

Post-Harvest Technological Advances and Ripening Techniques for Peach

Subjects: **Horticulture**

Contributor: Umar Hayat , Wenqing Li , Hangling Bie , Suning Liu , Dandan Guo , Ke Cao

Post-harvest handling and ripening techniques have an impact on peach quality and shelf life, which has a big impact on consumer satisfaction and market competitiveness.

post-harvest technologies

modified atmosphere packaging

controlled atmosphere storage

1. Peach Post-Harvest Physiology

1.1. Recognizing the Physiological Changes That Occur during Peach Ripening

The process of ripening peach is intricate and dynamic, involving a number of physiological changes such as softening, color development, and flavor accumulation. Numerous endogenous and external factors control the ripening process, which is accompanied by inner metabolic and enzymatic activity in the fruit [1][2].

1.1.1. A Harmony in Softness: The Softness of Cell Wall Remodeling

Enzymes such as polygalacturonase and cellulase perform a carefully planned dance that is at the core of the peach's softening process [3]. Analyzing this creative representation, important studies, such as [4][5], have revealed the complex relationships and regulatory subtleties, providing deep understanding of the molecular mechanisms coordinating the gradual softening of peaches [6].

1.1.2. Flavor Symphony and Color Development

The conversion of starch into sugars, particularly fructose and sucrose, gives ripe peaches their sweetness. A less sour flavor profile results from the decomposition of acidic chemicals, primarily malic acid. Research on the dynamic color changes that occur during ripening is extensive and is mostly focused on the degradation of chlorophyll pigments and the advent of carotenoids and anthocyanins. Comprehensive investigation of the genetic rules and biochemical mechanisms behind these fascinating color shifts can be found in [7].

1.2. Factors Affecting the Post-Harvest Quality and Shelf Life of Peach Fruit

1.2.1. Humidity and Temperature

The handling and storage of peaches after harvest depends largely on temperature and humidity [8]. Low temperatures have the ability to delay ripening and reduce microbial activity, extending shelf life. Extremely low

temperatures, on the other hand, can result in chilling injury, which can damage tissue and produce off flavors. Maintaining peach quality and preventing excessive softening during transportation and storage requires proper temperature and humidity control [9].

1.2.2. Ethylene, along with Other Ripening Regulators

Natural plant hormone ethylene is essential for the maturation of climacteric fruits like peaches. It causes a number of changes in metabolism and accelerates the ripening process [10]. To prevent premature ripening and maintain fruit quality, post-harvest handling must be tightly controlled to reduce ethylene exposure. Auxins and gibberellins are additional ripening regulators that might affect peach ripening and should be taken into consideration during storage [11].

1.2.3. Susceptibility to Disease and Mechanical Injury

When peaches are harvested, handled, and transported, they are susceptible to mechanical damage that can cause bruising and decay. To reduce mechanical damage, proper handling techniques are essential, such as gentle harvesting and careful packing. The shelf life of peaches can also be considerably affected by post-harvest diseases caused by pathogens like fungi and bacteria. Post-harvest diseases must be managed with the use of fungicides, temperature control, and proper sanitation [12].

1.3. Important Biochemical Procedures in Peach Ripening

The complex biochemical processes involved in peach ripening have a major effect on the fruit's quality and attributes. Numerous investigations have examined these biochemical facets, illuminating the fundamental mechanisms.

1.3.1. Mechanisms of Softening

Cell Wall Alteration: Due to their critical roles in the restructure of cell walls, polygalacturonase and cellulase are indispensable for the softening process [3].

By examining the intricate connections and regulating subtleties of enzyme activity, the creative studies by Kan et al. (2013) and Veerappa et al. (2021) have contributed to understanding of peach softening and provided comprehensive insights into this transforming process [4][6].

1.3.2. Development of Flavor

Sugar Transformation: Starch conversion produces fructose and sucrose, two key sugars that contribute to the sweetness of ripe peaches [13].

Acid Decomposition: As acidic components, notably malic acid, decompose, a less sour flavor emerges [14].

