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Aging is a multifactorial dynamic process that is influenced by a variety of external and internal variables, including

environmental, demographic, and biopsychosocial factors, to determine the development and progression of age-related

diseases, rather than being a solely static intrinsic process of cellular alterations.
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1. Introduction

The dramatic improvement in life expectancy over the past century led to an unprecedented demographic shift toward an

aging population; the proportion of the population over 65 is higher than ever before. As the population boom of the 20th

century ages, age-related diseases have come to the forefront as emergent health concerns . In contrast to maternal,

infectious diseases that were widely prevalent and a primary health concern of the early 20th century, age-related

diseases are often chronic and require continual treatment over an extended period of time, thus correlating increased

lifespan with chronic disease onset and elevated expense burden. Aging is a multifactorial dynamic process that is

influenced by a variety of external and internal variables, including environmental, demographic, and biopsychosocial

factors, to determine the development and progression of age-related diseases, rather than being a solely static intrinsic

process of cellular alterations (Figure 1).

Figure 1. The exposome concept. (A) The exposome comprises the totality of a person’s external and internal exposures,

from birth to death. (B) The external exposures and their internal exposure-related biochemical changes accumulate

steadily over the aging process and lead to altered health risks. Adapted from Vrijheid et al.  (upper part, Copyright ©

2021, BMJ Publishing Group Ltd. and the British Thoracic Society) and Misra  (lower part, under the terms of the

Creative Commons Attribution License (CC BY), Copyright © 2021 Misra) with permission.
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The aging population is particularly susceptible to cardiovascular disease (CVD), demonstrating the leading cause of

death in populations aged over 65 years (Figure 2), and creating an urgent need for research in the field. Compounding

the rise in CVD prevalence, as age advances, there is also a rise in complications and comorbidities of CVD . This

phenomenon is partly due to the “silent” nature of CVD pathophysiological development, but also due to vascular aging,

which represents all changes in the vessels over time that exacerbate disease development . Specifically, aged vessels

have an impaired endothelium and other constitutional changes, which make them more prone to atherosclerotic lesions,

vascular injury, and calcification, alongside blunted angiogenesis . With age, the endothelium displays decreased

responsiveness that manifests endothelial dysfunction in elderly people  and corresponds well with the demographic

data that associates age, CVD incidence, and CVD comorbidities . Endothelial impairment leading to endothelial

dysfunction is also accompanied by smooth muscle changes, since arterial stiffening is also observed in aged vessels.

Both mechanistic aspects correlate with future cardiovascular events in humans .

Figure 2. (A) Age-specific crude incidence of confirmed major cardiovascular disease by type of first event (non-fatal

myocardial infarction, non-fatal stroke, and death from cardiovascular disease). Reused from  with permission under

the terms of the Creative Commons Attribution Non-commercial License, Copyright © Driver et al. 2008. (B) Risk of

common neurological diseases for 45-year-old men and women. In this analysis, follow-up ended at time of first

occurrence of dementia, stroke, or parkinsonism. For instance, for individuals who first suffered a stroke and subsequently

developed dementia, only the stroke event is considered. Reused from  with permission, Copyright © 2021, BMJ

Publishing Group Ltd. All rights reserved. (C) Predicted values of relative risk for cardiovascular mortality by chronic

exposure to increasing particulate matter concentrations for high ozone levels (37.60 ppb, solid blue line) and low ozone

levels (20.26 ppb, solid red line) with uncertainty intervals (dashed lines). Reused from  with permission under the

terms of the Creative Commons CC BY license, Copyright © 2021, The Author(s). (D) Exposure-response relationships for

the associations between transportation noise and cardiovascular health outcomes. Road—road traffic noise, Air—aircraft

noise, Hyp—hypertension, CHD—coronary heart disease, and Lden—day-evening-night level, i.e., the average sound

pressure level measured over a 24-h period. Reused from  with permission, Copyright © 2021, Oxford University

Press.

