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Infectious diseases are the primary cause of mortality worldwide. The dangers of infectious disease are compounded with

antimicrobial resistance, which remains the greatest concern for human health. Although novel approaches are under

investigation, the World Health Organization predicts that by 2050, septicaemia caused by antimicrobial resistant bacteria

could result in 10 million deaths per year. One of the main challenges in medical microbiology is to develop novel

experimental approaches, which enable a better understanding of bacterial infections and antimicrobial resistance. After

the introduction of whole genome sequencing, there was a great improvement in bacterial detection and identification,

which also enabled the characterization of virulence factors and antimicrobial resistance genes. Today, the use of in silico

experiments jointly with computational and machine learning offer an in depth understanding of systems biology, allowing

us to use this knowledge for the prevention, prediction, and control of infectious disease. Herein, the aim of this review is

to discuss the latest advances in human health engineering and their applicability in the control of infectious diseases. An

in-depth knowledge of host–pathogen–protein interactions, combined with a better understanding of a host's immune

response and bacterial fitness, are key determinants for halting infectious diseases and antimicrobial resistance

dissemination.
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1. Introduction 

Over the last decade, theoretical and computational biology, combined with open access to biological databases, have

presented new opportunities in different areas of the field, such as genomics or evolutionary biology. In the 1970s,

bacterial dynamics emerged as its own discipline , focusing on the exploration of bacterial population dynamics to gain a

better understanding of the bacteria's ability to manipulate, escape, or evade a host's immune response. These traits

enable bacteria to transmit and re-infect, providing one of many major questions that modeling tries to address. Other

questions that modeling is trying to answer include how bacterial populations evolve under antibiotic pressure, what the

function of dose-effect is in the outcome of infection, and what risk factors are associated with epidemics. In addition,

models are great tools for the generation of predictions that can be later tested in the laboratory, and in this context,

computational (in silico) models combined with systems biology aid clinical microbiology.

Systems Biology started to be developed before World War II, with researchers such as Ludwig von Bertalanffy and, more

recently, Mihajlo Mesarovic , under "the understanding that the whole is greater than the sum of the parts" . The

increase in this field was prompted by improvements of functional genomics , the completion of the human genome

project, and the development of high-throughput technologies.

Systems biology intends to unravel the interactions between components of biological systems, as well as the dynamics

of interactions, and the changes in systems (inter- and intra- species), by using -omics tools . It is important to consider

that systems biology comprises several disciplines, such as biological computing and mathematical biology.

One of the applications of in silico biological data is computational systems biology , which uses computational

techniques to develop algorithms, networks, and complex connections for cellular and biological processes . In the

infectious disease field, the use of these tools is mostly applied to diagnosis, treatment, and prevention.

In summary, mathematical models and computer simulations are mainly utilized to predict changes in systems caused by

different environmental conditions. The modelling of infectious diseases  is helping us better understand the dynamics

of host–pathogen interactions , and how the immune response can be orchestrated to differentially respond to inter-

and intra-bacterial species interactions. Moreover, computational engineering enables us to predict the evolution or

adaptation of bacteria to new environments, including the acquisition of resistance  to any given antibiotic.
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In addition, protein–ligand docking  is assisting in the generation of predictions that aim to understand, in depth, the

effects of the position and orientation of a ligand when it is bound to a protein receptor or enzyme and how that position

affects the overall efficiency of drugs . This area of study also enables the molecular study of host–pathogen

interactions . Targeted chemical cross-linking (TX)—mass spectrometry (MS) or TX-MS is a new concept that

integrates the complex networks with the modelling of quaternary protein structures  (Figure 1).

Figure 1. Targeted cross-linking procedure for targeted chemical cross-linking mass spectrometry (TX-MS). Firstly,

Protein-Protein Interactions (PPIs) were chemically cross-linked with heavy/light disuccinimidyl suberate (DSS) to further

digest the complex PPI cross-linkers. The digested peptide signals were targeted and extracted from Liquid

Chromatography (LC)-MS data. The chemically complex cross-linked elements were subjected to MS analysis and

subsequently modelled to generate tertiary structures, which were docked to produce a compendium of possible

quaternary structure models. For identification of the candidate cross-linked peptides, the authors proposed the use of a

guide for the molecular docking of crystal structures of the targeted proteins. This research was originally published in

Nature Communications. Hauri et al. Rapid determination of quaternary protein structures in complex biological samples.

Nat Commun. 2019 Jan 14; 10(1):192© Copyright Clearance Center's. Reprint from .

2. Overview of Mathematical Models to Predict Infectious Diseases

Epidemiology has been considered the gold standard for investigating diseases' dynamics in varied populations, focusing

mainly on the distribution and determinants of disease, to better prevent and control these diseases. Moreover,

epidemiology could be considered the first mathematical model applied to the prevention and control of diseases .