Color Dynamics: A great deal of research has been performed on the dynamic color changes that occur during ripening, which are caused by the breakdown of chlorophyll pigments and the production of carotenoids and anthocyanins [7].

2. Developments in Post-Harvest Technologies

2.1. Novel Approaches to Manage Peaches after Harvest

2.1.1. Controlled Atmosphere Storage (CAS) and Modified Atmosphere Packaging (MAP)

Advanced procedures like Modified Atmosphere Packaging (MAP) and Controlled Atmosphere Storage (CAS) modify the atmospheric composition around the peaches to increase their shelf life. In order to inhibit respiration and minimize spoilage, MAP involves placing peaches in packaging with changed gas compositions, often low oxygen and elevated carbon dioxide levels. This idea is refined further by CAS, which maintains ideal conditions for fruit preservation by carefully regulating the gas composition within storage facilities. According to [15], these strategies have been demonstrated to considerably lower respiration rates and microbiological activity, maintaining peach quality and extending shelf life.

Post-harvest management has been transformed by the Internet of Things (IoT) and the incorporation of smart sensors. Real-time data on important factors, including temperature, humidity, ethylene levels, and fruit quality, can be provided via smart sensors. Remote access and control of storage facilities are made possible by IoT applications, allowing for fast corrections and interventions based on sensor data. The efficiency of post-harvest handling improves, losses are reduced, and peaches are stored in the best possible circumstances thanks to this real-time monitoring [16].

2.1.2. Innovative Storage Methods to Increase Shelf Life

A common method to slow down fruit ripening and increase peach shelf life is low-temperature storage. However, extended exposure to cold temperatures can cause chilling injury, which can cause interior collapse, surface pitting, and off flavors. Researchers have investigated a number of techniques to reduce chilling damage, such as intermittent warming, the use of plant growth regulators, and the use of fruit covers or edible films [17].

2.2. Utilizing Nanotechnology in Food Preservation

Nanotechnology is a novel approach that has the potential to greatly enhance post-harvest preservation, especially when it comes to prolonging the shelf life of fruits—in this case, peaches—by strategically utilizing nanostructures, which include nanoparticles and nanocomposites. This novel technique makes it easier to create complex coatings that have exceptional antibacterial and gas-barrier properties. The significance of nanoparticles in nanotechnology is highlighted by their small size and distinctive qualities, which make them indispensable in coordinating the subtle dynamics of this complex process. When applied sparingly, nanoparticles act as sentinels, creating a strong barrier

of defense. This meticulous preserving technique acts as a steadfast defender of peach quality, ensuring a prolonged period of freshness and ideal ripeness [18].

Beyond artificial enhancements, nanotechnology embraces the abundance of natural resources. In this paradigm, natural substances—like plant extracts, essential oils, and a variety of bioactive compounds—that are known for their effectiveness against bacteria and antioxidants take center stage. These bioactive components, which function similarly to the superheroes of nature, blend together with coatings like a plant-based shield. This versatile bioactive coating is a sustainable method of preserving fruit quality in addition to providing protection against microbiological enemies. As such, the bioactive coating acts as a kind of symbiotic protector for the peaches, actively preventing deterioration and resolutely maintaining the freshness of the fruit throughout the storage process [16][19].

To put it simply, the story of how nanotechnology and peach preservation come together is one of accuracy and skill. The careful application of nanoparticles combined with the natural ingredients' intrinsic properties results in a state-of-the-art solution.

2.3. Post-Harvest Processes Mechanization and Automation

The development of mechanization and automation has resulted in an important change of post-harvest activities, leading to increased productivity and reduced labor costs. Automation in sorting and grading, robotic harvesting, and industrial packing are examples of modern peach handling technologies. These improvements not only reduce fruit skin damage but also significantly increase total productivity [20].

