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All kinds of vessels consist of dozens of complex machineries with rotating parts and electric motors that operate

continuously in harsh environments with excess temperature, humidity, vibration, fatigue, and load. A breakdown or

malfunction in one of these machineries can significantly impact a vessel’s operation and safety and, consequently,

the safety of the crew and the environment. To maintain operational efficiency and seaworthiness, the shipping

industry invests substantial resources in preventive maintenance and repairs.
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1. Introduction

According to the World Economic Forum, 90% of global trade relies on merchant vessels for transportation via the

sea . In 2022, Statista Research Department’s previous research revealed that the world merchant fleet consists

of 58,590 vessels of all types and sizes, like bulkers, tankers, container ships, refer, RoRo, chemicals, LPG, and

LNG . The ultimate goal of shipping companies is to operate the ships under their management with the highest

possible freight rates and the lowest operating and maintenance costs. Considering that these vessels boast an

array of advanced machinery, a malfunction in any of these systems not only has the potential to impede the

vessel’s expected arrival time but could also pose a significant threat to the safety of both the vessel and its crew,

with possible adverse effects on the environment. To keep the vessels fully functional and seaworthy, the

International Maritime Organization (IMO) has established and enforced the International Safety Management

Code (ISM). Mandated by this code, the shipping industry has implemented corrective and proactive maintenance

of all major machinery onboard shipping vessels.

In proactive maintenance, each piece of machinery is immobilized and inspected in a predetermined calendar or

operating period, while major parts are proactively replaced regardless of their actual condition. This entails the risk

that proactively replaced parts may still be functional, meaning that their replacement has resulted in unnecessary

waste of resources and money. In addition, it is still possible for a machine to break down before its scheduled

maintenance, and therefore, unscheduled repair works must be executed as soon as possible. It is believed that for

proactive maintenance to be properly applied, vessels must always procure and carry spare parts for all major

machinery. This leads to increased overall maintenance costs and the commitment of significant financial

resources to procuring and storing the spare parts.
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With the development of technology over time, new maintenance methods based on the real condition of

machinery have appeared and are gradually, though still slowly, being applied in the marine industry. The

overarching objective is to draw useful conclusions about the machinery’s operational status and, finally, to

implement predictive maintenance (PdM). The ultimate goal of PdM is to optimize performance and efficiency,

minimizing both the downtime and maintenance costs of machinery.

Since machines with rotating parts vary, each having different operational characteristics, the focus of this work is

on identifying and classifying issues related to ball bearings and their internal parts, like balls and rings. This

involves the analysis of captured vibration patterns associated with these components. Bearings and ball joints,

being essential elements of machines with rotating parts, are particularly prone to experiencing the most prevalent

faults.

2. Maintenance Strategies

In today’s modern era, society has embraced an increasingly consumerist lifestyle, leading to an unprecedented

growing demand for production worldwide. However, the challenges of meeting this demand, such as machinery

breakdowns, have become apparent; thus, unexpected production line disruptions contribute to increased

downtime and hinder the productivity and profitability of companies. As a result, the concept of machinery

maintenance has gained prominence in sectors such as construction, production, and transportation. Regardless of

its specific type, the ultimate objective of effective maintenance is to enhance working conditions and optimize

machinery performance.

Machinery breakdowns and interruptions in production have a significant and increasingly swift economic impact.

The process of mechanization followed by automation in production is a progression with no turning back. It was

only in 1962 when the term reliability-centered maintenance (RCM) was introduced, and in 1970, Japan

emphasized the concept of total productive maintenance (TPM) . These developments highlight the growing

recognition of the importance of maintenance strategies in optimizing reliability and productivity in industrial

settings. According to Coanda et al. , the lifetime of a product includes five stages: conception of the idea,

defining its objectives, manufacturing, use, and disposal/recycling. It is evident that the middle phase, involving the

use of the product, should last longer; therefore, the product itself must be maintained in a manner that ensures

optimal performance throughout its entire lifespan.

