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Spinal Cord Injury (SCI) is a common neurological disorder with devastating psychical and psychosocial sequelae.
The majority of patients after SCI suffer from permanent disability caused by motor dysfunction, impaired
sensation, neuropathic pain, spasticity as well as urinary complications, and a small number of patients experience
a complete recovery. Current standard treatment modalities of the SCI aim to prevent secondary injury and provide
limited recovery of lost neurological functions. Stem Cell Therapy (SCT) represents an emerging treatment
approach using the differentiation, paracrine, and self-renewal capabilities of stem cells to regenerate the injured
spinal cord. Multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and
hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in
preclinical and clinical studies. The microenvironment of SCI has a significant impact on the survival, proliferation,
and differentiation of transplanted stem cells.

spinal cord injuries stem cell transplantation multipotent stem cells mesenchymal stem cells

neural stem cells hematopoietic stem cells

| 1. Introduction

Spinal Cord Injury (SCI) is a common neurological disorder with a worldwide incidence ranging from 52 to 56 cases
per 1,000,000 people per year and estimated hospitalization costs ranging from $1.6 billion to $1.7 billion per year
[l This severe neurological condition has devastating physical and psychosocial sequelae. The majority of patients
after SCI suffer from permanent disability caused by motor dysfunction, impaired sensation, neuropathic pain,
spasticity as well as urinary complications, and a small number of patients experience a complete recovery [,
Moreover, people with SCI demonstrate from a two to five times higher mortality rate compared with the normal
population, which is caused by more frequent kidney failure, respiratory tract infections, and suicides in this
population B, The severity of motor function impairment mostly affects the prognosis after SCl—motor incomplete
injuries demonstrate better treatment outcomes compared with motor complete injuries 4. The SCI can result from
a traumatic as well as non-traumatic etiology. The most common causes of traumatic SCI in developing countries
include motor vehicle crashes (43%), falls (34%), gunshot injuries (10%), violence (5%), and sports (2%) 2. A non-
traumatic SCI, a scarcer condition than traumatic SCI, is most frequently caused by degenerative disease,
congenital anomalies (e.g. spina bifida, tethered cord), and tumors including primary neoplasms and cancer

metastasis EIBIE The CT imaging represents the initial diagnostic modality for spinal trauma, whereas the MRI
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constitutes the gold standard for SCI diagnosis and delivers information about the presence of a spinal cord

compression, herniated disc, ligamentous instability, and intramedullary hemorrhage or edema (Figure 1) 12,

Figure 1. Spinal Cord Injury visualized on MRI-T2 sequence.

The standard treatment of SCI includes hemodynamic support, appropriate hydration, surgical decompression, and
subsequent rehabilitation B!, According to current AO Spine guidelines, surgical decompression and if necessary
stabilization should be performed early when possible 4. |t was indicated previously that in patients without
contraindications, a 24-h infusion of high-dose methylprednisolone should be administered intravenously within 8
hours after SCI 12, However, routine methylprednisolone infusion during the acute phase of SCI is not universally
accepted and is not recommended 3. These therapeutic modalities only aim to prevent secondary injury and
provide limited recovery of lost neurological functions 4!, Therefore, a plethora of alternative treatment approaches
for SCI was presented by many studies in recent years. Numerous studies demonstrated a promising potential of
treatment methods modifying the microenvironment of SCI such as betulinic acid, cannabinoids, riluzole,
elazanumab, soluble TNF-a receptor 1, and intravenous immunoglobulins Bl. Moreover, recent research focuses
on novel therapeutic approaches for spinal cord regeneration such as stem cells, stem cell-derived exosomes,
growth factors, nanocarriers, hydrogels, and biomaterial scaffolds 22!, Nevertheless, safe and successful therapy

providing complete functional recovery for SCI has still not been established.

Stem Cell Therapy (SCT) brings new hope for achieving potential neurological improvement of disabled patients
after SCI. It represents an emerging treatment modality using the differentiation, paracrine, and self-renewal
capabilities of stem cells to regenerate or replace damaged cells and tissues X8, Numerous reports showed
promising outcomes of SCT in the treatment of many conditions including digestive system diseases, liver
diseases, dermal wounds, cardiovascular diseases, arthritis, and cancer LEIL718I19[20121] The SCT has been also

popularized as a potential treatment for many neurological conditions such as neurodegenerative disorders,
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multiple sclerosis, stroke, traumatic brain injury, and SCI [22l2311241[25]126] Regarding the use of SCT for SCI
treatment, multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and
hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in
preclinical and clinical studies. The majority of clinical trials investigating SCT for SCI treatment utilized MSCs 27
(281291 Other stem cells evaluated to date by clinical trials for this purpose include NSCs and HSCs [B2l31]i32]
Moreover, some clinical research utilized non-stem cell-based therapy and investigated Schwann Cells (SCs),
Oligodendrocyte Progenitor Cells (OPCs), and Olfactory Ensheating Cells (OECSs) transplantation for SCI treatment
with satisfactory results [331[24][35][36]

| 2. Pathophysiology of Spinal Cord Injury

The pathophysiology of spinal cord injury is a complex cellular and multimolecular process which can be divided

into two major phases: primary and secondary.