Devices and Developments Overview

Robotic Harvesting: Innovative robotic systems with sensitive sensors provide precision picking, reducing fruit damage and maintaining fruit quality [21]. These innovative robotic harvesters are meant to explore the orchard landscape with care, collecting ripe peaches selectively while minimizing excessive stress on the tree branches. These technologies' precision is critical for preserving the delicate skin and flesh of peaches [22].

Industrial Packing: Modern automated packing machinery gently handles peaches, minimizing the risk of surface abrasions and maintaining the fruit's integrity [23]. Automated packing systems use delicate mechanics to gently pack peaches into containers, making sure that every fruit is safe and undamaged throughout the packing procedure. The preservation of peaches' aesthetic appeal and quality on the retail shelf is contingent upon the industrial packing process's emphasis on precision and care [24].

Automated Sorting and Grading Systems: The latest sorting and grading systems carefully classify produce according to factors like size, freshness, and quality using machine learning and computer vision algorithms. Improved peach dispersion results from this revolutionary adaptation [25]. These devices guarantee a consistent quality of fruit while also speeding up the sorting and grading process. These technologies enable more precise

and effective sorting by employing sophisticated algorithms to recognize and distinguish peaches according to their unique qualities [26].

3. Peach Ripening Techniques to Improve Quality

3.1. Ripening Techniques Based on Ethylene

3.1.1. Application Techniques and Dosages of Ethylene

Natural plant hormone ethylene is essential for the ripening of climacteric fruits like peaches. Application of ethylene can be used to accelerate and coordinate the ripening of peaches, resulting in a consistent and predictable ripening process. Commercial operations have used a variety of ethylene application techniques, including gaseous ethylene exposure and ethylene-releasing sachets. In order to achieve optimal fruit ripening and maintain fruit quality, the dosage and timing of ethylene treatment must be key considerations [27].

3.1.2. Controlled Ripening with Ethylene Inhibitors

In post-harvest peach management, ethylene inhibitors serve as essential tools to regulate and delay the ripening process. Notably, 1-MCP (1-methylcyclopropene) is a well-known ethylene inhibitor that functions by attaching to ethylene receptors to stop ethylene signaling and successfully slow down the ripening of fruit. The careful monitoring accomplished by 1-MCP offers post-harvest management a useful strategy to increase peach shelf life. One of the things that makes 1-MCP so intriguing is that it keeps the fruit crisp for a longer period of time while also retaining its texture.

3.2. Ripening Agents That Are Not Ethylene-Based

3.2.1. Acetylene- and Calcium-Carbide-Based Ripening

In the past, calcium carbide was used to initiate the process of ripening in some fruits, like peaches. Calcium carbide generates acetylene when it comes into contact with moisture, which has comparable effects to ethylene in promoting fruit ripening. However, since calcium carbide may leave behind toxic residues, there are now safety and health concerns about its use. As a result, safer substitutes are being used in place of it [28].

3.2.2. Ethepron and Other Compounds That Release Ethylene

Ethepron is a compound that releases ethylene and has been used to enhance fruit ripening in a variety of fruits, including peaches. Ethepron is transformed into ethylene upon application, beginning the ripening process. Prior to marketing, ethepron treatment can be used to promote even ripening; meanwhile, during storage, it can improve color development and soften peaches. Its use must be handled cautiously, like calcium carbide, to prevent excessive softening and decay [29][30].

3.3. New Methods for Coordinating and Managing Ripening

3.3.1. Genetic Modification and Gene Editing for Delayed Ripening

The application of the genome-editing capabilities of clustered regularly interspaced palindromic repeats (CRISPR-Cas9) signals the beginning of a novel paradigm for carefully controlling the ripening of peaches in the complex field of post-harvest evolution. Above and beyond the limitations of traditional manipulation methods, this innovative approach enables scientists to precisely control the genes that regulate the peach's ripening process. Imagine a genetic opera in which scientists painstakingly arrange a symphony of genes associated with ripening, forming a deep symbiotic relationship with nature instead of just modifying it for their own selfish ends. Beyond straightforward nucleotide changes, the goal is to weave an enduring genetic tapestry that will give peach cultivars with longer ripening periods a distinctive character [31].

