reaction time of graphene oxide synthesis from 4

days to 2 days . The nitric acid used in Brodie method was also replaced with sulfuric acid, which further

reduced the liberation of toxic gases such as NO  or N O .

Methods Year Starting
Material

Different Oxidants
Used

Reaction
Time for

GO
Synthesis

Temperature
°C Features References

Sun 2013 Graphite KmnO , H SO 1.5 h
Room

temperature-
90

High-yield and
safe method

Eigler 2013 Graphite
KmnO , NaNO ,

H SO
16 h 10

High-quality GO
produced

Chen 2015 Graphite KmnO , H SO <1 h 40–95
High-yield
product

Panwar 2015 Graphite
H SO , H3PO ,
KmnO , HNO

3 h 50
Three component
acids and high-

yield product

Peng 2015 Graphite K FeO , H SO 1 h
Room

temperature

Results in a high-
yield and eco-

friendly method

Rosillo-Lopez 2016 Graphite HNO 20 h
Room

temperature
Nano-sized GO

obtained

Yu 2016 Graphite
K FeO ,

KmnO  H SO ,
H BO  (NH ) S O

5 h <5–35–95

Low manganite
impurities and

high yield
obtained

Dimiev 2016 Graphite
98% H SO ,

fuming H SO
3–4 h

Room
temperature

25 nm thick and
~100%conversion

rate

Pei 2018
Graphite

foil
H SO <5 min

Room
temperature

High efficiency

Ranjan 2018 Graphite
H SO , H PO ,

KmnO
<24 h <RT-35–95

Cooled
exothermal

reaction to make
the process

safe
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Figure 4. Schematic representation of the synthesis of graphene oxide with different methods.

In 1958, Hummer reduced the reaction time from 2 days to 12 h by using KmnO  as the oxidizing agent instead of

KclO , followed by the addition of sodium nitrate, but the problem of toxic gases still remains a challenge .

Further, in 2010, at Rice University, Tour’s group  replaced sodium nitrate with phosphoric acid and increased

the amount of KmnO . This improvement made the process eco-friendly, as it completely stops the release of toxic

gases such as NO , N O  or ClO , along with easy temperature control and better yield . In addition to this, the

GO suspension obtained was treated with hydrogen peroxide (H O ) to eliminate all impurities due to

permanganate and manganese dioxide.

Furthermore, the final color of the product GO varies from army green to light yellow, depending on the carbon-to-

oxygen ratios , as depicted in Table 2.

Table 2. Effect of acid concentration, reaction temperature, reaction time, and the quantity of the oxidizing agent on

the oxidation of graphene .
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S. No.Source of Carbon H SO
(in mL) Other Ingredients Temp.

(in °C)
Time
(in h) C:O Colour of GO Obtained

1 Graphite 15.0 1.0 g Na Cr O 30 72 16:1 Black

2 Graphite 15.0 4.0 g Na Cr O 30 72 3.4:1 Black

3 Graphite 15.0 15.0 mL 70% HNO 30 24 -- Black

2 4

2 2 7

2 2 7
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3.2. Structural Aspects of GO

Various structural models of GO, as shown in Figure 5, have been proposed and were refined over the years by

the advancement of characterization techniques and technologies. The structural history of GO started in 1936,

when Hofmann and Rudolf  proposed the first structure of GO in which epoxy groups were unsystematically

spotted over the graphene sheets, and then in 1946, Ruess  restructured the Hofmann model by introducing

hydroxyl moieties and the alternation of the basal plane structure from an sp  to an sp  hybridized carbon system.

S. No.Source of Carbon H SO
(in mL) Other Ingredients Temp.

(in °C)
Time
(in h) C:O Colour of GO Obtained

3.0 g KmnO ,

4 Graphite 20.0
11.0 g KclO ,

10.0 mL 70% HNO
0–60 33 3.1:1 Midnight green

5 Graphite 30.0
3.0 g KmnO ,1.0 g

NaNO
30 2 3.0:1 Bluish green

6 Graphite 30.0
3.0 g KmnO ,1.0 g

NaNO
45 1 -- Green

7 Graphite 22.5
3.0 g KmnO ,1.0 g

NaNO
45 1 -- Brittle yellow

8 Graphite 22.5
3.0 g KmnO ,0.5 g

NaNO
45 1 -- Yellow

9 Graphite 22.5
3.0 g KmnO ,0.5 g

NaNO
45 0.5 2.3:1 Yellow

10 Graphite 22.5
3.0 g KmnO ,0.5 g

NaNO
35 0.5 2.05:1 Bright yellow

11 Graphite 22.5
3.0 g KmnO , 1.0 g

fuming HNO
35 1 -- Bright yellow

12 Graphite 22.5
3.0 g KmnO , 1.0 g

BaNO
45 2 -- Light green

2 4

4

3

3

4

3

4

3

4

3

4

3

4

3

4

3

4

3

4

3
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Figure 5. Schematic representation of the year-wise progress in proposed structures of graphene oxide 

.

Scholz and Boehm in 1969  proposed a GO structure that was less ordered, having C=C and periodically

cleaved C-C bonds within the channeled carbon layers labeled with carbonyl and hydroxyl groups. Further, in 1994,

Nakajima and Matsuo  presented a graphite intercalation compound (GIC) to look like a lattice framework.

Adding to the history, in 1998, Lerf and Klinowski et al. (L–K model)  proposed a uniform carbon lattice

framework GO structure with randomly distributed benzene rings having attached epoxides, carboxyl, and hydroxyl

groups. Thereafter, in 2006, Szabó and coworkers  put forward a carboxylic-acid-free model comprising two

distinct domains: a trans-linked cyclohexyl species interspersed with tertiary alcohols, 1,3-ethers, and a

keto/quinoidal species corrugated network. Even closer to the present time, in 2018, Liu et al.  experimentally

noticed oxygen bonding and evidenced the C=O bonds on the edge and plane of GO, confirming parts of earlier

proposed models, especially the L–K model.

Among the above-discussed models from 1936 to 2018, the L–K model has been accepted the most, due to good

interpretability over the majority of experimental observations and the ease of further adaption and modification.
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3.3. Characterization of GO

In order to authenticate the synthesis of GO and to analyze its chemical configuration, a range of characterization

techniques have been employed by numerous research groups. For example, in order to achieve the information of

size and surface morphology of graphene oxide, SEM, TEM, and AFM were used abroad . With

respect to the elemental analysis of graphene oxide, quantitative XPS, EDX, and inductively coupled plasma mass

spectrometry (ICP-MS) were utilized generally . Additionally, Raman spectra, XRD, and

FTIR spectra are widely used to point out the graphene oxide chemical structure . 
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