The primary stage is a direct consequence of physical and mechanical damage to the spinal cord involving its
compression, contusion, shear force, and laceration of the neurons and myelin sheath. The duration and nature of
this stage are huge determinants of future recovery 2. Directly after the initial injury, a cascade of both positive
and negative changes starts, including ischemia, disrupted blood flow, proapoptotic signaling, peripheral
inflammatory cell infiltration, hyperintensity of glutamate, and regulated cell death, which provokes the extending of

primary damage (38391,

The secondary stage can be divided into three subgroups: acute, subacute (intermediate), and chronic stage in
terms of time from injury (Figure 2) 29, The first stage of secondary injury lasts from 2 to 48 h. Ruptured vessels
and the destroyed blood-spinal-cord barrier result in cytotoxic and vasogenic edema and hemorrhage into the
parenchyma of the spinal cord, especially into the white matter which can provoke cytotoxic and vasogenic edema
(41421 The red blood cells present in extravasated blood undergo destruction after time which leads to a toxic
accumulation of iron ions in near tissue. This leads to ferroptosis of local cells which is a non-apoptotic, iron-
regulated kind of cell death when iron overload activates the reactive oxygen species generation, dysregulation of
the glutathione/glutathione peroxidase 4 (GSH/GPX4) metabolism, and accumulation of lipid peroxides, which

cause lipid membrane deterioration B9,
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Figure 2. Graphical presentation of the course of SCI secondary stage at the cellular level. Phenomena present in
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acute SCI (2-48 h): ischemia, mitochondrial failure, ionic imbalance, ROS production, inflammatory processes,
Wallerian degeneration, demyelination, glutamate toxicity, debris phagocytosis by macrophages; subacute SCI (2
days—2 weeks): glial scar formation by astrocytes, further debris phagocitosis; chronic SCI (>2 weeks): glial scar

maturation, cyst formation, axonal sprouting.

Swelling of the axons may co-occur with Wallerian degeneration, but its etiology remains uncertain 31,
Subsequently, the disintegrated blood-spinal-cord barrier facilitates the entry of immune cells, such as
macrophages, T cells, microglia, and neutrophils, which triggers the release of inflammatory cytokines such as
tumor necrosis factor-a (TNF-a), interleukins (IL-1a, IL-13, and IL-6), nitric oxide (NO"), reactive oxygen species
(ROS), elastase, and matrix metalloproteinase-9 (MMP-9) [B71[44]

The interrupted blood-spinal-cord barrier facilitates the excessive influx of water into the extracellular compartment
resulting in edema and ion imbalance. lonic dysregulation is characterized primarily by a Na* and Ca2* intracellular
concentration with a simultaneous elevated extracellular concentration of K* and Mg*® B8 Intracellular
hypercalciuria activates calcium-dependent proteases and causes mitochondrial dysfunction ultimately leading to

apoptotic cell death 71,

Membrane depolarization leads to the release of glutamate into the extracellular milieu which is relevant to

neurotransmitter deregulation. The glutamate binds to an extrasynaptic receptor NMDAR which causes neuronal
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excitotoxicity by the receptor-mediated influx of calcium into the cell 3. All formation processes may contribute to

forming free radicals such as NO°, OH™, and H,0O, which can bind with the cell’'s molecules and oxidize them.

During chronic and sub-acute phases, apoptosis and necrosis of neurons occur as a consequence of prior cellular
and intercellular changes. The glial scar formation is a multifactorial phenomenon that involves oligodendrocyte
precursor cells, pericytes, microglia fibroblasts, chondroitin sulfate proteoglycans, and particularly activated
astrocytes 44l Activated astrocytes lead to astrogliosis which is a defense response of the central nervous system
to minimize and repair primary damage, but it eventually generates harmful effects due to producing high levels of

inhibitory molecules to suppress neuronal elongation and forming potent barriers to axon regeneration 4471,

