BIM-Based Repair History Management for Architectural Heritage

Subjects: Construction & Building Technology

Contributor: Jong Jin Park, Kyeonghwan Kim, Seung-Yeul Ji, Han Jong Jun

Wooden architectural heritage, which is typically heavily influenced by climatic factors such as temperature and humidity, relies on information contained in records and reports, including past repairs and physical measurements, to analyze the cause of damage and determine potential repair and conservation measures.

architectural heritage

historic building information modeling

repair history database

1. Introduction

Wooden architectural heritage, which is typically heavily influenced by climatic factors such as temperature and humidity, relies on information contained in records and reports, including past repairs and physical measurements, to analyze the cause of damage and determine potential repair and conservation measures. In particular, architectural heritage management and conservation plans that rely on records from the past that remain undigitized for long periods of time suffer from fragmentation and missing information over time [1]. This, in turn, makes it difficult to restore and preserve cultural heritage in its original form, and can lead to a decline in cultural value as well as subsequent economic losses [2].

The use of digital technologies, such as building information modeling (BIM) systems, can serve as a solution to this issue by replacing manual records and managing construction data throughout a building's lifecycle. BIM systems can also function as integrated management systems, linking geometry and attribute information for efficient data processing [3]. Especially for wooden structures, the continuous accumulation of information and data-driven decision making are critical for maintenance and preservation. Recent incidents, such as the fires at South Korea's Sungnyemun Gate and France's Notre Dame Cathedral, underscore the global necessity for digitally integrated maintenance systems.

BIM has emerged as a new area of interest in the cultural heritage domain, and it is commonly known as historic or heritage building information modeling (HBIM). Since its introduction by Murphy et al. [4], HBIM has been extensively developed with innovative applications at various levels in the fields of archaeology and architectural heritage. Despite significant advances in the past decade, the integration of conservation-driven heritage data management remains incomplete [5]. To enable the sustainable archiving of architectural heritage data, an advanced management system that combines a geometrical model with preservation-related data is necessary to support the operation and maintenance phases effectively. Identifying and digitally documenting the current state and properties of heritage building components, along with all pertinent semantic information in a singular HBIM

model, will establish a collaborative information management platform that optimizes the operation, preservation, and reconstruction stages ^[6]. This not only helps stakeholders make effective decisions throughout the lifecycle, but also furnishes a comprehensive overview.

2. Framework for BIM-Based Repair History Management for Architectural Heritage

Heritage structures demand appropriate preservation and safeguarding measures to retain their intrinsic worth and significance. Notably, the utilization of conservation and restoration techniques grounded in original and traditional approaches, while respecting culturally significant values and evolving authenticity, is imperative. These viewpoints regarding cultural property conservation policy and practice are comprehensively outlined in the Venice Charter ^[7], the Burra Charter ^[8], and the Nara Document on Authenticity ^[9]. The principles of conservation are centered around safeguarding the cultural significance of a building, and guidelines are established to ensure the preservation and maintenance of the structural integrity of a building ^[10].

Preventive maintenance is a necessary set of routine tasks that extend the longevity and optimize the performance of historic structures, creating a sustainable legacy for future generations. These regular maintenance measures are crucial for preserving built heritage. Restoration techniques aim to efficiently restore the functional and cultural value of architectural heritage to its original state as closely as possible. For instance, when dealing with wooden architectural heritage, it is crucial to develop a restoration plan that preserves cultural heritage's utmost originality. This may involve repairing or replacing certain wooden elements damaged by environmental factors and establishing an efficient process that minimizes resource, time, and cost usage; however, the issue arises that managing the as-built information necessary for performing maintenance and restoration activities, along with the accumulated repair information, is challenging to integrate [11].

Building information modeling is the process of creating and utilizing building data throughout the lifecycle of a construction project. The functional model of a typical BIM system encompasses the efficient digital documentation of a building's physical and functional features within an integrated environment and the operational management of various facilities. The full-scale implementation of BIM in the architectural heritage sector is hindered by the complex geometry of heritage buildings and the non-standardization as well as diversity of part types, despite its potential benefits and uses. Unlike traditional construction projects, where BIM information is generated throughout the planning and construction processes, architectural heritage structures are already built and necessitate a precise post-modeling phase. Specifically, historical, environmental, and archaeological data must be collected independently and digitized to facilitate the operation and upkeep of the building. Therefore, it is essential to establish a framework for creating a precise 3D digital model along with merged maintenance data, encompassing damage, repair, and refurbishment.