The Art of Genetics: Each Modification, a New Concept

Think about gene editing as the ultimate project in which every subtle change to the genetic code is a work of art that completely changes the meaning of a peach's ripening process. This exquisite art goes beyond simple DNA editing, interacting with every aspect of the peach's genetic makeup to ensure that every fruit reaches its optimum freshness.

Savoring Consumption, Agricultural Success

Imagine a world in which delayed ripening is not just a scientific marvel but a useful technology. Customers enjoy peaches at their peak of perfection because of improved shipping methods and longer shelf lives. Not only are customers benefiting economically from this paradigm shift, but farmers are also benefiting economically as post-harvest losses decrease [32]. The key to understanding this genetic story is that gene editing is the unsung hero that keeps peaches taste fresh.

4. Effect on Peach Fruit Quality and Shelf Life

4.1. Nutritional Composition Changes during Post-Harvest Handling and Ripening

The post-harvest handling and ripening of peaches delicately weaves through biochemical processes, providing a deep insight into the enhancement of fruit quality and shelf life.

A series of metabolic changes occur as peaches progress from harvest to ripening. Starch undergoes a significant change into sugars such as sucrose and fructose, increasing the overall soluble sugar content and enhancing the intrinsic sweetness of mature peaches. At the same time, the enzymatic breakdown of organic acids, particularly malic acid, orchestrates a detectable reduction in fruit acidity, resulting in a refined and pleasant flavor profile.

Aside from these small variations in sugar and acid content, the ripening process organizes a modulation symphony in the bioactives. The well-known antioxidants carotenoids, phenolics, and flavonoids experience coordinated changes that enhance the health benefits of peaches and increase their resistance to oxidative

damage. Researchers have shown that some post-harvest methods, such as carefully monitored cold chain storage and controlled environment storage, are very effective at maintaining these complex biochemical details while in storage and transportation [33].

4.2. The Impact of Advanced Technologies on the Texture, Flavor, and Aroma of Peaches

One of the most important postharvest quality characteristics of peaches is texture, which requires more investigation in line with the substantial quantity of existing research [34]. Modern post-harvest technologies have a significant impact, especially on the texture, flavor, and fragrance of peaches.

4.2.1. Controlled Atmosphere Storage (CAS) and Modified Atmosphere Packaging (MAP)

Controlled Atmosphere Storage (CAS) and Modified Atmosphere Packaging (MAP), two essential components of advanced post-harvest technologies, play critical roles in maintaining peach texture and firmness. Several studies have carefully examined their various effects on peach texture, offering important new perspectives on the processes that support firmness and texture integrity [35].

4.2.2. Ripening Techniques Based on Ethylene

Controlling the rate at which ethylene is released and applying ethylene inhibitors are essential for optimizing the ripening process and gaining better control over the development of flavor and texture.

4.2.3. Peach Aroma Development

One of the most delightful aspects of peaches is their aroma, which is significantly impacted by ethylene-based ripening techniques. These processes increase the production of volatile compounds responsible for the characteristic peach fragrance, resulting in a stronger and more satisfying aroma [36].

4.2.4. Bioactive Coatings and Nanotechnology

Nanotechnology provides a strong barrier against microbial degradation, especially when applied in the form of bioactive coatings. This prevents the loss of volatile chemicals that contribute to the unique peach fragrance while also preserving the natural flavor and aroma of peaches throughout storage [37].

4.3. Post-Harvest Treatment Microbiological and Sensory Aspects

Comprehensive knowledge of post-harvest interventions goes beyond microbiological control to include sensory factors that are critical to peach quality as a whole. Fruit rot prevention and fruit safety depend heavily on the efficient management of microbial development during post-harvest handling and storage [38]. Modern post-harvest techniques, such as Controlled Atmosphere Storage (CAS) and Modified Atmosphere Packaging (MAP), limit the growth of germs that cause spoiling and extend the shelf life of peaches [39].