| 3. Stem Cell Types for Stem Cell Therapy
3.1. Stem Cells’ Classification

To understand the characteristics of each type of stem cell used for SCT better, we should know their origin and
differentiation potential into various cell types. Regarding the origin of stem cells, they can be divided into two
major categories—adult stem cells and embryonic stem cells 4849 Based on the range of their differentiation
potential, stem cells can be categorized into five classes: totipotent, pluripotent, multipotent, oligopotent, and
unipotent B9, Totipotent activity implies the capability of differentiation into any type of an organism’s cells including
placental cells and three germ layers, and is demonstrated only by embryonic stem cells (ESCs) derived from
morula (1-3 days after fertilization) 48149 On the other hand, ESCs obtained from a blastocyst (4-14 days after
fertilization) demonstrate pluripotent activity which indicates the capability of the generation of all types of cells in
the body excluding placental cells 481491 plyripotent cells can be also sourced from extra fetal tissues such as the
umbilical cord, amniotic fluid, amnion, and chorion “8l. Furthermore, pluripotent stem cells can be generated from
adult somatic cells using so-called OSKM transcription factors which include OCT-4, SOX2, KLF4, and c-MYC B2,
Created through that genetic reprogramming of stem cells namely induced pluripotent stem cells (iPSC)
demonstrate embryonic-like molecular and biological features [8l. Another type of differentiation potential,
multipotency, implies the ability to transform into a limited number of specific cell types 859521 Myltipotent stem
cells are undifferentiated, self-renewing cells including several stem cell types in an adult organism such as those
present in bone marrow mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), or neural stem
cells (NSCs) 231, The MSCs can generate adipocytes, bone, and chondrocytes, whereas HSCs can differentiate
into all cell types of the hematopoietic system 22, However, it was demonstrated that adult stem cells can also
form cells from other cell lineages depending on molecular signals from the microenvironment where they were
transplanted 4. That phenomenon called stem cell plasticity significantly expanded its potential use for the
treatment of many diseases, including SCI. Furthermore, oligopotent stem cells have a narrower differentiation
spectrum and can transform only into several cell types of a specific tissue (e.g., myeloid cells which can
differentiate into leukocytes but not erythrocytes) B, Finally, unipotent stem cells can form only one cell type, but

compared with non-stem cells they have a self-renewal capability 2252],

3.2. Pluripotent Stem Cells
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The pluripotent stem cells including ESCs and iPSCs, as unlimited self-renewable cells, represent promising types

of stem cells for treatment replacing damaged tissues.

Under specific conditions, the ESCs can generate any cell lines, e.g., neurons or oligodendrocytes B3, Thus,
several studies utilize ESCs-derived stem cells or ESCs-derived extracellular vesicles B8IEZS8] - Currently, an
ongoing clinical trial evaluates safety and efficacy of the transplantation of neural precursor cells (NPCs) derived
from human ESCs for AlS-A, sub-acute SCI patients (NCT04812431). However, some major limitations hamper the
introduction of ESCs into clinical trials due to obtaining them from non-autologous blastocysts such as the risk of
immune rejection and ethical concerns regarding the use of human embryos 18, Thus, recent research tries to
develop effective technology generating ESCs such as nuclear transfer technology, which may avoid these
problems 1€I39 Moreover, the high differentiation potential of ESCs is associated with the risk of tumorigenicity,

especially the possibility to form teratomas 89,

Artificially generated iPSCs avoid ethical problems associated with ESCs harvested from human embryos and
maintain the beneficial capabilities of ESCs [81l. Moreover, iPSCs similarly to ESCs may be utilized as a source to
generate multipotent stem cells for transplantation, e.g., neural stem cells [62. However, the use of iPSCs is also
faced with major challenges such as immune rejections, the instability of iPSCs’ genome, and potential
tumorigenicity (631641651 To date, there are no published clinical trials regarding the use of pluripotent stem cells for

SCI treatment.

3.3. Multipotent Stem Cells

Mesenchymal Stem Cells or Mesenchymal Stromal Cells (MSCs) are multipotent progenitor cells, which exhibit the
greatest potential for treating spinal cord injury among all stem cell types 8. MSCs are characterized by easy
extraction, and rapid proliferation and can be obtained from the patients themselves [€7I88I69 \MSCs for clinical
applications can be generated from autologous sources, such as bone marrow and adipose tissue 9,
Alternatively, there are allogeneic sources of MSCs, which include umbilical cord blood, placenta, and amniotic
fluid 247 MSCs are characterized by low immunogenicity, and bone marrow MSCs (BMSCs) cause the least
intensified immunologic response among MSCs from mentioned sources 278 |n comparison to BMSCs, adipose-
derived stem cells (ADMSCs) exhibit three times higher activity and are easily available for obtainment /4. Both
ADMSCs and BMSCs can be generated without ethical issues, but it requires liposuction or bone marrow aspirate
followed by cultivation, which makes them time-consuming and expensive sources 47751 On the other hand,
Umbilical cord or Wharton’'s Jelly MSCs (UCMSCs) are easier to obtain, but require conducting complex
procedures namely lyophilization to avoid immunological responses and are controversial from the ethical point of
view 3, Besides that, UCMSCs are characterized by fast proliferation, low immunogenicity, and faster in vitro
expansion than the other MSCs 877, The MSCs have been investigated for SCI treatment in the greatest number

