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Zinc–iron redox flow batteries (ZIRFBs) possess intrinsic safety and stability and have low electrolyte cost. ZBRFB

refers to an redox flow batterie (RFB) in which zinc is used as the electrochemically active substance in the

electrolyte solutions. The zinc electrode has a reversible anode potential. Zinc ions are stable in both alkaline and

acidic environments, even in a neutral electrolyte, and the electrochemical reaction rate is relatively fast. 
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1. Introduction

As a result of the depletion of fossil fuels, the concerns over energy sustainability and environmental issues are

given a more and more vital position . The power generation of renewable energy, for instance, solar and

wind energy, will surely become the main energy sources of future energy strategy. However, the unique

intermittence and instability of renewable energy have brought major challenges to the stable operation of the

power system, opening temporal and spatial gaps between the consumption of the energy by end-users and its

availability, thus, energy storage technology is an effective means that can help achieve stable and efficient

renewable energy . Compared with physical techniques (e.g., pumped storage), secondary batteries with

higher flexibility have gradually attracted people’s attention . Among the various battery techniques, redox

flow batteries (RFBs) have proved to have considerable development potential in large-scale energy storage as a

result of their long lifetime, high safety, and high-energy efficiency .

According to the electrolyte used, the RFB system mainly includes vanadium-based RFB, iron-based RFBs, zinc-

based RFBs, organic RFBs, polysulfide-based RFBs, etc. . To date, the vanadium RFB

(VRFB) has become the most mature large-scale energy storage technique, which is suitable for large- and

medium-sized energy storage scenarios . VRFBs have characteristics whose energy efficiency (EE)

and cycle life exceed 80% and 200,000 cycles, respectively . However, for VRFBs, the cost of

vanadium electrolyte accounts for approximately 60% of the battery cost, which greatly increases the initial

investment threshold . In VRFBs, the adopted acidic electrolyte is prone to corrode the components of the stack,

and the choice of the membrane is quite restricted. At present, the Dupont Nafion  is mainly used due to its

outstanding chemical stability and proton conductivity. Nevertheless, the high cost of Nafion and vanadium makes

VRFBs an expensive energy storage technique among various RFBs.
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2. Characteristics of ZIRFB

2.1. The Basic Principle of ZIRFB

Zinc–iron redox flow batteries (ZIRFBs) has the general characteristics of RFBs. That is to say, the ZIRFBs mainly

use the changes in the redox state of active substances in the solutions on both sides of the Fe-based cathode and

Zn-based anode to realize the charge–discharge process. A ZIRFB is mainly composed of a stack and two

electrolyte storage tanks . The electrolyte is stored in a storage tank outside the stack, and then is transported to

the inside and outside of the stack by the pump. The redox reaction occurs at the electrodes, and the reactive

species flow back to the external storage tank with the electrolyte. The cathode and anode are separated by a

separator/membrane, which can optionally allow the supporting electrolyte to pass through to maintain electrolyte

balance. The separator/membrane not only separates the half-cells and avoids the cross-mixing of active species,

but also provides the required ionic conductivity accompanied by the electrons transfer during the charge–

discharge process.

2.2. Wide pH Range

Metallic Zn can be electroplated in four various ways with different forms of reactants in the solution depending on

the pH from 0 to 16. The relevant reaction equations are as follows:

(1)

(2)

(3)

(4)

Unlike other RFBs, the electrolyte of ZIRFB can work in a wide pH range. A higher pH value is conducive to the

dissolution and deposition of metallic Zn, despite that the Fe /Fe  redox couple tends to precipitate more easily

at high pH. Hence, the appropriate pH range is very important. According to the difference in electrolyte acidity and

alkalinity, ZIRFBs are normally divided into three types: alkaline, acidic, and neutral ZIRFBs.

[33]

Zn2+ + 2e
− ↔ Zn ⋅ Ee = −0.763 + 0.0295 log[Zn

2+]

Zn(OH)2 + 2H
+ + 2e

− ↔ Zn + 2H2OEe = −0.439 − 0.0591pH

HZnO
2− + 3H

+ + 2e
− ↔ Zn + 2H2OEe = 0.54V − 0.0886pH + 0.0295 log[HZnO

2−]

ZnO2
2− + 4H
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− ↔ Zn + 2H2OEe = 0.441V − 0.1182pH + 0.0295 log[ZnO2
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In alkaline ZIRFB, zinc and ferricyanide are used as active substances in the anolyte and catholyte, respectively

. The system possesses the electrolyte with relatively low cost and high open-circuit voltage (OCV) of 1.74 V. In

the discharge state, the anode side is transformed from Zn to zincate solution (alkaline), while the cathode side

ferrocyanide is formed from the previous ferricyanide. When charging, it is the opposite process, which is a

reversible reaction compared to the discharge process. However, the cycle performance of the ZIRFB is poor due

to the issue of zinc dendrites in the alkaline medium.

In theory, the acidic ZIRFB (E  = 1.53 V) can have a higher energy density . However, in the acidic ZIRFB, the

excessive acidity of the solution will affect the deposition of zinc and the hydrolysis of the Fe /Fe  pair, thus, the

hydrogen evolution reaction (HER) is prone to occur. For an acidic system with HAc/NaAc as the buffer solution to

keep the pH value of the negative electrolyte between 2–6, a high CE (coulombic/current efficiency) can be

realized .