Additionally, there is an inherent relationship between peach color, flavor, and aroma and consumer pleasure, as well as overall fruit quality. Post-harvest practices are essential for maintaining these sensory characteristics, which ensure that peaches retain their natural flavor, color, and taste. Thorough sensory evaluations carried out by proficient panels and consumer questionnaires are essential for thoroughly evaluating the effects of post-harvest treatments on peach quality and sensory characteristics [40].

Through an exploration of the biochemical complexities of storage methods, such as the regulation of carbohydrate metabolism, organic acid breakdown, and antioxidant levels, these post-harvest methods work together to improve peach quality and prolong shelf life.

4.4. Consumer Preferences and Market Response to Improved Peach Quality

Consumer preferences and market demand for high-quality fruit often drive the introduction of innovative post-harvest technologies and ripening processes in the peach industry. Aspects such as appearance, flavor, aroma, and shelf life influence consumer opinion of peach quality. Consumers are expected to respond positively to technologies that maintain fruit appearance and flavor while prolonging shelf life.

More importantly, factors like pricing, availability, and customer knowledge influence market response to enhanced peach quality. Consumers are willing to pay a premium for peaches with a longer shelf life, improved flavor, and lower post-harvest losses. As a result, producers and retailers who implement innovative post-harvest technology and ripening procedures may enjoy a competitive advantage [41][42].

References

1. Prinsi, B.; Negri, A.S.; Fedeli, C.; Morgutti, S.; Negrini, N.; Cocucci, M.; Espen, L. Peach fruit ripening: A proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages. *Phytochemistry* 2011, **72**, 1251–1262.
2. Pegoraro, C.; Zanuzo, M.R.; Chaves, F.C.; Brackmann, A.; Girardi, C.L.; Lucchetta, L.; Nora, L.; Silva, J.A.; Rombaldi, C.V. Physiological and molecular changes associated with prevention of woolliness in peach following pre-harvest application of gibberellic acid. *Postharvest Biol. Technol.* 2010, **57**, 19–26.
3. Qian, M.; Xu, Z.; Zhang, Z.; Li, Q.; Yan, X.; Liu, H.; Han, M.; Li, F.; Zheng, J.; Zhang, D.C.; et al. The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening. *Planta* 2021, **254**, 22.
4. Kan, J.; Liu, J.; Jin, C.H. Changes in cell walls during fruit ripening in Chinese ‘Honey’ peach. *J. Hortic. Sci. Biotechnol.* 2013, **88**, 37–46.