of clinical trials among stem cell types so far.

Recently, the NSCs were introduced into clinical trials and showed promising results for application in the treatment

of the injured spinal cord. As of today, Neural Stem Cells can be obtained from three distinctive sources courtesy of
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recent technological advances. NSCs can be derived either from primary tissues, as means of differentiating them
from pluripotent stem cells or via trans differentiation from mature somatic cells. As for isolating NSCs from primary
tissue, it was proven that NSCs can grow in single-cell suspensions, stimulated by the epidermal growth factor
(EGF) and basic fibroblast growth factor (bFGF). These cells derived from, e.g., periventricular regions by means
of cell sorting based on expressed NSCs’ markers, as is the case for mammals, although no protocol yet has been
obtained for this type of procedure in humans, so it can be considered as an ethically ambiguous endeavor. An
alternative from primary tissue extraction is the differentiation of pluripotent stem cells, such as patient specific in
iPSCs derived from reprogrammed skin fibroblasts /8. Neural Stem Cells can be potentially derived from fetal
CNS (central nervous system) tissue, such is the case with HUCNS-SC, Stemcells, Inc, Newark, CA. HUCNS-SC
was proven safe for intraspinal transplantation at high doses by studies classified at class IV evidence 8. As for
implantation of the autologous human Schwann cells with SCI, there was no evidence of additional spinal cord
damage, mass lesion, or syrinx formation 2. One other aforementioned method is the trans differentiation of
somatic cells. This method essentially transforms mature somatic cells of one type into another utilizing exogenous
transcription factors. Such was the case with zinc-finger transcription factor, Zfp521. Research has given us a way
for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs B9, Another way of
obtaining NSCs from fibroblasts without the need for genetic manipulation is cellular reprogramming using
pharmacological methods. M9, a chemical cocktail developed by Zhang et al., was shown to reprogram mouse
fibroblasts into induced neural stem cell-like cells (cCiINSLCs) [81l. These cells show great promise, as they resemble
primary NCS in terms of self-renewal and differentiation capabilities, although more research has to be conducted

in order to understand the process fully and implement these methods in human research models.

The HSCs exhibited safety for clinical use and were investigated with satisfactory outcomes as a treatment for
many diseases such as hematopoietic diseases, multiple sclerosis, Crohn’s disease, and diabetes danielson,
mohammadi oliveira 8283184185 The HSCs can be harvested from the placenta, cord blood, and adult bone
marrow at acceptable concentration levels €9 However, umbilical cord blood contains a significantly higher
amount of HSCs than bone marrow, and umbilical cord-derived HSCs are characterized by lower immunogenicity
than bone-marrow-derived ones 8. Indeed, immune rejection constitutes the most challenging concern associated
with the use of HSCs 4. Nevertheless, treatment with HSCs is devoid of tumorigenic complications 8. Moreover,
the Food Drug Administration (FDA) approved the HSCs for stem cell therapy in patients with conditions that affect
the hematopoietic system B9, To date, HSCs in this setting constitute only one type of stem cell approved by the

FDA. Regarding the use of HSCs for SCI therapy, the results of several clinical trials have been published to date.

Table 1 summarizes the types of stem cells used for SCT regarding the sourcing, differentiation potential,

advantages, and limitations (Table 1).

