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Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases

(NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the

etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human

transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be

involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and

pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a

phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids

where their presence and concentration could serve as potential non-invasive biomarkers of NDDs.

competing endogenous RNAs (ceRNA)  neurodegenerative diseases (NDDs)

extracellular/circulating biomarkers  microRNA  long non-coding RNA  circular RNA

pseudogene  mRNA  ceRNA network (ceRNET)  RNA editing

1. Introduction

ncRNAs can be classified into two groups according to their length: small ncRNAs (<200 nucleotides) and long

ncRNAs (>200 nucleotides) . Among small ncRNAs, microRNAs (miRNA) stand out, being around 22 nucleotides

long and regulating gene expression at the post-transcriptional level in a sequence-specific manner .

Approximately 70% of the identified miRNAs are expressed in the brain  and have been described as major

regulators of neuronal homeostasis, their misregulation being associated with pathological conditions of CNS .

The largest class of ncRNAs in the mammalian genome is long ncRNAs (lncRNAs), which can be further grouped

into linear RNAs and circular RNAs  . Linear lncRNAs (hereon referred to as lncRNAs) are similar to protein-

coding messenger RNA (mRNA) in sequence length and transcriptional and post-transcriptional behavior .

However, lncRNAs play a different cellular role compared to mRNAs. Moreover, they have been described to be

involved in brain development, neuronal function, maintenance and differentiation . Circular RNAs (circRNAs)

represent a relatively recently discovered class of RNAs that, unlike linear RNAs, are characterized by a covalent

bond that joins the 5′ and 3′ ends and confers increased stability (half-life of 48 h vs. 10 h for mRNAs) . circRNAs

are highly abundant in the brain, enriched in synaptoneurosomes and upregulated during neuronal differentiation

, so they could be promising biomarkers in age-associated NDDs.
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On the other hand, a considerable number of pseudogenes can be transcribed to ncRNAs, even though they have

historically been regarded as inactive gene sequences  . In fact, there is mounting evidence that pseudogenes

may modulate the expression of parental as well as unrelated genes  . Therefore, alteration of pseudogene

transcription could perturb gene expression homeostasis leading to disease .

In 2011, Pier Paolo Pandolfi’s group proposed the so-called ceRNA hypothesis , which sought to explain how

RNAs “talk” to each other, establishing interactions that modify functional genetic information and that may play

major roles in pathological conditions. This hypothesis is based on the fact that miRNAs can recognize their

specific target sites called miRNA response elements (MRE) in different RNA molecules, causing target repression

via miRNA-RISC complex-mediated degradation. Thereby, miRNAs could mediate regulatory crosstalk between

the diverse components of the transcriptome, comprising mRNAs and ncRNAs, which include pseudogenes,

lncRNAs and circRNAs.

In a simplified manner, when two RNA molecules share the same MRE they potentially compete for the same pool

of miRNAs. Thus, when the expression of a ceRNA is upregulated, it will bind and titrate more miRNAs

(phenomenon called miRNA sponging), leaving fewer miRNA molecules available for binding the mRNA with

shared MRE. Hence, this corresponding mRNA will become derepressed. In reverse, when the ceRNA levels are

reduced as a consequence of a biological disturbance, the corresponding mRNA will be downregulated due to

hyperrepression (Figure 1).
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Figure 1. (A) Transcriptional and post-transcriptional regulation of messenger RNAs (mRNAs) (orange) can be

both influenced by direct and indirect mechanisms involving long non-coding RNAs (lncRNAs) (green),

pseudogenes (blue) and circular RNAs (circRNAs) (purple). (I) Direct mechanisms include some processes that act

on the transcription rate in the nucleus through the specific RNA-RNA complex and others that help the stability of

mRNA molecules in the cytoplasm. (II) Competing endogenous RNA (ceRNA) mechanism is a bidirectional indirect

regulation mechanism mediated by microRNAs (miRNAs) (yellow). miRNAs bind lncRNAs, pseudogenes,

circRNAs and mRNAs through the miRNA response elements (MRE) (grey). (B) ceRNA hypothesis. Upregulation

of a certain ceRNA (pseudogene, lncRNA or circRNA) expression can decrease cellular concentrations of the

corresponding miRNA, resulting in the de-repression of other transcripts (mRNA) that contains the same MREs

(left arrows). Conversely, the downregulation of a certain ceRNA would lead to increased concentrations of specific

miRNAs and thus to hyperrepression of mRNA expression (right arrows).