5. Wu, X.; Jiang, L.; Yu, M.; An, X.; Ma, R.; Yu, Z. Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence. *J. Proteom.* 2016, **147**, 197–211.
6. Veerappan, K.; Natarajan, S.; Chung, H.; Park, J. Molecular insights of fruit quality traits in peaches, *Prunus persica*. *Plants* 2021, **10**, 2191.
7. Li, B.J.; Lecourt, J.P.; Bishop, G. Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review. *Plants* 2018, **7**, 3.
8. Hussein, Z.; Fawole, O.A.; Opara, U.L. Harvest and postharvest factors affecting bruise damage of fresh fruits. *Hortic. Plant J.* 2020, **6**, 1–13.
9. Wang, X.; Matetić, M.; Zhou, H.; Zhang, X.; Jemrić, T. Postharvest quality monitoring and variance analysis of peach and nectarine cold chain with multi-sensors technology. *Appl. Sci.* 2017, **7**, 133.
10. Kou, X.; Feng, Y.; Yuan, S.; Zhao, X.; Wu, C.; Wang, C.; Xue, Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: A review. *Plant Mol. Biol.* 2021, **107**, 477–497.
11. Wang, X.; Pan, L.; Wang, Y.; Meng, J.; Deng, L.; Niu, L.; Liu, H.; Ding, Y.; Yao, J.L.; Nieuwenhuizen, N.J. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. *Plant Sci.* 2021, **313**, 111084.
12. Ahmad, M.S.; Siddiqui, M.W.; Ahmad, M.S.; Siddiqui, M.W. Factors affecting postharvest quality of fresh fruits. In *Postharvest Quality Assurance of Fruits: Practical Approaches for Developing Countries*; Springer: Berlin/Heidelberg, Germany, 2015; pp. 7–32.
13. Cirilli, M.; Bassi, D.; Ciacciulli, A. Sugars in peach fruit: A breeding perspective. *Hortic. Res.* 2016, **3**, 15067.
14. Matias, R.G.P.; Silva, D.F.P.D.; Miranda, P.M.D.; Oliveira, J.A.A.; Pimentel, L.D.; Bruckner, C.H. Relationship between fruit traits and contents of ascorbic acid and carotenoids in peach. *Crop Breed. Appl. Biotechnol.* 2016, **16**, 348–354.
15. Toivonen, P.M.A. New approaches to production and quality assessment of fruits. In *Proceedings of the XXX International Horticultural Congress IHC2018: International Symposium on Fruit and Vegetables for Processing*, International 1292, Istanbul, Turkey, 12–16 August 2018.
16. Lutz, É.; Coradi, P.C. Applications of new technologies for monitoring and predicting grains quality stored: Sensors, internet of things, and artificial intelligence. *Measurement* 2022, **188**, 110609.
17. Rodrigues, C.; Gaspar, P.D.; Simões, M.P.; Silva, P.D.; Andrade, L. Review on techniques and treatments toward the mitigation of the chilling injury of peaches. *J. Food Process.* 2022, **46**, e14358.
18. Kondle, R.; Sharma, K.; Singh, G.; Kotiyal, A. Using Nanotechnology for Enhancing the Shelf Life of Fruits. In *Food Processing and Packaging Technologies*; InTech Open: London, UK, 2022.

19. El Khetabi, A.; Lahlali, R.; Ezrari, S.; Radouane, N.; Lyousfi, N.; Banani, H.; Askarne, L.; Tahiri, A.E.; Ghadraoui, L.; Belmalha, S. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. *Trends Food Sci. Technol.* 2022, 120, 402–417.

20. Guo, J.; Duan, J.; Li, J.; Yang, Z. Mechanized technology research and equipment application of banana post-harvesting: A review. *Agronomy* 2020, 10, 374.

21. Vrochidou, E.; Tsakalidou, V.N.; Kalathas, I.; Gkrimpizis, T.; Pachidis, T.; Kaburlasos, V.G. An overview of end effectors in agricultural robotic harvesting systems. *Agriculture* 2022, 12, 1240.

22. Yu, Y.; Sun, Z.; Zhao, X.; Bian, J.X.; Hui, M. Design and implementation of an automatic peach-harvesting robot system. In Proceedings of the Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen, China, 29–31 March 2018; pp. 700–705.

23. Denoya, G.I.; Vaudagna, S.R.; Polenta, G. Effect of high pressure processing and vacuum packaging on the preservation of fresh-cut peaches. *LWT Food Sci. Technol.* 2015, 62, 801–806.

24. Williamson, K.; Pao, S.; Dormedy, E.; Phillips, T.; Nikolich, G.L.; Li, L. Microbial evaluation of automated sorting systems in stone fruit packinghouses during peach packing. *Int. J. Food Microbiol.* 2018, 285, 98–102.

25. Blasco, J.; Aleixos, N.E.; Moltó, E. Machine vision system for automatic quality grading of fruit. *Biosyst. Eng.* 2003, 85, 415–423.

26. Satheesha, K.M.; Rajanna, K.S. A Review of the Literature on Arecanut Sorting and Grading Using Computer Vision and Image Processing. *Int. J. Appl. Eng. Manag. Lett. IJAEML* 2023, 7, 50–67.

27. Gong, D.; Cao, S.; Sheng, T.; Shao, J.; Song, C.; Wo, F.; Chen, W.; Yang, Z. Effect of blue light on ethylene biosynthesis, signalling and fruit ripening in postharvest peaches. *Sci. Hortic.* 2015, 197, 657–664.