In contemporary maintenance practices, the focus on minimizing environmental impact has given rise to two key

approaches: “Sustainable Maintenance” and “Energy-Based Maintenance” . These methodologies aim to

enhance resource efficiency and overall sustainability. Sustainable maintenance, acknowledging the significance of

environmentally responsible asset upkeep, expands beyond the traditional emphasis on sustainability in new

constructions. It incorporates eco-friendly practices, emphasizing waste reduction, cost efficiency, and minimizing

social impact. The strategy involves evaluating environmental impacts throughout the maintenance cycle,

addressing energy consumption, pollutants, and waste hazardousness to extend asset lifecycles while achieving

operational efficiency and reducing environmental, social, and economic footprints.
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Energy-based maintenance, as a subset of condition-based maintenance, monitors equipment performance by

measuring energy consumption during regular operation. It compares measured energy with predetermined

standards, identifying deviations as triggers for timely maintenance actions. Unlike preventive maintenance, which

may lead to resource wastage, energy-based maintenance allows for prolonged operation while continuously

monitoring energy consumption, preventing unnecessary labor and spare part expenditures. This approach

contributes to efficient resource use, locates potential breakdown conditions, and enhances productivity, albeit with

considerations for instrument costs and potential training needs of maintenance personnel.

Although the ultimate purpose of maintenance is the same, i.e., keeping a machinery or production line in its

optimal operation condition, its philosophy depends on the production area it is applied to, but also on the mentality

of the stakeholders. As determined by the EN 13306 standard , maintenance is divided into two major

categories, reactive and proactive; each one is divided into more subcategories .

Reactive maintenance is applied after the consequences of machinery breakdown or production line immobilization

have occurred. It can be categorized into two types: corrective and emergency maintenance. Corrective

maintenance is the first maintenance strategy ever applied and is the most straightforward. It follows the run to

failure approach, where no interventions are made until the machinery fails. Once the machinery breaks down, the

faulty parts are repaired or replaced and the machinery is brought back into operation. This method is applicable,

without unpleasant implications, when the defective machine does not affect production, or when demand far

outweighs production, or the profit margin is so large that the cost of repair is negligible.

On the other hand, proactive maintenance refers to a preventive approach that focuses on identifying and

addressing potential issues before they result in machinery breakdowns or production line disruptions. It aims to

minimize unexpected downtime and optimize the overall performance and reliability of the equipment. Proactive

maintenance encompasses two various strategies: preventive and predictive maintenance.

Preventive maintenance involves regularly scheduled inspections, repairs, and servicing of equipment or facilities

to identify and address potential issues before they develop into major problems . The EN 13360 standard

defines preventive maintenance as performed at predetermined time intervals or other measurement units of use

without prior knowledge of the state of the machine, with the sole purpose of reducing failure or degradation of the

functional state of a system, component, or machine . One of the main objectives of preventive maintenance is

to reduce the rate, but also the frequency, of failures . One key benefit of preventive maintenance is that, with

only a few exceptions, it minimizes operational issues by proactively conducting maintenance, replacing worn

parts, and assessing the machine’s condition before problems arise. In contrast, relying solely on time-based

maintenance can lead to tasks being performed either too early or too late, resulting in premature part

replacements when they still have a significant remaining lifespan.

Predictive maintenance is defined as “Condition-based maintenance carried out following a forecast derived from

repeated analysis or known characteristics and evaluation of the significant parameters of the degradation of the

item” . This approach aims to optimize maintenance schedules, reduce unplanned downtime, and minimize
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unnecessary maintenance tasks. By addressing potential issues before they lead to failures, predictive

maintenance helps to improve operational efficiency, extend equipment lifespan, and reduce maintenance costs.

The authors of  state that 99% of the time, specific signs, conditions, or indicators manifest themselves before

the occurrence of any equipment failure.

Another advantage of predictive maintenance is that it can be applied while the machine is in operation and, relying

on data analysis, it is possible to analyze the data even in a state of rest, when the machine is not functioning.

Predictive maintenance can be divided into two basic categories: detection, where data are analyzed to identify the

existence of a fault or the potential future occurrence of a breakdown, and prediction, where data are analyzed to

forecast/estimate when a fault may occur and, therefore, calculate the remaining useful life (RLU) of the machine.

3. Convolutional Neural Networks

Convolutional neural networks are a type of deep learning architecture specifically designed for processing grid-like

data, such as images or sequential data. They are considered a special multi-layer perceptron (MLP) topology

network, consisting of multiple filter stages and one classification stage. CNNs are inspired by the organization and

functioning of the visual cortex in the human brain, which allows them to effectively extract and learn hierarchical

representations of complex patterns in data. They have revolutionized the field of computer vision and have been

successfully applied in various tasks, including image classification, object detection, and image generation.

An artificial neural network architecture that would allow computers to recognize images was first proposed in the

late 1980s. The first convolutional neural network, named LeNet, was developed in 1994, and it was capable of

recognizing handwritten graphic characters and applying back-propagation training. In , a new convolutional

model, LeNet5, was trained to recognize handwritten characters using the NIST database and utilizing the gradient

descent method. In the same year, more than 10% of bank checks in the USA were processed using this

technology .