The same holds true for the aging brain (Figure 2). The incidence of stroke shows a dramatic increase in the elderly ,

and cognitive impairment clearly progresses with age and represents an accepted early diagnostic parameter for later

dementia and neurodegeneration . When looking at the risk factors of dementia in detail, it becomes clear that there is

a large overlap with cardiovascular risk factors . Mounting evidence indicates that the aging process is fundamentally

driven by environmental exposures, and interestingly, age-related pathomechanisms were also observed in the context of

predominant environmental pollutants, such as air pollution  and (traffic) noise exposure , with growing

evidence suggesting that these pollutants might cause or accelerate age-related diseases.

2. Impact of Aging on Inflammation, Adverse Redox Signaling, Endothelial
Dysfunction, and CVD

Endothelial dysfunction is an important indicator of subclinical CVD and serves as an early predictor of developing

atherosclerosis, hypertension, and future cardiovascular events. There are two critical mechanisms through which

endothelial dysfunction influences pathogenesis within the context of vascular aging. First, it promotes vasoconstriction,

thrombocyte activation, leukocyte infiltration, and smooth muscle cell proliferation in the vessel wall; all of which precede
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cardiovascular events. The second is due to impaired endothelial signaling in all vessels; age-dependent endothelial

dysfunction is found in both macrovessels and resistance vessels (for review see ), and thereby can impact a wide

variety of disease states.

Three interdependent players are known to trigger endothelial dysfunction—inflammation, oxidative stress, and impaired

nitric oxide ( NO) signaling . Endothelial oxidative stress, an important trigger of endothelial dysfunction, is associated

with age-related diseases other than CVD, including erectile dysfunction, renal dysfunction, Alzheimer’s disease, or

retinopathy . The studies of Mayhan et al. highlight these findings, demonstrating that cerebral arterioles show

diminished eNOS-dependent reactivity, which positively correlated with increased oxidative stress in aged rats . These

findings were echoed in studies in other vessels and conditions, showing that endothelial dysfunction and oxidative stress

are present in aging retinal vessels , and are a contributing factor in Alzheimer’s and Parkinson’s diseases, through

several mechanisms . Lastly, oxidative stress in combination with vascular inflammation and impaired NO signaling

were identified as key players in age-related endothelial dysfunction by our group and many others (for review see ).

As aged vessels show strong associations with oxidative imbalances, inflammatory increases, and negative effects on

NO signaling, aging is implicated as an independent risk factor for CVD .

In many ways, a reciprocal and interdependent relationship exists between oxidative stress deriving from mitochondrial or

enzymatic sources, endothelial dysfunction, and hypertension, diabetes, and atherosclerosis. It is unsurprising then, that

oxidative stress , endothelial dysfunction , and the aforementioned CVDs  all see an increased incidence

with advancing age, as they often occur in parallel, exert some influence on each other, and also have associations with

low-level inflammation. Accordingly, age-dependent changes in the composition and function of high-density lipoproteins

(HDL) were reported , which further underlined the contributing mechanisms of the risk factors previously discussed,

since HDL inhibit inflammation, have antioxidant properties , and inversely correlate with coronary disease risk . The

degradation of HDL quality over time negatively impacts endothelial function, a critical factor in the initiation and

development of atherosclerosis, potentially indicating HDL as a target for therapeutic intervention of age-related CVD .

Hypertension, the predominant risk factor for atherosclerosis and other CVD, potentiates the causative elements behind

endothelial dysfunction, making effective treatment of hypertension an important route for the prevention of age-related

CVD. To this end, pregnant spontaneously hypertensive rats were treated with nitrovasodilator pentaerythrityl tetranitrate,

which demonstrated blood pressure lowering effects that were inherited by offspring. It was found that enhanced histone 3

lysine 27 acetylation and histone 3 lysine 4 trimethylation (epigenetic markers usually associated with transcriptional

activation) promoted the transcriptional activation of cardioprotective genes like eNOS, SOD2, GPx-1, and HO-1, which

explained the observed heritable effects . Drugs with epigenetic effects, like pentaerithrityl tetranitrate, could

conceivably be used to extend the number of healthy years, and perhaps stave off the effects of cardiovascular aging. A

third possible therapeutic strategy would utilize mitochondria-targeted antioxidants to mitigate the “side effects” of the

aging process. Treatment with dietary vitamins equating to unspecific antioxidant treatment was not found to be effective

in preventing vascular aging. However, specifically targeting mitochondrial ROS could represent a possible strategy to

alleviate, at least in part, age-related endothelial dysfunction. Along this line, age-related endothelial dysfunction was

alleviated by administration of mito-quinone in mice . Some risk factors for CVD could be changed by lifestyle

alterations, such as smoking and diet , but aging is a factor that is not preventable, and so must be tackled in a bottom-

up approach.