Figure 1 presents an overview of the existing and overlapping literature concerning BIM, heritage buildings, and facilities' management as well as preservation. The circles depict research topics, and the bullet points within the rectangular boxes illustrate the research focus or overlap of each topic. Building information models utilize the

OpenBIM standard to store a wide range of building properties as an information model, encompassing geometric data, non-shape attributes, project planning, and lifecycle management [12][13]. This method aligns with the fundamental concepts of object-oriented programming and modeling. In the context of heritage architecture, the HBIM concept has been used to model, document, and conserve historical structures. Several studies have investigated the implementation process and techniques of HBIM [14][15][16][17][18]. They have also examined its benefits and drawbacks in improving maintenance and operational efficiency. Furthermore, studies have investigated the incorporation of cutting-edge technologies and equipment, such as laser scanners, photogrammetry, and visual programming, into HBIM [19][20][21][22]. In the realm of the facility management of heritage buildings, there have been studies on data utilization methods to support decision making for building maintenance. These include structural [23][24] and condition analyses [25][26] of heritage buildings by integrating lifecycle data into HBIM. Methods to ensure data sharing and mutual compatibility for planning maintenance and restoration actions based on the integrated information of historic buildings for BIM have also been researched [27] [28]. Furthermore, diverse web platforms were developed to promote cooperation and collaboration among the different stakeholders involved in the restoration and maintenance activities of built and cultural heritage sites, by integrating historical and geometric information and heritage documentation databases [29][30][31]. These HBIM case studies address issues related to modeling complex architecture, accurately documenting historic buildings, and creating data structures suitable for modern HBIM for an online platform. Although various technologies and applications have been explored in numerous studies, there is still a research gap in the application of BIM to preserve and manage heritage buildings. Most studies related to HBIM maintenance involve different technologies and application cases, but few focus on creating an organized BIM-based maintenance database, transferring nonshape data, or establishing maintenance procedures through attribute information, all of which are advantages of BIM. Furthermore, the discussion on the use of BIM for the preventive and repair maintenance of heritage buildings is limited.

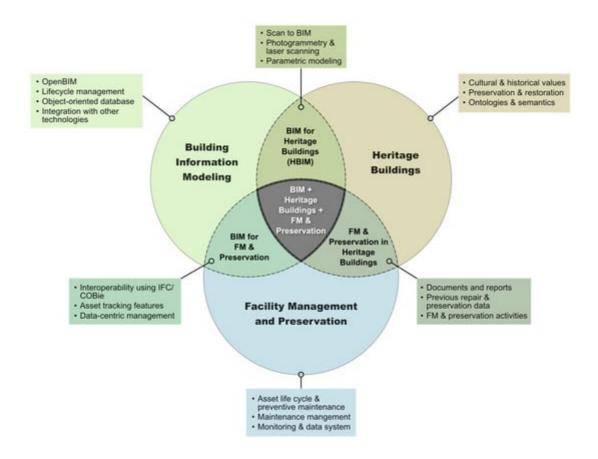


Figure 1. Literature analysis Venn diagram.

References

- 1. Shin, B.-U. A Study on the Analysis of the Types of Displacement Occurring in Wooden Architecture Cultural Assets. J. Reg. Assoc. Archit. Inst. Korea 2019, 21, 79–89.
- 2. Shin, B.-U. A Study on the Utilization of Documentation using BIM on Wooden Architectural Cultural Assets. J. Korean Inst. Rural Archit. 2019, 21, 25–36.
- 3. Lee, J.-H.; Jun, H.-J. A Study on the Adaptability of BIM-based Integrated Building Design Process in Domestic Architectural Design Firms. Korean Inst. Inter. Des. J. 2007, 16, 19–27.
- 4. Murphy, M.; McGovern, E.; Pavia, S. Historic building information modelling (HBIM). Struct. Surv. 2009, 27, 311–327.
- 5. Adegoriola, M.I.; Lai, J.H.K.; Chan, E.H.; Darko, A. Heritage building maintenance management (HBMM): A bibliometric-qualitative analysis of literature. J. Build. Eng. 2021, 42, 102416.
- 6. Khan, M.S.; Khan, M.; Bughio, M.; Talpur, B.D.; Kim, I.S.; Seo, J. An Integrated HBIM Framework for the Management of Heritage Buildings. Buildings 2022, 12, 964.

