
Neural Network for Dense Non-Rigid Structure from Motion | Encyclopedia.pub

https://encyclopedia.pub/entry/50721 1/7

Neural Network for Dense Non-Rigid Structure
from Motion
Subjects: Others

Contributor: Yaming Wang , Dawei Xu , Wenqing Huang , Xiaoping Ye , Mingfeng Jiang

Non-rigid Structure from Motion (NRSFM) is a significant research direction in computer vision that aims to

estimate the 3D shape of non-rigid objects from videos.
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1. Introduction

Non-rigid Structure from Motion (NRSFM) is a significant research direction in computer vision that aims to

estimate the 3D shape of non-rigid objects from videos. However, recovering 3D structure from 2D images poses a

challenging inverse problem. A video can be considered as a collection of multi-frame images, and to achieve

reconstruction, motion and deformation information between frames, along with prior assumptions, can be utilized.

Depending on the characteristics of the reconstructed object, the NRSFM problem can be divided into NRSFM with

sparse feature points and NRSFM with dense feature points. Dense feature points are more numerous and

accurate in rendering the surface of non-rigid objects compared to sparse feature points. Despite significant results

achieved by existing sparse NRSFM methods, their performance in extending to the case of dense feature points

remains unsatisfactory . Recent progress has been made in dedicated algorithms for dense NRSFM

problems .

The rise of deep learning has led to an increased focus on solving the challenges in NRSFM using neural

networks, resulting in significant advancements. To address the challenge of dense feature points, Sidhu et al. 

proposed the learnable neural network (N-NRSFM), which employs an automatic decoder model to assign a latent

variable to each 3D shape and imposes constraints in the latent space to ensure similar 3D shapes have similar

latent variables. This approach enhances robustness, scalability, and achieves lower 3D reconstruction errors in

various scenarios. However, the method relies on the Tomas–Kanade decomposition  for solving the 3D mean

shape and is sensitive to 2D trajectories with large errors. Inspired by Deng et al.’s study , where each frame

does not exist independently but rather as part of a sequence, and the prior constraint should apply to the entire

sequence rather than a single frame, the N-NRSFM method overlooks this point. Thus, it is important to revisit the

NRSFM problem from this perspective to “translate” the input 2D image sequence into a 3D sequence structure.

2. Classical NRSFM Approaches
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In the field of computer vision, considerable progress has been made over the past few decades in addressing the

challenging problem of recovering 3D structures from 2D images. Several influential research directions have

emerged, warranting attention in this context. One such direction is the shape space model, which is based on the

low-rank assumption . This model has been widely adopted to characterize the deformation of non-rigid objects,

allowing for their recovery and analysis by constraining shape changes to a low-dimensional subspace. Another

noteworthy approach is the trajectory space model , which describes the motion trajectory of non-rigid objects

and infers three-dimensional structural information from it.

The probabilistic principal component analysis model (PPCA)  has also found important applications in computer

vision. It employs probabilistic models to describe the data generation process and employs maximum likelihood

estimation to infer the latent variables and model parameters. PPCA is advantageous in modeling non-rigid object

deformation and motion.

The manifold hypothesis  constitutes another significant research direction, positing that object

deformation and motion can be represented by low-dimensional manifolds. This idea has inspired subsequent

methods such as the Grassmannian manifold method (GM) . Moreover, the jump manifold method (JM) 

serves as an extension of GM, considering the relationship between local surface deformation and point domains

and utilizing high- and low-dimensional Grassmannian manifolds for modeling and reconstructing non-rigid object

deformation.

In addition to the aforementioned approaches, the block matrix method (BMM) introduced by Dai  transforms the

low-rank constraint into a semi-positive definite programming and kernel parametric minimization problem,

providing a novel idea for non-rigid structure recovery. The SMSR method by Ansari  updates the input

measurement matrix by applying trajectory smoothing constraints and employs the alternating direction multiplier

method (ADMM) to optimize the objective function.