Table 1. Main characteristics of various stem cell types investigated for application in Spinal Cord Injury treatment.
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Type of Stem
Cells

Embryonal
Stem Cells

Induced
Pluripotent

Stem Cells

Mesenchymal

Stem Cells

Differentiation

Potential

totipotent,

pluripotent

pluripotent

multipotent

Sourcing

morula,
blastocyst,

umbilical cord,
amniotic fluid,

amnion,

chorion,
generated from
adult somatic

cells

generated from
adult somatic
cells using so-
called OSKM
transcription
factors

bone marrow,
umbilical cord
blood, adipose

tissue

Main Advantages

possibility to
generate any cell
lines, e.qg.,
neurons or

oligodendrocytes

lack of ethical
issues and
immune
suppression (in
autologous
method)

capability to
generate
adipocytes, bone,
and chondrocytes,
easy extraction,
rapid proliferation,
low
immunogenicity;
ADMSCs and
BMSCs can be
generated without

ethical issues

Limitations

the risk of
immune rejection,

the ethical
concern regarding
the use of human
embryos, the risk

of tumorigenicity

the risk of
immune
rejections,
instability of
iPSCs’ genome,
potential

tumorigenicity

ADMSCs and
BMSCs require
liposuction or
bone marrow
aspirate followed
by cultivation,
which makes
them time-
consuming, and
expensive
sources;
Umbilical cord or
Wharton'’s Jelly
MSCs require
conducting

complex

Application in
Spinal Cord Refs
Injury

[16]
[48]
Preclinical 49
studies .
[55]
[60]
[51]
. [63]
Preclinical [64]
studies [65]
[91]
Clinical
studies
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Type of Stem Differentiation

Cells Potential
Hematopoietic )
multipotent
Stem Cells
Neural Stem multipotent
Cells

Sourcing

placenta, cord
blood, adult

bone marrow

ventricular
system of the
brain, central
canal of the

spinal cord,
dentate gyrus

of the

hippocampus,
differentiation
from somatic
cells, iPSCs

Main Advantages

capability to
differentiate into alll
cell types of the
hematopoietic
system, treatment
for many diseases
such as
hematopoietic
diseases, multiple
sclerosis, Cron’s
disease, and

diabetes

capability to
differentiate into
neurons,
oligodentrocytes

and astrocytes

Limitations

procedures
namely
lyophilization to
avoid

immunological
responses and
are controversial
from the ethical

point of view

the risk of

immune rejection

the risk of
immune rejection,
low progress of
the research due
to ethical and

financial problems

Application in

Spinal Cord Refs

Injury
[52]
- (69]
Clinical (83]
studies [84]
[85]

Clinical

studies

Cl

)menon is

ration but

also in intralesional injection 9. According to recent studies, many factors are involved in these mechanisms. The

SDF-1/CXCR4 (Stromal-cell derived factor-1/CXC chemokine receptor 4) signaling pathway has a significant

regulatory role in the homing effect, and its upregulation may improve the migration of MSCs to the injury site 22123l
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[94] _ o Application in ily in the
Type of Stem Differentiation ) ) L :
] Sourcing [95Main Advantages Limitations Spinal Cord Refs e surface
Cells Potential ]
Injury \Cs to the
[96] stance P,

aquaporin 1, calcitonin gene-related peptide (CGRP), and a variety of growth factors such as the granulocyte
colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor
(bFGF), leukemia inhibitory factor (LIF), and hepatocyte growth factor (HGF) F9lZLI3][97][98][99][100][101]
Interestingly, substance P impairs the migration of MSCs in response to TGF-B 192 However, the precise

mechanisms determining the homing capacity of MSCs remain unclear.

The differentiation potential of MSCs demonstrated by in vitro studies brought great hope for their use in SCI
treatment as a cellular replacement for damaged neural cells. In these experiments, MSCs differentiated into
neural lineages showed some electrophysiological properties and expressed proteins characteristic of nerve cells
[99J[103] - However, despite the neuron-like phenotype of differentiated MSCs, these cells were unable to activate
action potentials 22, Moreover, in vivo studies demonstrated a limited differentiation ability of MSCs. Transplanted
MSCs did not show specific electrophysiological activity, and their survival number was too small to provide
regeneration of damaged structures [ZQL04I105] Therefore, the differentiation capability of MSCs probably plays a
secondary role in functional recovery in patients with SCI. Indeed, data from many studies indicate that benefits
provided by SCI therapy rather result from the paracrine and immunomodulatory activity of MSCs than their trans
differentiation into the neural cells (20811071