As previously mentioned, low-level inflammation is commonly found in aged individuals. One study found that plasma

levels of important inflammatory markers, including soluble vascular adhesion molecule 1(sVCAM-1), interleukin 6 (IL-6),

and monocyte chemoattractant protein 1 (MCP-1) positively correlated with age, even where there was no underlying

CVD or risk factors present . Another study found positive correlations between age and levels of circulating IL-6, IL-1

receptor antagonist (IL-1ra), IL-18, C-reactive protein (CRP), and fibrinogen, in both men and women, most persisting

after correction for other risk factors. Increases of soluble IL-6 receptor (sIL-6r) occurred with greater age, but this effect

was only noted in men . A meta-analysis spanning 32 cross-sectional studies and over 23,000 subjects revealed

associations between serum CRP and IL-6 levels and the onset or presence of frailty and pre-frailty, a phenotype that

encompassed unintentional weight loss, exhaustion, weakness, slow walking speed, or low physical capability . The

hazard ratio for serum CRP levels and incidence of frailty was 1.06 (95% confidence interval [CI] 0.78–1.44), alongside a

hazard ratio of 1.19 (95% CI 0.87–1.62) for IL-6, after adjustment for 9 potential confounders , illustrating a correlation

between the presence of inflammation and age-related ailments.

Air and noise pollution are novel cardiovascular risk factors whose mechanisms are still being investigated, but have so

far shown similar molecular signatures  to one another, as well as to classical risk factors like hypertension,

hypercholesterolemia, or hyperglycemia . Foremost amongst these signatures appears to be oxidative stress and
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inflammation, which both mediate the detrimental effects following exposure to noise and air pollution . Despite some

clarity as to the mechanisms, it is not fully understood how crosstalk between stress response pathways, redox signaling,

and the immune system coordinate to cause cardiovascular damage in response to these novel risk factors.

3. Impact of Aging on Inflammation, Adverse Redox Signaling, Neuronal
Degeneration, and Neurological Disease

Since CVDs and neurological diseases have a substantial overlap in risk factors and pathophysiological pathways, it is

important to highlight the aforementioned mechanisms of action in the context of aging and neurological disease. In

general, functional and structural deterioration of the aging brain is a cumulative process that starts with subclinical

alterations at the molecular level. These changes include accumulation of mutations, telomere attrition, and epigenetic

alterations, resulting in genomic instability and thus priming for neuronal damage and loss, reduced neurotransmitter

levels, enhanced neuroinflammation, increased susceptibility to cerebral ROS, and decreased cerebral vascular

compliance. All of these adverse processes are associated with increased risk of age-related neurological diseases, such

as stroke, epilepsy, Parkinson’s disease, and dementia/cognitive decline . Immunosenescence and inflammaging, as

the most recognized effects of aging , might promote neuroinflammatory processes along with cerebral oxidative

stress, via altered microglia activation (immune cells of the brain), which are central to neurotoxicity through the release of

neurotoxic cytokines, such as TNFα, IL-1β, and INF-γ, as well as different ROS such as ONOO  and O  .

Microglial dysregulation represents a hallmark of various neurological complications, and adverse redox regulation of and

by microglia plays a crucial role in these processes . Neuroinflammation and cerebral oxidative stress might act

together to increase neuronal damage/loss and amyloid deposition, as well as to decrease cerebral NO bioavailability via

NOX-2 activation and uncoupling of neuronal NO synthase (nNOS), leading to cerebral vascular endothelial dysfunction

and ultimately contributing to increased risk of stroke, epilepsy, Parkinson’s disease, and dementia/cognitive decline in the

elderly .