Epidemic mathematical models have usually been applied to the prediction of outbreaks, epidemics, and transmission, as

well as the resurgence of infectious disease . Guidelines and vaccination programmes have been established to

prevent and control transmission. Although these first epidemiological models were "static" and representative of neither

different social or geographical spaces, nor their evolution over time , they have served as a model to develop

dynamic models that evolve over time (Figure 2).

Figure 2. Schematic classification of mathematical models applied to epidemiology and medicine. The figure shows the

evolution from a simpler statistical fixed model, such as a regression model, to a more sophisticated and dynamic learning

machine or artificial intelligence models. SIR, Susceptible-Infection-Recover.

Bayesian models are based on dynamic probabilistic models, in which a "theorem" describes the probability of any event

supported by prior knowledge related to that particular event. The variables are random, and uncertainty can be measured

. The applicability of Bayesian models , networks , or successful combinations , e.g., with gaussian
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variables , is too broad. Certainly, Bayesian methods are more difficult to implement than traditional methods,

especially in epidemiology and infection diseases . However, they have been applied in malaria studies , to evaluate

interventions applied to prevent human immunodeficiency virus (HIV) infection and its collateral risk , as well as to

evaluate the population dynamics of HIV .

Epidemiology (or non-epidemic) models are based on different statistical mathematical models, such as (i) regression,

mainly used to detect outbreaks , as well as (ii) the autoregressive integrated moving average model, ARIMA, and

seasonal SARIMA, both used to predict outbreaks and risk factors . Currently, more complex models are gainging

popularity, including  (iii) models based on a time series, which are more useful in antimicrobial studies to unravel

trends , (iv) methods including cumulative sum and an exponentially weighted moving average (for example, in the

ARIBACA project, were this model was implemented to detect and forecast selected Caribbean diseases, such as dengue

), and (v) spatial models, which are more sophisticated, including place-specific models requiring multivariate

techniques to model the spatial heterogeneity of all the infection´s covariates .

Mathematical or mechanist models are more complex state-space models based on compartments (S = susceptible, E =

exposed, and I = infectious and recovered populations). The compartmental or deterministic approach treats each

different status of an epidemic as a different sub-population or compartment of a population . The stochastic approach

takes random variables into consideration. Susceptible-Infection-Recover (SIR) compartments and derivatives models are

mainly used for predictions about the spread of infectious diseases , vaccination impact , or both . Importantly,

population dynamics are inexorably subjected to environmental background and natural phenomena, and rather than

following random oscillations, they strictly follow deterministic laws. The stochastic or random SIR model has the

advantage of introducing "the random or the chance" as a variable . Then, stochastic models can more realistically

predict epidemics , vaccination impact on herd immunity , or the dynamics of protein–protein interactions (PPIs)

during infections . Certainly, increasing the complexity and number of variables allows for more realistic predictions that

enable us to extrapolate results to real situations. The models proposed by Barnard et al.  and Sabini et al. 

accurately predict epidemics and their spread.

Finally, in the realm of artificial intelligence (AI) and machine learning systems, the studies in  provide a wide range

of novel approaches that are applicable to system biology  or can be directly used in immunology  and the study

of infectious disease, for prevention  or diagnosis . The great similarity between AI and machine learning makes it

difficult to separate the two, but in principle, AI aims to function as a human brain, working first on the acquisition of

knowledge to then solve problems; this process aims to increase the rate of success and not accuracy. On the contrary,

machine learning studies the use of big data to make an informed decision in order to maximize performance. Deep

learning is an improved subset of machine learning. The Support Vector Machine  and delta bitscore DeltaBS  are

examples of machine learning applied to a biological system, which enable us to predict the adaptive phenotype of a new

host-niche and its probability to develop severe disease. The Support Vector Machine generates a probability, based on

assigned scores for each isolate, creating a unique measure of host specificity, to indicate which animals may more easily

exchange specific isolates . DeltaBS is a training variable that allows the estimation of combined effects on gene

function. This model allows the identification of biological mechanisms for adaptation, and the detection of new emerging

lineages (by searching recurrent patterns of mutation accumulation) by recognizing novel mutations linked to the same

underlying shift .

3. Host–Pathogen Interactions

The mammalian immune system is a sophisticated, complex, and well-orchestrated network of cells and antimicrobial

molecules operating at different levels to protect it against disease . Initially, the immune response is innately

effective against "new threats". The adaptive immunity responsible for the memory response includes cellular and humoral

immune responses. Unfortunately, successful pathogens have developed subversive strategies to exploit, modulate,

and/or evade immune control and clearance , including evolutionarily optimized protein structures that bind with high

specificity to protein-like hosts . In addition, the immune response is highly specific to host and pathogen, hence why

everyone has a unique immune system and will respond differently to immune challenges, such as infection or sepsis.