The paracrine effect of MSCs relies on secreting multiple cytokines, growth factors, and other bioactive molecules,
which are contained in MSCs’ exosomes and microvesicles 1981 These substances stimulate neuronal and tissue
regeneration, reduce glial scarring, enhance angiogenesis, regulate inflammatory processes, and modulate
immune responses (108109 The secretome of MSCs include the nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF),
vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), basic fibroblast growth factor
(bFGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), pigment epithelium-derived factor
(PEDF), tissue inhibitor of metalloproteinase-1 (TIMP-1), glia-derived nexin (GDN), interleukin-6 (IL-6), interleukin-8
(IL-8), neurotrophin-1 factor (NT-1), neurotrophin-3 factor (NT-3), galectin-1 (Gal-1), and cystatin C [Z1I[35](110]
Several studies demonstrated that MSCs can exert neuroprotective activities including counteracting nerve
degradation and supporting neurogenesis, oligodendrogenesis, remyelination, and axonal growth [l The
substances secreted by MSCs responsible for those capabilities include BDNF, GDNF, HGF, TIMP-1, NT-1, NT-3,
bFGF, and CNTF 97l BDNF, a neurotrophin, is one of the key molecules engaged in neuronal development in
CNS 111 |n a spinal cord injury environment, BDNF increases the volume of nerve tissue and decreases the area
of the cystic cavity 112, BDNF achieves a neuroprotective effect probably through activation of the Akt pathways
and through its high-affinity tropomyosin-related kinase type B (TrkB.FL) receptor 113, GDNF has a potentially
significant role in the reduction in secondary injury and motor recovery 114l GDNF also demonstrated
antioxidative properties by stimulating the enzymes responsible for the neutralization of reactive oxygen species
(93] Moreover, GDNF enhances the survival of grafted MSCs and promotes axonal growth [213IL16] Another growth
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factor, HGF, through the c-Met receptors, increases axonal growth, promotes angiogenesis, decreases glial scar
formation, and inhibits demyelination, blood-brain barrier impairment, and apoptosis 91171 Noteworthy, c-Met
receptors are overexpressed during the acute phase of spinal cord injury 217, Furthermore, TIMP-1 secreted by

MSCs has demonstrated the capability of oligodendrogenesis stimulation 128!,

The glial scar constitutes a barrier that inhibits axonal growth and regeneration after SCI (112, Transplantation of
MSCs in a rat SCI model demonstrated reduced glial scar formation and increased axonal regeneration 129, |n this
phenomenon, the paracrine activity of MSCs also plays a significant role. Indeed, transplantation of human
UCMSCs overexpressing bFGF to a mouse SCI model improved neural regeneration and glial scarring through the
activation of the PI3K-Akt-GSK-3pB pathway 121, Moreover, reduction in the levels of TGF-B through HGF secretion
by MSCs also suppressed glial scar formation 222, Furthermore, MSCs can inhibit the TGF-B/Smads signaling
pathway in astrocytes, which is also involved in glial scar formation (123, The modulation of astrogliosis via the
matrix metalloproteinase-2/signal transducer and activator of transcription 3 (MMP-2/STAT3) signaling pathway is
the other important mechanism responsible for suppressing glial scarring by MSCs L9241 |nhibiting glial scar
formation is beneficial for neural repair in subacute and chronic SCI. However, in the acute phase of SCI, the
suppression of glial scarring may increase the spread of various inflammatory cells and toxic molecules from the
lesion site [123]. A study on the SCI rat model showed that MSCs decreased glial scarring in a chronic stage of SCI

and increased the formation of glial scar in the early stage, but this observation should be confirmed in further
studies 1281,

Angiogenesis induction at the lesion site is an especially important capability in supporting spinal cord injury
healing [2271128]  Thjs phenomenon is carried out through secretion by MSCs with the molecules such as VEGF,
PDGF, bFGF, HGF, IGF-1, GDNF, BDNF, TIMP, IL-6, and IL-8, which are responsible for creating new vasculature
from pre-existing vessels 3511101 Angiogenesis stimulation facilitates axonal regeneration, improves ischemia,

and hypoxia, and prevents accumulation of inflammatory molecules at the injury site [22I127],

The immune reactions after SCI are thought to be one of the most significant secondary injury factors [122, At the
lesion site, transplanted MSCs exert immunoregulative function through suppression of the inflammatory response,
inhibition of T cells, and reprogramming of the microglia phenotype 9. Studies showed that MSCs reduce levels of
inflammatory cytokines including TNFa, IL-1B, IL-2, IL-4, IL-6, and IL-12 at the injury site 39, In these phenomena,
paracrine activity of MSCs also has substantial relevance and includes cytokines and trophic factors such as
CNTF, TNF-betal, neurotrophin 3 factor (NT-3), IL-18 binding protein, and interleukins (IL-13, IL-10, IL-12p70, IL-
17E, IL-27) secreted by MSCs 1. Moreover, MSCs transplanted into the lesion site maintain MHC-I, Scal, and
CD29 expression levels on their surface and additionally boost their expression of MHC-II and CD45, which means
that MSCs adopt the immune cell-like phenotype in response to the SCI microenvironment 121 Probably,
interferon-gamma (IFNy) present in a SCI environment is mainly responsible for the induction of MHC-II expression
by MSCs 7131l Moreover, exposure to IFNy and TNF-a triggers anti-inflammatory properties in MSCs through
induction of indoleamine 2,3-dioxygenase (IDO1), IL-4, IL-10, CD274, and PD-L1 expression 22, MSCs may also
inhibit the proliferation and activation of T cells through the promotion of p27Kipl expression and decreasing of the