- 7. ICOMOS. The Venice Charter. Available online: https://www.icomos.org/en/participer/179-articles-en-francais/ressources/charters-and-standards/157-thevenice-charter (accessed on 12 September 2023).
- The Australian ICOMOS. The Burra Charter. Available online: https://australia.icomos.org/publications/burra-charter-practice-notes/ (accessed on 12 September 2023).
- ICOMOS. The NARA Document on Authenticity. Available online: https://www.icomos.org/en/charters-and-texts/179-articles-en-francais/ressources/charters-and-standards/386-the-nara-document-on-authenticity-1994 (accessed on 12 September 2023).
- 10. Hou, H.; Wu, H. A case study of facilities management for heritage building revitalisation. Facilities 2019, 38, 201–217.
- 11. Akcay, C.; Şolt, A.; Korkmaz, N.M.; Sayin, B. A proposal for the reconstruction of a historical masonry building constructed in Ottoman Era (Istanbul). J. Build. Eng. 2020, 32, 101493.
- 12. Santos, R.; Costa, A.A.; Silvestre, J.D.; Vandenbergh, T.; Pyl, L. BIM-based life cycle assessment and life cycle costing of an office building in Western Europe. Build. Environ. 2020, 169, 106568.
- 13. Azhar, S. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadersh. Manag. Eng. 2011, 11, 241–252.
- 14. Bastem, S.S.; Cekmis, A. Development of historic building information modelling: A systematic literature review. Build. Res. Inf. 2021, 50, 527–558.
- 15. Brumana, R.; Della Torre, S.; Previtali, M.; Barazzetti, L.; Cantini, L.; Oreni, D.; Banfi, F. Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): Surveying, preservation, site intervention—The Basilica di Collemaggio (L'Aquila). Appl. Geomat. 2018, 10, 545–567.
- 16. Jordan-Palomar, I.; Tzortzopoulos, P.; García-Valldecabres, J.; Pellicer, E. Protocol to Manage Heritage-Building Interventions Using Heritage Building Information Modelling (HBIM). Sustainability 2018, 10, 908.
- 17. Piselli, C.; Guastaveglia, A.; Romanelli, J.; Cotana, F.; Pisello, A.L. Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study. Energies 2020, 13, 6338.
- 18. Yusoff, S.N.S.; Brahim, J. Implementation of Building Information Modeling (BIM) for Social Heritage Buildings in Kuala Lumpur. Int. J. Sustain. Constr. Eng. Technol. 2021, 12, 88–99.
- 19. Calvano, M.; Martinelli, L.; Calcerano, F.; Gigliarelli, E. Parametric Processes for the Implementation of HBIM—Visual Programming Language for the Digitisation of the Index of Masonry Quality. ISPRS Int. J. Geo Inf. 2022, 11, 93.

- 20. Machete, R.; Silva, J.R.; Bento, R.; Falcão, A.P.; Gonçalves, A.B.; de Carvalho, J.M.L.; Silva, D.V. Information transfer between two heritage BIMs for reconstruction support and facility management: The case study of the Chalet of the Countess of Edla, Sintra, Portugal. J. Cult. Herit. 2021, 49, 94–105.
- 21. Pereira, Á.; Cabaleiro, M.; Conde, B.; Sánchez-Rodríguez, A. Automatic Identification and Geometrical Modeling of Steel Rivets of Historical Structures from Lidar Data. Remote Sens. 2021, 13, 2108.
- 22. Reinoso-Gordo, J.F.; Rodríguez-Moreno, C.; Gómez-Blanco, A.J.; León-Robles, C. Cultural Heritage Conservation and Sustainability Based on Surveying and Modeling: The Case of the 14th Century Building Corral del Carbón (Granada, Spain). Sustainability 2018, 10, 1370.
- 23. Croce, P.; Landi, F.; Puccini, B.; Martino, M.; Maneo, A. Parametric HBIM Procedure for the Structural Evaluation of Heritage Masonry Buildings. Buildings 2022, 12, 194.
- 24. Nieto-Julián, J.E.; Antón, D.; Moyano, J.J. Implementation and Management of Structural Deformations into Historic Building Information Models. Int. J. Arch. Herit. 2020, 14, 1384–1397.
- 25. Bienvenido-Huertas, D.; Nieto-Julián, J.E.; Moyano, J.J.; Macías-Bernal, J.M.; Castro, J. Implementing artificial intelligence in H-BIM using the J48 algorithm to manage historic buildings. Int. J. Archit. Herit. 2019, 14, 1148–1160.
- 26. Mol, A.; Cabaleiro, M.; Sousa, H.S.; Branco, J.M. HBIM for storing life-cycle data regarding decay and damage in existing timber structures. Autom. Constr. 2020, 117, 103262.
- 27. Bruno, N.; Roncella, R. HBIM for Conservation: A New Proposal for Information Modeling. Remote Sens. 2019, 11, 1751.
- 28. Cuperschmid, A.R.M.; Fabricio, M.M.; Franco, J.C. HBIM Development of A Brazilian Modern Architecture Icon: Glass House by Lina Bo Bardi. Heritage 2019, 2, 1927–1940.
- 29. Colucci, E.; Iacono, E.; Matrone, F.; Ventura, G.M. The development of a 2D/3D BIM-GIS web platform for planned maintenance of built and cultural heritage: The MAIN10ANCE project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 433–439.
- 30. Diara, F.; Rinaudo, F. ARK-BIM: Open-Source Cloud-Based HBIM Platform for Archaeology. Appl. Sci. 2021, 11, 8870.
- 31. Palomar, I.J.; Valldecabres, J.L.G.; Tzortzopoulos, P.; Pellicer, E. An online platform to unify and synchronise heritage architecture information. Autom. Constr. 2020, 110, 103008.

Retrieved from https://encyclopedia.pub/entry/history/show/127018