From an epidemiological point of view, the accelerated aging of the population and the correspondent increase in the

elderly would affect the number of patients with neurological diseases, as recently demonstrated by results of the Dijon

Stroke Registry. In this study, an increase of 55% in the total annual number of stroke cases by 2030 was calculated,

largely driven by increased prevalence in the group of elderly people (65% in people ≥ 75 years vs. 25% in people < 75

years) . Importantly, data from the Framingham study demonstrated older age at stroke onset, but not gender or stroke

type, to be associated with increased disability . Further epidemiological studies revealed a strong age-dependency for

the incidence of epilepsy , Parkinson’s disease , and dementia , with a continuous and strong growth in numbers

in the elderly. Thus, the coincidence of CVDs and neurological diseases in the elderly is not surprising, due to shared risk

factors, which themselves express a high age-dependency, such as hypertension, diabetes, vascular dysfunction, and

atherosclerosis, accompanied by altered molecular mechanisms centered on inflammation and adverse redox signaling.

4. The Oxidative Stress Concept of Aging

In 1954, Harman first described the “free radical theory of aging” . He reasoned that since aging is a universal

phenomenon, the underlying causation must also be universally present in all organisms. To this end, the focus shifted

toward the hydroxyl radical and molecular oxygen being important mediators of the aging process . Mitochondria are

prolific producers of ROS within the cell, so they were natural targets for investigation within this theory. Since this high

concentration of mitochondrial ROS (mtROS) is likely partly responsible for the high mutation rate of mtDNA, it is therefore

necessary that two spatially separated genomes (nuclear and mitochondrial) co-exist, and both are required for the

assembly of the respiratory chain components . Further, as the mitochondrial genome malfunctions, irregularities in

physiology and ATP synthesis are also seen, which are accompanied by amplified ROS generation and increased

apoptosis . Within the context of aging, the focus shifted away specifically from the hydroxyl radical and onto another

free radical species, NO, which is now known to be an important vasodilator, to play a role in vascular smooth muscle cell

proliferation, and to inhibit platelet aggregation, amongst other important regulatory roles. The age-dependent impairment

of vascular redox balance is strongly linked to the bioavailability of the NO radical , which could be reduced through

consumption by superoxide, and consequently lead to impaired vasorelaxation . NO could thereby potentially serve

as a biomarker for age-dependent endothelial dysfunction.

The free radical theory of aging was amended in 1972 by Harman to delineate the specific role of mitochondria , which

were then moved to the forefront of the field. Harmon proposed that the mitochondrion was the primary origin of oxidative

stress as well as the target—mitochondria produce a significant amount of cellular energy but are also damaged by ROS,

which can attack both mitochondrial and nuclear DNA and can cause significant damage. With age, the damage accrued

can result in defective mitochondria, which produce more and more ROS and in turn cause more oxidant-induced
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mutations and deletions, and culminate in a loss of cellular function, apoptosis, and necrosis. To this end, oxidant-induced

damage in mtDNA was reported in the form of 8-oxo-deoxyguanosine (8-oxo-dG) , a mutagenic lesion whose

accumulation was linked to pathological processes , and inversely correlated with lifespan of short-lived animals in the

nuclear DNA and mtDNA of cardiac tissue. In brain tissue of long-lived animals, however, 8-oxo-dG content was higher in

nuclear DNA (data not shown) . These insights could be partially explained by higher metabolic rate, lower antioxidant

clearance and defense, and possibly less efficient DNA repair. In this manner, genomic instability and cellular senescence

occur as a result of age-related oxidative stress-induced DNA damages associated with shortened telomeres, increased

DNA methylation, and decreased DNA content, all of which contribute to numerous degenerative and aging-related

diseases . In two mouse knockout models (ALDH-2 , MnSOD ), we found that mitochondrial ROS, mitochondrial

DNA (mtDNA), and vascular dysfunction positively correlated with age . Further, our data showed a correlation between

endothelial dysfunction and mitochondrial ROS, which itself was mostly dependent on age, but secondarily dependent on

the level of antioxidant enzymes present. Our data also showed a correlation between mtROS and mtDNA strand breaks,

which led to a reasoning that mtDNA strand breaks arise from mtROS through direct interaction and oxidative DNA

lesions, and given enough time and stress, could result in mitochondrial uncoupling and a secondary increase in ROS

generation (through impaired de novo synthesis of functional respiratory complexes, due to mtDNA degradation or

mutation). The ultimate message of the free radical hypothesis of aging is that ROS cause substantive alterations in

biological macromolecules over the organism’s lifespan, which accumulate to detrimental effect . The conclusion can

be made that accumulation of DNA damage in sum cannot be a “one size fits all” predictor of total life years, but that the

kinetics of formation and repair of DNA damage will vary, depending on species and tissue.