Furthermore, Lee et al. proposed the classical Expectation Maximization–Procrustean Normal Distribution (EM-

PND) model  based on the generalized Procrustes analysis (GPA) . This model does not require additional

constraints or priors and can be applied to recover non-rigid objects at different time points. However, in practical

scenarios, objects typically exhibit temporal variations, and enforcing smoothness becomes a crucial constraint for

non-rigid 3D structure recovery. To address this, Lee et al. further proposed the Procrustean Markov Process

(PMP) algorithm , which combines the PND assumption with a first-order Markov model to enable smooth

recovery and modeling of non-rigid objects.

3. Neural-Network-Based Solutions for NRSFM

In recent years, the application of neural networks to solve the NRSFM problem has gained popularity among

researchers . Cha et al.  utilized a low-rank loss as the learning objective to constrain the shape output

of their 2D–3D reconstruction networks. Novotny  proposed the C3DPO model, which employed low-rank

factorization and consisted of two branches for viewpoint and shape prediction. The model achieved decoupling
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and self-consistency of the branches by employing auxiliary neural networks to normalize the 3D shape of

randomly rotated projections. On the other hand, Park et al.  achieved significant results by introducing a loss

function that automatically determined the appropriate rotation for shape alignment, despite the relative simplicity of

their underlying network structure.

Regarding the low-rank constraint, the shape basis (i.e., the rank parameter) plays a crucial role in reconstruction

error. In previous NRSFM algorithms, the weights for low-rank, subspace, or compressed priors (e.g., rank or

sparsity) often required tedious cross-validation for selection. However, Chen Kong et al.  proposed a deeply

interpretable NRSFM network, known as Deep Neural Networks (DNNs), based on classical sparse dictionary

learning and deep neural networks. This method eliminated the need for tedious cross-validation by simultaneously

learning the prior weights and other parameters. They further extended their approach to handle occlusion and loss

of feature points . Wang et al.  advanced this approach by proposing the Deep-NRSFM++ model, which

accounted for more realistic situations, including perspective projection cameras and critical occlusion. Ma et al. 

built upon this approach by incorporating multi-view information and designing a simple yet effective loss function

to ensure decomposition consistency. Subsequently, Zeng et al.  proposed a new residual recurrent network and

introduced the Minimal Singular Value Ratio (MSR) as a metric for measuring shape rigidity between two frames.

Based on this metric, they employed two novel pairwise loss functions to constrain the feature representation of 3D

shapes, achieving advanced shape recovery accuracy in large-scale human motion and classified object

reconstruction.

In contrast to classical NRSFM priors, some researchers have explored constraints provided by deep learning

itself. Generative adversarial networks (GANs) have been utilized to predict lost depth information by enhancing 2D

reprojection realism from different viewpoints . However, due to the requirements of GAN learning,

these methods are only applicable to large-scale datasets. Deng et al.  introduced the Sequence-to-Sequence

(Sequence-to-Sequence) model to the NRSFM task, proposing the use of a multi-headed attention mechanism

instead of a self-representation layer to impose priori subspace concatenation structures. Sidhu et al.  employed

unsupervised neural networks for 3D reconstruction in dense NRSFM and achieved excellent results using

automatic decoder deformation models and latent space constraints. Wang et al.  proposed the PAUL model,

which argued that aligned 3D shapes could be compressed by depth under complete autoencoders. They further

proposed the neural trajectory prior (NTP) for motion regularization . The method can also be applied to other

3D computer vision tasks, including scene stream integration and dense NRSFM. Similar to N-NRSFM and PAUL,

they introduced a bottleneck layer in the model to compress the generated trajectories into a low-dimensional

space.

Despite the remarkable advancements in neural-network-based NRSfM in recent years, the emphasis has primarily

been on the 3D reconstruction of sparse objects. The field of neural-network-based dense NRSfM is still in its

nascent stage, leaving ample room for further exploration and development.
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