cyclin D2 expression, which results in the arrest of the cell cycle at the G1 phase 132, This process is mediated by
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many molecules including TGF-B1, PGE2, HGF, IDO1, and NO 138l MSCs may also inhibit Th1 and Th17, while at
the same time promoting the formation of Treg and Th2 cells 134, Furthermore, MSCs inhibit neurotoxic Al
astrocytes probably through inhibiting the nuclear translocation of phosphorylated nuclear factor kappa B (NfkB)
pathway p65 subunit 132, The inflammatory reaction is inhibited by MSCs also by increasing the M2 polarization of
macrophages and decreasing the M1 macrophage polarization 1361371 M1 mainly produces pro-inflammatory
cytokines including TNF-a, IFN-y, IL-1B, IL-6, IL-12, and IL-23, whereas M2 releases immunosuppressive
molecules such as IL-4, IL-10, IL-13, and TGF-B promoting tissue repair (138113911140 || .10 secreted by MSCs is
considered one of the key factors responsible for the transformation of the macrophage phenotype through

activation of the JAK/STAT3 signaling in macrophages 1221,

4.2. Neural Stem Cells

NSCs are self-renewing, multipotent cells that can give rise to neurons, astrocytes, and oligodendrocytes. They
can be observed in states of dormancy and mitotic activation, depending on the parameters of their environment.
Neural Stem Cells tend to express low levels of extracellular matrix receptors in their dormant state, but, when they
become mitotically active, receptors such as integrin- a6p1, syndecan-1, and Lutheran have a much higher
expression 141 As for outside components, a family of proteins known as BMP (bone morphogenic proteins) plays
a role in the proliferation and differentiation of NCS. LRP2, a receptor for BMP4 for example, is theorized to be
crucial in their proliferation, as research shows that in mice without this receptor, neural progenitors cease to
proliferate. When BMP secretion inhibitors’ overexpression was tested, specifically the Noggin, NSC enhanced
their proliferation of progenitors and shifted SVZ lineage progression from mature astrocytes to transit amplifying
cells and oligodendrocyte precursors. Noggin also promoted the differentiation of both oligodendrocytes and
neurons, which was inhibited by BMP4 [142l Other molecules that have been shown to upregulate NSCs’
proliferation in the subependymal zones such as Ansomin-1 binding to FGFR1, as well as induce their migration
(1431 A crucial part of NSCs’ research is finding novel molecules that orient them in their environment and allow
them to connect into more complex chains, such is the case with Epherin-A and B signaling pathways. Research
finds that especially EphA4 suppression causes the population of neuroblasts and astrocytes to become loosely
aligned and chaotic, often migrating into neighboring structures 144l NSCs and progenitor cells descended from
them express Wnt receptor FZD1 playing a similar role, as the knockout of FZD1 was prioved to cause astroglial

differentiation with increased migration of adult-born neurons but also a shutdown of new neuron differentiation
145

Neurotransmitters abundant in the regions of the NSC residency also play a major role in shaping stem cells. The
best-described example of regulating neurogenesis, particularly in the SEZ region is gamma-aminobutyric acid.
GABAergic neurons were proven to control NSC populations by maintaining their status of quiescence in the
hippocampus 1481 Neurogenesis stemming from choline acetylase was explored in rodent SVZs where a stroke
was experimentally induced; a population of ChAT-positive neurons was found to have participated in the

proliferation of NSCs and their homing to zones damaged by the stroke, resulting in better recovery 147,

A neurotransmitter that induces NSCs’ activity is norepinephrine via the 33 adrenergic receptors.
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Ghrelin administration was proven to induce cellular proliferation of hippocampal NSC via such pathways as ERK1
and 2, as well as PI3K, and Janus kinase 2 48] Melatonin was proven to facilitate fetal bovine serum-induced

neural differentiation of NSCs without affecting the astroglial differentiation 242!,

4.3. Hematopoietic Stem Cells

HSCs as multipotent stem cells can differentiate into all types of blood cells and lymphoid lineages 139,
Transplanted into the SCI microenvironment, HSCs exert their therapeutic activity through differentiation and

releasing numerous cytokines and neurotrophic factors.