However, ROS generation is not the sole factor in the slow degradation of vascular function. Antioxidant defense and

clearance are also impacted by age. For example, cytosolic superoxide dismutase 1 (SOD1) , mitochondrial

superoxide dismutase 2 (SOD2) , extracellular SOD (ecSOD), and thioredoxin-1 (Trx)  showed both age- and

expression-related reductions in clearance efficacy, as reflected by studies of endothelial function in young and old mice. If

superoxide is the major contributor to vascular aging, the question arises—why are these antioxidant systems seemingly

unable to defend against increasing levels of oxidative stress? To that point, in aging vessels, SOD2 was found to be

heavily nitrated, and its activity thereby impaired. These findings were accompanied by increased 3-nitrotyrosine staining,

which implies a role for peroxynitrite, a product of superoxide and NO as the nitrating agent . It is obvious then that

oxidative burden can cause inhibition of this protective enzyme, which then perpetuates a vicious cycle leaving the

enzyme unable to perform effectively. Though it would be intuitive to expect that the overexpression of antioxidant

enzymes would result in expansion of lifespan, this was not shown (SOD2  or SOD2 , GPx-1 , GPx-4  or MsrA ,

SOD1 , catalase ) , though overexpression of Trx1 was shown to increase lifespan and stress resistance .

Conversely, only SOD1  mice and mice with double gene ablation combinations reduced life expectancy , and

SOD2 knockouts do not survive past a few weeks from birth . Taken in conjunction, these data suggest that

antioxidant systems are critically important to life, but also that there is a “cap” to their beneficial effects. This further

implies that it is not the absolute amount of oxidative stress that impacts lifespan, but rather, a balance that must be

maintained. While oxidative stress might not be the direct determinant in aging, as previously hypothesized , the

contribution of oxidative stress in aging seems to be a factor that prevents healthy aging by impacting organ function 

.

The length of time an organism remains healthy is another factor through which antioxidant enzymes could have a

significant effect and a notable clinical importance. This “healthspan” could be indicated by the lack or decreased

progression of age-related cardiovascular complications and the resistance to stress conditions during normal aging .

In studies utilizing genetic deletion of aldehyde dehydrogenase-2 (ALDH-2) and manganese superoxide dismutase

(MnSOD), two important mitochondrial antioxidant proteins, we found that mitochondrial oxidative stress and vascular

dysfunction arose as a function of aging , which supports the idea that mtROS is especially important in the degree of

health in aging .

Aside from mitochondrial ROS, there are other cellular sources of ROS that have an impact on the healthspan. The state

of eNOS plays an important role in whether it produces a vascular hero, NO, or a villain, O  . In the coupled state,

eNOS consists of a protein dimer and two BH4 cofactors that facilitate electron transfer needed for L-arginine oxidation

and production of NO . When BH4 is either oxidized to BH2 or absent, or electron flow from the reductase to the

oxygenase domain is impaired by either eNOS S-glutathionylation or adverse phosphorylation, the eNOS dimer is

uncoupled and produces ROS in the form of O  (which is why NOS enzymes are also called Janus-faced enzymes). The

overproduction of O  further oxidizes BH4 and inhibits NO synthesis. The result of eNOS uncoupling is then a reduction

in NO bioavailability  and can contribute to the pathogenesis of endothelial dysfunction in aged vessels . It was

reported from several sources that eNOS expression levels rise with age, which could possibly be to counteract the effect

of eNOS uncoupling and reduced NO bioavailability. There are also groups who report unchanged eNOS expression in
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aged vessels, but instead report decreases in Akt-dependent phosphorylation of eNOS . Either reports could be

consistent with the findings of endothelial dysfunction in aged vessels and elderly individuals . We additionally

reported both S-glutathionylation by PKC and adverse phosphorylation of eNOS at Thr495 and Tyr657 by PYK-2, as

important redox-sensitive mechanisms in the process of aging-induced vascular dysfunction .
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