Without doubt, the reality is more complex and a miRNA can bind more than one mRNA (50% of miRNAs are

predicted to target 1–400 mRNAs and some of them up to 1000) . Likewise, most ceRNAs contain 1 to 10 MREs

 and, as a consequence, complex ceRNA networks involving a large number of RNA molecules are established.

Novel bioinformatic and computational tools have enabled to elucidate an increasing number of ceRNA networks,
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as well as predict the most important enclaves of them. These may provide a valuable global vision to identify new

biomarkers, underlying pathways or potential therapeutic targets for complex disorders such as NDDs.

2. ceRNA Networks and Neurodegenerative Diseases

Over the last years, the ceRNA hypothesis has been corroborated by a large number of experiments. However,

investigation of ceRNA mechanisms and their interaction networks has been mainly carried out in cancer research

   . Nevertheless, some advances have also been made in the field of NDDs (Table 1).

Table 1. miRNA-ceRNAs networks experimentally validated associated with NDDs

[12] [13] [14] [15]

Disease ncRNA miRNA mRNA Sample Ref.

AD

 

 

 

 

lncRNA

BACE1-AS

miR-29,

miR-485,

miR-

761,miR-

124 and

miR-107

BACE1

Computational

analysis from

human data and

cellular and

mouse models 
miR-214-

3p
-

 
miR-132-

3p
-

XIST miR-124 BACE1
Cellular and

mouse models
 miR-132 -

NEAT1 miR-124 BACE1
Cellular and

mouse models
 miR-107 -
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SOX21-AS1 miR-107 - Cellular model

NEAT1

HOTAIR

MALAT1

miR-107,

miR-103,

miR-16,

miR-195,

miR-15a

and miR-

15b

CDK5R1
Cellular model

 

MALAT1 miR-125b

CDK5, FOXQ1

and PTGS2 Cellular and rat

models

 miR-30b CNR1

TUG1 miR-15a ROCK1
Cellular and

mouse models

SNHG1 miR-137 KREMEN1 Cellular model

and human

primary cell

culture 
miR-361-

3p
ZNF217

lncRNA-ATB miR-200 ZNF217 Cellular model

LINC00094

miR‐224‐

4p

miR‐497‐

5p

SH3GL2 Cellular model
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MIAT
miR-150-

5p
VEGF

Cellular and

mouse models

Rpph1 miR-326 PKM2

Cellular and

mouse models

 miR-122 Wnt1

 
miR-330-

5p
CDC42

linc00507
miR-181c-

5p

MAPT

TTBK1

Cellular and

mouse models

lnc-ANRIL mir-125a
TNF-α, IL1B

IL6 and IL17
Cellular model

circRNA

ciRS-7 miR-7 UBE2A  Human brain

 *miR-7 *NF-Κb/p65 Cellular models

circ_0000950 miR-103 PTGS2 Cellular models

circHDAC9 miR-138 Sirt1

Cellular and

mouse models
 

miR-142-

5p
-

PD pseudogene GBAP1 miR-22-3p GBA Cellular models
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lncRNA

SNHG1

miR-153-

3p

miR-15b-

5p

miR-7

miR-

221/222

PTEN

SIAH1, GSK3β

NLRP3

CDKN1B (p27)

Cellular and

mouse models

 

  

 

HAGLROs miR-100 ATG10
Cellular and

mouse models

HOTAIR
miR-874-

5p
ATG10

Cellular and

mouse models

 
miR-126-

5p
RAB3IP  

NEAT1
miR-212-

5p
RAB3IP

Cellular models
 

miR-1277-

5p
ARHGAP26

 miR-124 -

AL049437
miR-205-

5p
MAPK1

Cellular and

mouse models

MALAT1 miR-205- LRRK2 Cellular and

mouse models
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5p  

 miR-124 DAPK1

 miR-129 SNCA (α-syn)