Over this century, the great advances and innovations in computational methods have contributed to a comprehensive

and deeper understanding of biologically complex systems and host–pathogen interactions . These new approaches

allow us to understand the nuances of these specific interactions . Meanwhile, new strategies are developing animal

models to better understand and confirm the host immune response against bacterial infections .
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4. Antimicrobial-Pathogen Interactions: Overcoming Antimicrobial
Resistance

Antimicrobial resistance (AMR) is a major public health concern, and at present, some bacterial infections are untreatable

(Figure 3). There is an imperative need for new antibiotics, and new strategies are desperately needed to fight infectious

diseases . Previous research has focused on accurate and early diagnosis to better combat infections , while some

work has also been done to better identify mechanism of resistance in bacteria, mycobacteria, viruses, and parasites. The

consensus is to focus on early detection of the microbe, as well as its possible mechanisms of resistance, in order to

provide the necessary antimicrobial treatment and avoid a further increase on AMR .

Figure 3. Transmission cycle of antimicrobial resistance (AMR) and/or superbugs. Patient zero (PZ) harbours AMR and/or

a superbug. PZ comes to the Hospital because of an infectious disease. The infection is finally overcome with wide-

spectrum antibiotics, and PZ leaves the hospital. However, the superbug has been able to spread by fomites, hands, and

even directly person to person. Once PZ is at home, he or she is still colonized and harbours the AMR. The superbug then

spreads across the neighbourhood, and so on. The superbug ends up at a waste treatment plant. In spite of treatments,

the superbug can survive and keep circulating across water for human consumtion. In addition, the residual waste water is

spit into rivers or seas, thereby maintaining the ARM and superbugs, and, once more, the cycle starts again. Cartoons are

available online .

AMR is also a complex process that takes place at different levels of bacterial organization. Interactions between

microbes and antimicrobials are complex , and there are many subtleties to be considered, including colonization,

infection, bacterial fitness, and bacterial evolution . According to environmental conditions, such as antibiotic

pressure, bacterial evolution can address independent rates of change and selection . It is important to highlight

that the bacterial mutation rate is faster than the rate in humans, allowing for a rapid evolution that enables adaptation to

different threats, as well as immunity . Knowledge of the proteins involved in mechanisms of resistance, as well as the

PPI network against antimicrobial pressure, can lead to new ways to improve the development of novel and effective

treatment strategies.

Molecular docking  focuses on structure-activity studies, screening, and the optimization / modification of novel

molecules. This process has promoted novel strategies to emerge in the area of antimicrobial discovery. Zhang et al. ,

for example, combined different machine learning models with molecular docking to select the best strategy, resulting on a

novel and highly promising approach. Likewise, TX-MS  could be applied to determine bacteria–antibiotic interactions

and the disruption of the network under different conditions, in order to unravel the molecular base of mechanisms of

resistance. Even so, nothing can predict the AMR ratio, not even the success of a new drug or strategy.

Briefly, statistical models are extensively used to predict the transmission of superbugs and resistant microbes in different

settings, e.g., in an intensive care unit (ICU) . Most of these models are highly useful to predict and control

outbreaks . In addition, dynamics models based on systems instead of compartments  are also beneficial to

implement in a specific community or region . The stochastic models are the most suitable, when considering variables

such as cross-transmission or temporary nursery staff, in the study of outbreaks . Machine learning combined with

algorithms and in vitro experiments can help to develop new antimicrobial peptides  to predict their activity over

different pathogenic microorganisms , and at the laboratory level, they can rapidly determine identification and

antimicrobial susceptibility .
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5. Conclusions

Over the past decades, mathematical models have been developed and improved, further increasing their complexity and

better mimicking the biological, chemical, and physiological environments that enable a more robust understanding of

host–pathogen PPIs. Mathematical models provide an in silico translational platform, which offers predictions that allow

for the investigation of antimicrobial resistance, host–pathogen interactions, and microbial pathogenesis. However, the

challenge is still to understand the interactions between host–pathogen–antibiotic microbiota over time, which is the key to

overcoming not only septicaemia but all infectious diseases. Deep learning across big data can develop knowledge of

each individual immune response to different infections and provide enough information to unravel the molecular

mechanism used by bacteria to overcome the host immune response as well as its antimicrobial effect.

Certainly, we are in the initial stages of AI and are still learning how to build more realistic and accurate models. We

believe that during the next decade we will have the potential to connect patient diagnosis with treatment using machine

learning or AI, which will provide a key finding in translational medicine, as well as tremendous progress towards

personalized medicine. However, limitations and disadvantages, such as the non-automatization of the clinical

microbiology labs supplying the subjective diagnosis, or the lack of electronic-informatized clinical backgrounds, must be

addressed. Overall, the expectation to implement AI is, nowadays, a fact rather than a perspective.
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