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Ubiquitination is a reversible post-translational modification that controls protein function and stability. Different

types of ubiquitination were described including polyubiquitination, the attachment of multiple ubiquitin residues, or

monoubiquitination, the attachment of a single ubiquitin molecule. While most of the studies have described the

role of polyubiquitination, recent evidences show that monoubiquitination is a key regulator of different cellular

processes, including vesicular trafficking and protein complex formation and degradation. Enzymes regulating

monoubiquitination such as E2 conjugating enzymes, E3 ligases or ubiquitin hydrolases, are found altered in

several genetic diseases, including Parkinson's disease or Noonan syndrome.
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1. Introduction

Ubiquitination is a reversible post-translational modification process during which the highly conserved 76-

aminoacid protein ubiquitin is conjugated to target proteins. Ubiquitin can be conjugated to a protein substrate via

distinct mechanisms. Monoubiquitination is the attachment of a single ubiquitin molecule to a single lysine residue

on a substrate protein, whereas multi-monoubiquitination is the conjugation of a single ubiquitin molecule to

multiple lysine residues. Polyubiquitination occurs when ubiquitin molecules are attached end-to-end to a lysine

residue on a substrate protein to form a poly-ubiquitin chain. In this case, ubiquitin molecules are conjugated

through one of the seven lysine residues present on the ubiquitin itself (K6, K11, K27, K29, K33, K48, and 63) or

the N-terminal methionine (M1). While most of the studies have described the role of specific polyubiquitination,

such as K48-linked polyubiquitination for proteasomal degradation  or K63-linked polyubiquitination for

vesicular trafficking , emerging evidences implicate monoubiquitination and multi-monoubiquitination in

controlling numerous aspects of protein function, such as degradation, subcellular localization, and protein–protein

interaction. In this review, we focus on the role of monoubiquitin conjugation in normal physiology and genetic

disease.

Comparing to the role of polyubiquitination in proteasomal degradation, the function of non-degradative

monoubiquitination in human disease has been relatively understudied so far. Recent emerging evidences have

highlighted the key function of monoubiquitination in a wide range of cellular processes. The findings listed here

only represent the most characterized enzymes controlling monoubiquitination. Nonetheless, it reflects the high

prevalence of alterations of the monoubiquitin pathway in such a broad array of genetic disorders. This suggests
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that disruption of the monoubiquitin pathway may be a major force driving the pathogenic phenotypes of such

diseases.

Table 1. Genetic diseases associated with genes regulating monoubiquitination. Short list of substrates modified by

the indicated E2 conjugating enzymes, E3 ligases, and ubiquitin hydrolases (DUBs) are shown, together with the

indication of the modulated cellular functions and the type of mutations detected in patients.

Disease Gene Type of
Enzyme

Monoubiquitinated
Substrate

Cellular
Function

Disease-
Associated
Mutations

X-linked
syndromic

mental
retardation

UBE2A

Ubiquitin-
conjugating
enzyme E2

A

PCNA ; Histone
H2B 

DNA damage
tolerance

pathway ;
epigenetic

regulation 

Loss of function:
missense
mutations,

microdeletions,
larger deletions 

Autosomal
recessive
juvenile

parkinsonism

Parkin or
PARK2

RBR E3
ubiquitin

ligase
VDAC1 

Mitophagy,
apoptosis 

Loss of function:
missense
mutations,

deletions 

Fanconi
Anemia

UBE2T

Ubiquitin-
conjugating
enzyme E2

T
FANCD2/FANCI 

Cross-linked
DNA repair 

Loss of function:
missense

mutations 

FANCL

PHD
FINGER E3

ubiquitin
ligase

Loss of function:
missense,
frameshift

mutations 

BRCA1
RING E3
ubiquitin

ligase
FANCD2/FANCI 

Loss of function:
missense
frameshift
mutations,

deletions 

Charcot-Marie-
Tooth disease

LRSAM1
RING E3
ubiquitin

ligase
TSG101 

Endosomal
sorting 

Loss of function:
missense,
frameshift

mutations 

Cushing
disease

USP8
Ubiquitin
specific

peptidase 8

EGFR ;
CHMP1B 

Endosomal
sorting 

Gain of function:
missense

mutations 

Noonan
Syndrome

LZTR1 BTB-Kelch
ubiquitin

RAS ;
CHMP1B 

RAS localization
and signaling 

; VEGFR

Loss of function:
missense,
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The abundance of the ubiquitin-related enzymes mutated in genetic disorders indicates that
targeting the ubiquitin pathway might be of therapeutic use for a range of genetic diseases.
However, at present, we lack a detailed knowledge on how monoubiquitin signals are generated and
how they are decoded by the cell. This is challenged by the diversity and complexity of the ubiquitin
pathway. Moreover, monoubiquitinated proteins might not have been accurately identified, because
polyubiquitinated conjugates are recognized more efficiently by anti-ubiquitin specific antibodies.
This leads to the underestimation of the pool of monoubiquitinated proteins present in the cell and
challenges their characterization. The development of novel tools to purify monoubiquitinated
proteins using high-affinity ubiquitin-binding domains and synthetic biology approaches to efficiently
generate monoubiquitinated proteins can overcome these issues.

2. Development

It is also worth noting that when looking at the few drugs that were developed to target the ubiquitin pathway, most

are meant only to inhibit its functioning. Several inhibitors targeting the ubiquitinating enzymes described in this

review have been reported. Ubiquitin variants that block the E2-ubiquitin binding surface of the RING domain of

CBL were shown to specifically inhibit the activity of CBL . A high-throughput screening to identify ITCH

inhibitors discovered that clomipramine, a common antidepressant drug, blocks ITCH autoubiquitination and affects

the ability of ITCH to ubiquitinate its substrates . Screening for the inhibitors of UBE2T/FANCL identified two

compounds that sensitize cells to DNA crosslinking . Pharmacological inhibition of USP8 was shown to

effectively suppress ACTH synthesis in vitro without causing any significant cytotoxicity, indicating its potential for

the management of ACTH hypersecretion in Cushing’s disease . However, considering that the disease-

associated alterations of the ubiquitin ligases and hydrolases are mostly loss of function, inhibitors targeting these

enzymes would not be beneficial. This indicates that there is a need to develop novel strategies for targeted

therapies of genetic diseases . Several screens identified compounds activating PARKIN ubiquitin ligase activity

and enhancing mitophagy , such as the compound described in patent WO2018023029. While no in vivo

Disease Gene Type of
Enzyme

Monoubiquitinated
Substrate

Cellular
Function

Disease-
Associated
Mutations

ligase
adaptor

trafficking and
signaling 

frameshift
mutations 

CBL
RING E3
ubiquitin

ligase
SH3KBP1 

EGFR trafficking
and signaling 

Loss of function:
missense

mutations 

Autoimmune
disorder

associated to
facial

dysmorphism

ITCH
HECT E3
ubiquitin

ligase
TIEG1 ; SMN 

Nuclear
translocation of

FOXP3 ,
translocation of
SMN to Cajal

body 

Loss of function:
frameshift

mutations 
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validation is available for this compound yet, this demonstrates the feasibility of identification of E3 ligase

activators, opening novel therapeutic options for patients with genetic disorders.

The analysis of the alterations of the ubiquitin system associated to genetic diseases generated evidence that

monoubiquitination is a key process underlying the development of such diseases; highlighting the need for further

research to identify new monoubiquitination-dependent signaling pathways as novel targets suitable for therapeutic

approach of genetic diseases.
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