SNHG14 miR-133b SNCA
Cellular and

mouse models

LincRNA-p21
miR-1277-

5p
SNCA

Cellular and

mouse models 
miR-181

family

PRKCD

(PKC-δ)

 miR-625 TRPM2

GAS5
miR-223-

3p
NLRP3

Cellular and

mouse models

BDNF-AS
miR-125b-

5p
-

Cellular and

mouse models

Mirt2 miR-101 - Cellular model

lncRNA H19
miR-301b-

3p
HPRT1

Computational

analysis from

human data and

cellular and

mouse models miR-585-

3p

PIK3R3
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3. RNA Editing Alteration and ceRNA Networks

RNA editing is an important mechanism of post-transcriptional processing that can modify RNA molecules by

altering its sequences through insertion, deletion, or conversion of a nucleotide  . Recent discoveries suggest

that RNA editing critically regulates neurodevelopment and normal neuronal function, for which some crucial

aspects of neurodegenerative diseases may stem from the modification of both coding and non-coding RNA  

.

circRNA

*ciRS-7 miR-7 SNCA
Cellular and

mouse models

circSNCA miR-7 SNCA Cellular model

circzip-2 *miR-60

M60.4ZK470.2,

igeg-2 and

idhg-1

Worm model

circDLGAP4
miR-134-

5p
CREB

Cellular and

mouse models

MS

lncRNA

Gm15575 miR-686 CCL7
Cellular and

mouse models

PVT1 miR-21-5p SOCS5
Cellular and

mouse models

TUG miR-9-5p NFKB1 (p50)
Cellular and

mouse models

HOTAIR
miR-136-

5p
AKT2

Cellular and

mouse models

GAS5 miR-137 - Human blood

circRNA
hsa_circ_0106803 *miR-149 *ASIC1a

Human blood

(PMBCs)
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* Experimental validation is needed.

The most common type of RNA editing is the conversion of adenosine to inosine (A-to-I), in which enzymes

encoded by the adenosine deaminase acting on RNA (ADAR) gene family catalyze the deamination of adenosine

(A) nucleotides to inosines (I) . Critical consequences are derived from this modification, since inosine (I) is

interpreted by the translation and splicing machineries as guanosine (G) . Editing of pre-mRNA coding regions

can lead to codon change that may result in increased diversity of protein isoforms and their respective function

. However, most of the RNA editing happens in non-coding RNAs, which can affect their stability, biogenesis and

target recognition   . In fact, it has been reported that ADAR is involved in circRNA biogenesis by editing

and destabilizing the flanking Alu repeat sequences, which makes circRNA production less favorable  .

Moreover, editing events can affect both the maturation and the expression of miRNAs, but if the modification

occurs in MREs or in miRNA seed regions (regions in miRNA sequence that largely determine the binding

specificity on its targets), the spectrum of miRNA targets, or “targetome”, shall be changed . Therefore, a single

editing site in an RNA molecule could drastically modify its function, resulting in new or different ceRNA networks

that regulate gene expression.

Interestingly, A-to-I editing has been reported specifically reduced in SALS motor neurons due to the progressive

downregulation of ADAR2  . Based on this evidence, Hosaka et al.  searched for extracellular RNAs with

ADAR2-dependent A-to-I sites that may reflect the intracellular pathological process and thus could be potentially

good ALS biomarkers. A total of six RNAs were identified. Among these, a circRNA (hsa_circ_0125620, also called

circGRIA2) with an ADAR2-dependent site was detected in human SH-SY5Y neuroblastoma cells as well as in

their culture medium . Therefore, variations in RNA editing efficiency in ALS, as a consequence of decreased

ADAR2 activity, could be potentially measured in peripheral circRNAs and other relatively stable ncRNAs. In light of

this evidence, this editing phenomenon may be considered a very important aspect, since it allows obtain relevant

information of disease pathological process from non-coding RNAs.