28. Mahmood, T.; Saeed, I.; Anwer, H.; Mahmood, I.; Zubair, A. Comparative study to evaluate the effect of calcium carbide (cac 2) as an artificial ripening agent on shelf life, physio-chemical properties, iron containment and quality of *prunus persica* l. *Batsch. Eur. J. Res.* 2013, 1, 685–700.

29. Taheri, A.; Cline, J.A.; Jayasankar, S.; Pauls, P.K. Ethephon-induced abscission of “Redhaven” peach. *Am. J. Plant Sci.* 2012, 3, 295–301.

30. Maduwanthi, S.D.T.; Marapana, R. Induced ripening agents and their effect on fruit quality of banana. *Int. J. Food Sci.* 2019, 2019, 2520179.

31. Martín-Pizarro, C.; Posé, D. Genome editing as a tool for fruit ripening manipulation. *Front. Plant Sci.* 2018, 9, 1415.

32. García-Gómez, B.E.; Salazar, J.A.; Nicolás-Almansa, M.; Razi, M.; Rubio, M.; Ruiz, D.; Martínez-Gómez, P. Molecular bases of fruit quality in *Prunus* species: An integrated genomic, transcriptomic, and metabolic review with a breeding perspective. *Int. J. Mol. Sci.* 2020, 22, 333.

33. Brandi, F.; Bar, E.; Mourgues, F.; Horváth, G.; Turcsi, E.; Giuliano, G.; Liverani, A.; Tartarini, S.; Lewinsohn, E.; Rosati, C. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. *BMC Plant Biol.* 2011, 11, 24.

34. Fenn, M.A.; Giovannoni, J. Phytohormones in fruit development and maturation. *Plant J.* 2021, 105, 446–458.

35. Sang, X.; Yang, L.; Li, D.; Xu, W.; Fu, Y.; Shi, J. New passive modified atmosphere packaging to extend peaches shelf life at ambient temperature to reduce economic losses. *Br. Food J.* 2023, 125, 1504–1515.

36. Minas, I.S.; Tanou, G.; Molassiotis, A. Environmental and orchard bases of peach fruit quality. *Sci. Hortic.* 2018, 235, 307–322.

37. Belisle, C.; Adhikari, K.; Chavez, D.; Phan, U.T.X. Development of a lexicon for flavor and texture of fresh peach cultivars. *J. Sens. Stud.* 2017, 32, e12276.

38. Sudheer, K.; Indira, V. Post Harvest Technology of Horticultural Crops; New India Publishing: New Delhi, India, 2007; Volume 7.

39. Shin, J.S.; Park, H.S.; Lee, K.W.; Song, J.S.; Han, H.Y.; Kim, H.W.; Cho, T.J. Advances in the Strategic Approaches of Pre-and Post-Harvest Treatment Technologies for Peach Fruits (*Prunus persica*). *Horticulturae* 2023, 9, 315.

40. Serra, S.; Anthony, B.; Masia, A.; Giovannini, D.; Musacchi, S. Determination of biochemical composition in peach (*Prunus persica* L. Batsch) accessions characterized by different flesh color and textural typologies. *Foods* 2020, 9, 1452.

41. Taiti, C.; Costa, C.; Petrucci, W.A.; Luzzietti, L.; Giordani, E.; Mancuso, S.; Nencetti, V. Are peach cultivars used in conventional long food supply chains suitable for the high-quality short markets? *Foods* 2021, 10, 1253.

42. Moreno, S.R.; Curtis, S.J.; Sarkhosh, A.; Sarnoski, P.J.; Sims, C.A.; Dreyer, E.; Rudolph, A.B.; Thompson-Witrick, K.A.; MacIntosh, A. Considerations when brewing with fruit juices: A review and Case study using peaches. *Fermentation* 2022, 8, 567.

Retrieved from <https://encyclopedia.pub/entry/history/show/120408>