The differentiation capacity of HSCs at the SCI microenvironment includes transforming into astrocytes,
neuroprotective glia, and oligodendrocytes 251, In a recent in vitro study, human umbilical cord blood-derived
CD133* HSCs after exposure to the mixture of sonic hedgehog, BDNF, B27, and retinoic acid demonstrated
increased expression of Isl-1, AchE, SMI-32, and Nestin, which are markers specific for motor neurons 152, That

suggests the potential of HSCs for differentiation into motor neuron-like cells.

Preclinical studies showed that a plethora of growth factors and cytokines could be released by HSCs including
VEGF, thrombopoietin, neurotrophin-3 (NT-3), mitogen-activated protein kinase-1 (MEK-1), angiopoietin-1, IL-11,
and colony-stimulating factor | (CSF-I) [B8I153I154]  An animal study by Xiong et al. demonstrated that the
administered in the chronic phase of SCI HSCs increased expression levels of NT-3 and MEK-1 suggesting that
HSCs exert their neuroregenerative properties trough release mainly of these two factors 123 The signaling
pathways that involve MEK-1 and NT-3 play important roles in neuroprotection and are significantly downregulated
after SCI, which indicates that HSCs restore proper MEK-1 and NT-3 levels 15511561 \oreover, inhibition of
astrogliosis, enhancement of 5-HT-positive fibers, and oligogenesis promotion after HSCs’ administration were also
observed 153, Suppressing astrogliosis inhibits the formation of a glial scar at the lesion site. As above mentioned,
the benefits coming from inhibition or promotion of glial scarring may vary regarding the phase of SCI. Therefore,
inhibition of astrogliosis at the chronic stage of SCI unleashes regenerating axons from suppressive effects of
inhibitory molecules and fibrotic scarring 153 whereas, during the acute phase of SCI, promotion of astrogliosis
may be beneficial due to the protective role of the glial scar against the inflammatory environment of acute SCI
(1531 On the other hand, stimulation of oligogliosis regenerates demyelinated axons, and enhancement of 5-HT

fibers extends their lateral branches, which enhances neural improvement (23],

An exact molecular mechanism of action through which HSCs exert their neuroregenerative properties in the
treatment of SCI remains not thoroughly investigated; thus, further studies are needed to unveil other molecular

interactions involved in their activity.

5. Novel Therapeutic Approaches Based on Stem Cell
Therapy
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As it was discussed above, existing scientific data demonstrate that there are some limitations, which hamper
neurological recovery of the damaged spinal cord after SCT use. Recently, researchers suggested numerous
bioengineering techniques to enhance mediocre therapeutic outcomes of SCT. These novel approaches include
stem-cell-derived exosomes, gene-modified stem cells, and biomaterials. (Table 2).

Table 2. Emerging therapies based on Stem Cell Therapy.

Phase of o
Technology ] Advantages Limitations Refs
Studies
comparable effectiveness not entirely studied the
with SCT avoids immune content of exosomes,
rejection and risk of lack of unified [157]
. . . . [158]
) o carcinogenicity, avoids obtainment procedure, =
Stem cell-derived exosomes  preclinical . . . [159]
problems with low survival unstandardized [160]
rate, dedifferentiation, and number of injections, 161
difficult obtainment of stem its frequency, and
cells dosage
better outcomes compared
with non-modified stem
] ) safety concerns
cells, enables manipulation )
N o N regarding the use of e
Gene-modified stem cells preclinical of the specific molecular ) ) [162]
] viral vectors for genetic
pathways of spinal cord ) ]
o . ) engineering
injury microenvironment to
enhance treatment efficacy
Biomaterials creates a suitable
microenvironment for stem ) o
] o immune rejection,
cells, provides a bridging
Cell-free 3D- ) cumbersome
] o role, improves neural o [91]
printed preclinical ) ) bioprinting procedure, 163
regeneration, resistance to o o
scaffolds i limited availability of
toxic, temperature, and UV ) o
o ) printable bioinks
radiation during the
fabrication process
. - . . . 91
3D-printed preclinical possibility to create a restricted conditions of E

scaffold loaded "spinal cord-like" scaffold the manufacturing
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Phase of
Technology —_— Advantages Limitations Refs
udies

with stem cells process, immune
rejection, cumbersome
bioprinting procedure,
limited availability of
printable bioinks

high biocompatibility may )
fast degradation rate,
o be used as a cell or cell ) 1]
Hydrogels clinical ] ] low mechanical
factors’ carrier for its B
) ) ) strength, and durability
transport into the lesion site

not established release

) o improves stem cell transport  time and dose of drugs [01]
Nanomaterials preclinical o
and viability loaded on

nanoparticles
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