Other NDDs, such as AD and PD, also present alterations in RNA editing patterns    . In fact, a recent

study has explored how RNA editing in AD contributes to the regulation of AD-related processes in blood cells in

two populations of patients . Results identified differentially edited sites predicted to disrupt miRNA target sites

in five genes. In all cases, decreased editing was observed in AD suggesting a greater miRNA-binding affinity

relative to controls . In light of this evidence, alterations in RNA editing could result in a specific RNA profile,

given by different amount of RNAs, modified interaction networks and editing levels or efficiencies changes in A-to-I

sites, that could be useful to identify new robust biomarkers of these NDDs (Figure 2).

hsa_circ_0005402

hsa_circ_0035560

*14

miRNAs

(miR-

1248,        

miR-766)

-
Human blood

(PMBCs)

SCA7 lncRNA lnc-SCA7 miR-124 ATXN7

Human samples,

and cellular and

animal models
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Figure 2. Schematic representation of alterations in RNA editing that could provide a specific RNA profile in

neurodegenerative diseases (NDDs). In some linear and circular RNAs, the enzyme ADAR2 deaminates

adenosine (A) into inosine (I), resulting in important biological consequences (especially in ncRNAs). On the one

hand, a single editing site in MRE or miRNA seed region can drastically change its set of targets. In this image,

circ-Purple acts as a miR-Yellow sponge, which regulates the mRNA expression of Orange gene (right panel).

Deamination of A into I in circ-Purple could affect its binding site for miR-Yellow. In consequence, circ-Purple stops

sponging miR-Yellow, and it may bind to another miRNA (miR-Pink) and promote the expression of Green gene

(left panel). Hence, the ceRNA interaction network has changed, emerging a new or different regulatory axis. On

the other hand, ADAR editing negatively regulates circRNA biogenesis, resulting in a decrease of circRNA levels (in

the left panel there is less circ-Purple expression than in the right panel). In NDDs with a diminution of A-to-I RNA

editing (like ALS, AD or PD), a different and opposite profile/pattern could be observed (right panel) with respect to

a normal editing efficiency of ADAR (left panel). Therefore, alterations mediated by RNA editing in RNAs and its

ceRNA interaction networks may serve as robust biomarkers of these NDDs. This figure is based on a previously

published figure  .

4. Conclusion

The vast majority of NDDs can be definitively diagnosed only after death or in advanced stage, and their previous

diagnosis is based on ruling out other possible causes for the symptoms. For most NDDs, there is no cure or

[99] [104]
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treatment capable of reversing the damage due to neuronal death. Therefore, it is critical to find new biomarkers

that would facilitate an early diagnosis, prognosis and efficient monitoring of therapeutic interventions.

In the search for new biomarkers, non-coding RNAs have been proposed as promising tools for diagnosis and

prognosis. Many ncRNAs often arise from genes that cause NDDs or are somehow involved in the development of

one of these disorders (like BACE1-AS or circSNCA). Thus, ceRNETs established by these ncRNAs could well be,

at least in some cases, disease and even stage-specific. However, as reported in this review, ncRNAs are

commonly misregulated in several NDDs (Figure 3). This is the case, for example, of the lncRNAs SNHG1 and

HOTAIR, which are altered in AD   and PD     , and PD   and MS , respectively.

However, their miRNA targets may vary depending on cell types affected by the disease and, therefore, the

mechanism of action may also differ. Similarly, miR-7 has been shown sponged by ciRS-7/CDR1as and circSNCA

in AD     and PD , respectively, being detrimental in the first case and beneficial in the second, due to

regulation of different target mRNAs. The apparent discrepancy between the anti and pro cell death activity of miR-

7 reflects the complex regulatory role of miRNAs, so further research is required to clarify their function in different

cellular and disease contexts.

