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Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous

climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority.

The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the

investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated

multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics

levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic

stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary

for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes.

We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections

from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and

still open challenges in abiotic stress research based on -omics technologies.
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1. Introduction

Plants display an amazing diversity and, owing to their sessile nature, they evolved a broad range of molecular

mechanisms to respond to complex network of environmental signals, which activate multiple pathways, modulated by

different responsive genes, in case conferring tolerance to the pressure determined by stressor factors .

Abiotic stresses, such as heat and cold, drought, salinity and flooding , however, dramatically affect plant growth

and crop yield , and these are among the reasons why abiotic stress management is one of the

most important challenges in agriculture. In current climate change scenarios, exposure to abiotic stresses is more

frequent and the consequent effects are so relevant also considering the exponential increase of the world food supply

due to the rapid population growth , and the widespread attention to promote a sustainable

productivity. This is why extensive studies have been focused on understanding the molecular basis of abiotic stress

response and the research for improved, productive plants, adapted for stress tolerance . These activities were

strongly favored by the evolving -omics technologies, which provide key strategies to promote molecular investigations on

plant organization and functionality, also under stress conditions , and novel approaches for omics assisted

crop improvement . Since their initial introduction, they permitted unexpected views on different levels of cell

functionality, ranging from genome to transcriptome, to proteome and metabolome, and more recently covering also

investigation on chromatin organization by epigenome approaches .

These approaches, that cover different levels of biological functionalities, enable deeper investigations at each level, also

offering the opportunity of integrated views , to study the complexity of the molecular response of plants and to

abiotic stresses as well. Moreover, the technological evolution and cheaper methodologies offer faster and more

accessible approaches favoring research considering an increasing number of crops . 

2. Bioinformatics Resources for Plant Abiotic Stress Responses 

The so-called “Next Generation Sequencing” (NGS) technologies, as one of the major examples, largely favored deeper

insights on plant genome organization  and on functional responses to variable environmental

parameters, elucidating the first level of gene expression, i.e., the transcriptome analysis, by promoting the transition from

expressed sequence tags (ESTs) and microarray based techniques , to more powerful approaches such as RNA-

seq  and associated technologies .
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Simultaneously, the development of proteomics procedures by 2D-Gels coupled to mass spectrometry (MS)  or, more

recently, via high-throughput shotgun approaches , and robust LC–MS (liquid chromatography-mass

spectrometry)  and GC–MS (gas chromatography-mass spectrometry)  metabolomics technologies, able to unravel

fluctuations of non-volatile and volatile metabolites, are paving the way to a deep understanding of the effects of the

biological processes under investigation .

In this context, the integration of results from different levels of molecular information favors holistic views to decipher key

components that are playing roles in complex molecular processes involved in plant responses to unfavorable or changing

environmental conditions .

Bioinformatics is necessary for data production in support of the different omics technologies, fundamental for data

organization and for data mining. It favors the data sharing, the interpretation of the massive amount of information

provided by high throughput technologies, permitting the filtering of valuable information for human driven interpretation,

therefore assisting single level approach and multilevel data integration for comprehensive views on systems

functionality .

Moreover, bioinformatics also provides overwhelming amount of accessible resources to the scientific community, driving

pioneering research based either on the exploitation of -omics technologies , or of the manifold resources that

may support specific subsequent analyses, such as those based on sequence comparisons, gene family investigations

and molecular modeling .

Bioinformatics resources implementation and maintenance, and data sharing, are therefore among the main drivers of the

success of this research field and of the evolution of the omics technologies, since the data exploitation revealed to be a

very powerful approach to support the overall scientific community.

One of the key points to carefully sustain to this aim remains data accessibility and care. Data collection should be reliable

and interoperable, suitable to be compared, touching the new challenges in the field, which mainly fall in the so called

integrative bioinformatics . However, data exploitation is today still relying on scientist consciousness about the

opportunities and limits offered by the different data sources, about the sensitivity and specificity of the different

technologies, and about the quality of the organized results. Additionally, inexpert users must be aware of the

opportunities and rules in the field, to profitable handle, analyze and compare data from the available resources and to

obtain novel insights into the organization and functionality of the biological systems. This requires education,

collaborative efforts, transdisciplinarity.
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