CNNs have been at the forefront of deep learning. Researchers are constantly coming up with new ideas with

improved network characteristics and performance. Some of the most well-known CNNs are Google Net (2013),

VGG (2015), ResNeXT (2017), and EfficientNet 1303 (2020). Figure 1 illustrates an example of a common

convolutional neural network architecture .
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Figure 1. A 2D convolutional neural network model for image processing with an input layer of 28 × 28 pixels.

3.1. CNN Architecture

CNNs mainly consist of three types of layers: convolutional layers, pooling layers, and fully connected layers.

Convolutional layer: A convolutional layer is the fundamental component of CNN architecture and is responsible for

feature extraction. Convolution is a specialized type of linear operation used for feature extraction that applies a set

of learnable arrays of numbers (also known as kernels) to the input data, which are also an array of numbers

(called tensor). The kernel scans the entire input data by performing convolution operations, which involve

element-wise multiplication and summation, where the product is a value in the corresponding position of the

output tensor, called a feature map. This procedure is repeated by applying multiple kernels to form an arbitrary

number of feature maps that represent different characteristics of the input tensors. Each filter captures specific

local patterns or features in the input data, such as edges or textures. Convolution is described by Equation (1)

below, while Figure 2 illustrates the mathematical operation of convolution .

 

where:

[18]
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Figure 2. Overview of a 2D convolutional neural network.

𝑂 is the output of convolution layer l – 1 and the input of layer l through feature map i;

𝑂  is the jth feature map of layer l – 1;

𝑓 is the transfer function (RELU, sigmoid, etc.);

𝑀  is the input tensors;

W  is the weight that connects the i  feature of layer l − 1 with the j  feature of layer l;

𝑏  is the layer l − 1 bias.

Finally, the symbol ∎ represents the convolution operation.

Pooling layer: The pooling layer always follows a convolutional layer. It is mainly used to provide a down-sampling

operation that reduces the in-plane spatial dimensions of feature maps. Similar to the convolutional layer, a kernel

is applied in local regions of layer input, replacing them with a summarized representation. The most commonly

used pooling operation is max pooling, which extracts the maximum value within a defined window. Retaining the

maximum value, max pooling keeps the most prominent features present in the region while discarding less

relevant information. Another type of pooling operation, less frequently used, is average pooling. Average pooling

computes the average value within a predefined region. In cases where the average intensity or value across a

region is higher than the max value, average pooling can be more effective.
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The pooling layer’s operation helps to preserve the most salient information while reducing the computational

complexity of the overall network. It also contributes to translation invariance, enabling the network to recognize

patterns regardless of their precise spatial location in the input data.

Fully connected layer: Fully connected layers, also known as dense layers, are the last layers of the network,

where all the neurons of one layer are interconnected with the neurons of the next. Fully connected layers are

responsible for making final predictions and classifications based on the extracted features of the convolutional

layers. The number of fully connected layers depends on the depth of classification. In most cases where a multi-

class classification is required, fully connected layers utilize a hot encoder and softmax function that normalizes the

real output values of the previous layers to target class probabilities between 0 and 1, while the sum of all

probabilities is 1.

3.2. CNN Training

The ultimate goal of CNNs is to effectively categorize an image or a data time series into a specific type, acting on

detection, regression, or classification. To achieve that, CNNs have parameters that must be calculated during the

training process. CNNs utilize supervised learning to optimize their internal parameters, weights, and biases by

minimizing a loss function that measures the discrepancy between predicted and true labels. This process, known

as backpropagation, involves optimization algorithms such as gradient descent, which updates the network’s

parameters and then propagates the error back through the network layers. This process allows the network to

learn and recognize relevant patterns or features at different spatial locations in the input data. The training

process iterates until a stopping criterion is met. The most commonly used criteria are a maximum number of

epochs or observing diminishing returns in validation set performance.

One of the most challenging goals that network training must achieve is to balance the results between over- and

underfitting. Overfitting is when a network performs well on the training data but poorly on new, unknown data,

while underfitting is when it fails to capture the underlying patterns in input data. To mitigate over- and underfitting,

regularization techniques such as the dropout function can be applied to the kernels of the convolutional and

pooling layers. The dropout function randomly deactivates (sets to zero) a specific percentage of neurons during

each training iteration; thus, it must be used sparingly.
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