In this way, by analyzing various elements of the altered ceRNETs, it may be possible to differentiate one NDD

from another even if there were common components. Ideally, working with several correlatable molecular targets

at the same time (lncRNAs/circRNAs/pseudogenes-miRNA-mRNAs) increases the sensitivity and reliability of

ceRNETs as biomarkers. It should be noted that ceRNETs construction also contributes to the identification of new

molecular mechanisms of gene regulation that may lead to a better understanding of the etiopathogenesis of the

diverse NDDs, as well as to reveal new therapeutic targets and obtain relevant information about the pathological

processes of the disease.

In this sense, ceRNETs may also reflect the editing efficiencies of ADAR, a post-transcriptional phenomenon

dysregulated in several NDDs. RNA editing can affect the levels and the efficiency of RNA interaction networks, so

its alterations could provide a specific RNA fingerprint that helps in the diagnosis or prognosis of NDDs. Finally, the

described crosstalk between the RNA molecules in certain ceRNETs is relatively conserved between species,

paving the way for translation of data obtained from animal models into clinical practice  .

Among the main advantages of ceRNETs for biomarker research, the fact that these ncRNAs are easily accessible

is noteworthy, since they are extremely stable in circulation and may be detected in exosomes. Such is the case for

circRNA CDR1as/ciRS-7 and lncRNA MALAT1, found in exosomes. Interestingly, levels of ciRS-7 in these vesicles

depend on the intracellular abundance of the miRNA that it sponges (miR-7) . Furthermore, ciRS-7 and

MALAT1 may regulate miRNA expression in target cells after exosomal delivery modulating their phenotype, since

these ceRNAs retain their biological activity  . Therefore, ciRS-7 and MALAT1 together with other circulating

ncRNAs (e.g., NEAT1, GAS5, hsa_circ_061346, hsa_circ_000843) represent promising candidates for peripheral

ceRNA biomarkers of NDDs. Although many of the ncRNAs discussed earlier have not been reported in exosomes

to date, some of them are predicted to be detected in human blood exosomes by exoRBase (e.g., circSLC8A1,

[28] [29] [46] [47] [48] [49] [50] [52] [53] [82]
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circCORO1C, SNHG1, BACE1-AS) . Indeed, it has recently been demonstrated that plasma exosomal

BACE1‑AS levels could serve as a biomarker of AD  .

Because ceRNA interaction networks are multifactorial, they may represent an advantage in studies of these

complex neurodegenerative disorders, one being at the level of biomarkers (combined RNA biomarkers panels)

and another at the level of therapeutic targets (modulate the levels of multiple disease-associated RNAs at once by

just targeting one).

Nevertheless, it must be taken into account that there is still much to do, since these networks are very complex

and their interactions must be experimentally defined . In this sense, some “non-canonical” aspects of ncRNAs

have also been described: i) circRNAs that can also sponge or serve as a decoy for RBPs or lncRNAs, ii) miRNAs

that may increase the expression of target genes,  iii) lncRNAs that can be precursors of smaller ncRNAs and can

regulate miRNA and circRNA biogenesis, iv) miRNAs that can direct Ago2 to degrade lncRNA and circRNA, v)

lncRNAs that compete with miRNAs for the target site of mRNA, and vi) context-specific miRNA function and target

identification        .

Although the full extent of ceRNA networks still needs to be still determined, the competition of ncRNA and mRNAs

for miRNAs constitutes a key point of gene regulation that could underlie some pathological aspects of

neurodegenerative diseases, favoring at the end the identification of specific pathological mechanisms for each

disease.
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Figure 3. Complexity and interaction of ceRNETs in NDDs. The diagram was constructed with Gephi software from

ceRNAs (lncRNAs and circRNAs) that, according to the bibliography cited in this review, contribute to the

pathogenesis of more than one neurodegenerative disease and miRNAs that are part of ceRNETs from more than

one ceRNA. Interactions between RNA molecules are represented with lines colored in accordance with the NDD

background they have been described in: spinocerebellar ataxia type 7 (SCA7) (red), Alzheimer’s disease (AD)

(purple), Parkinson’s disease (PD) (blue), multiple sclerosis (MS) (yellow) and amyotrophic lateral sclerosis (ALS)

(green).
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