Compared with alkaline and acidic systems, the neutral ZIRFB system (Ecell = 1.43 V) is mild and non-corrosive,

which has lower requirements for the membrane/separator and other components . The neutral ZIRFB has a

lower battery cost than the other two systems, to a certain extent. Nevertheless, regarding the neutral ZIRFB

system, it also has to be taken into account that the hydrolysis of Fe  ions may lead to the decline of battery cycle

performance, which is one of the primary challenges for this type of battery.

2.3. Zinc Dendrites

In comparison to other battery systems, for instance, lead-based and lithium-based batteries, the

capacity/energy/power of the liquid–liquid RFBs can be designed independently . In fact, the ZIRFB is a

kind of “half-RFB”. In the electrode reaction, the iron-based active substance on the cathode side is always present

in ionic form, while the zinc-based active substance on the anode side is under the plating–stripping process of

zinc. This indicates that the power and capacity of the ZIRFBs are not devised flexibly in comparison with the

liquid–liquid RFB because the capacity of the ZIRFB is restricted by the surface area of the electrode during the

plating–stripping process .

The essential problem during the plating-stripping transversion is that the zinc dendrites mainly formed during

battery charging. The existence of zinc dendrites can easily lead to problems such as a reduction in battery

coulombic efficiency (CE) and capacity, and the shortening of battery life. In severe cases, it will impale the

separator/membrane and lead to a battery short-circuit.

The primary reason is that Zn dendrites are more grievous when the operating current density is high. Under higher

current densities, the concentration of zincate or Zn  in the electrode interface area is extremely low, as the

transfer rate of zincate or zinc ions in the electrolyte is obviously slower compared to the reaction rate on the

electrode. This may bring about severe concentration polarization . Furthermore, the diffusion of zincate/Zn

tends to realize on the protrusions of the electrode compared to the flat surface, making it easier for zincate or zinc

ions to undergo a plating process on the protrusions, and further results in the generation of Zn dendrites. Due to

[34]

cell
[35]

2+ 3+

[36]

[37]

n+

[33][38][39]

[40]

n+

[40] n+



Cost-Effective Zinc–Iron Redox Flow Batteries | Encyclopedia.pub

https://encyclopedia.pub/entry/38212 4/12

the presence of severe zinc dendrites at high operating current densities, ZIRFB usually operates at relatively

lower current densities. 

2.4. Fe(III) Hydrolysis

The hydrolytic reactions of Fe  are much stronger than those of Fe  and, consequently, hydrolysis occurs at a

much lower pH. There are few reliable investigations of the hydrolytic reactions of Fe  because of both the low

solubility and its propensity to be oxidised to Fe , which can greatly interfere with the ability to measure Fe

hydrolysis reactions. There have been several investigations that have examined the hydrolytic reactions of Fe ,

particularly that of the monomeric species, FeOH . It is surprising, therefore, to find that a substantial amount of

conjecture remains which concerns the stability of the Fe  hydrolytic species and phases . The hydrolysis

reaction of Fe  can be described by Reactions (5)–(7) . Similar to standard hydrolysis reactions, the interaction

of Fe  with water takes place in several stages. Firstly, the iron cation reacts with water.

Fe  + HOH → FeOH  + H (5)

The resulting product will continue to bind to another water molecule.

FeOH  + HOH ↔ Fe(OH)  + H (6)

In the final stage,

Fe(OH)  + HOH ↔ Fe(OH)  + H (7)

Flynn Jr. further summarized the hydrolysis processes in Fe(III) solutions at 25 °C . De Bruyn et al. briefly

examined the hydrolysis processes in Fe(III) solutions at 90 °C . The decrease in the polymer lifetime was

observed with increasing temperature, so there was precipitation rather than soluble polymers conducted by

titrations at 90 °C.

3. Research Status of Several Key Problems in ZIRFBs

According to the characteristics of ZIRFBs, the key problems need to be improved including Fe(III) hydrolysis

suppression and zinc dendrite prevention, which address the electrode, membrane, and electrolyte optimization,

correspondingly.

3.1. Zinc Dendrite Prevention

3.1.1. The 3D Electrode

The electrode is the place where zinc deposition occurs, and the structure and physical–chemical characteristics of

the electrode have a critical influence on zinc plating/stripping (Z-P/S). The three-dimensional (3D) porous carbon

3+ 2+
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felts (CF) possess a high specific surface area and porosity, they can provide more sufficient spaces for Z-P/S,

effectively inhibit zinc dendrites and aggregation, and ensure excellent cycle stability and rate performance .

3.1.2. Improving Membrane/Separator

The membrane/separator is a critical material in RFBs as well, mainly influencing the RFB performance of the

battery to a great extent, especially the CE and capacity retention. The membrane/separator divides the negative

and positive half-cells to refrain from battery short circuits. Meanwhile, the membrane provides ion transportation

pathways to make a conductive circuit to optionally enable H  or specific ions to pass through, avoiding the

crossover between the catholyte and anolyte. To achieve a higher battery, CE requires a higher ionic selectivity of

the membrane. Hence, the ideal ion-selective membranes for RFBs should satisfy the following requirements:

excellent mechanical properties, high cycle stability, good ionic conductivity and selectivity, and low active species

crossover and self-discharge rate. For ZIRFBs, the only concerned metallic ions which may permeate through the

membranes and lead to capacity fade are Fe  and Zn . The radius of Fe  is between 63–92 pm, which is much

smaller than that of Zn  (139 pm). Hence, the crossover of Fe  takes place much easier than Zn . It was

reported that the permeability of the Fe  ion through Nafion was 5.5 × 10  cm /min, which was 18.9~20.7 times

higher than that of the vanadium ion (2.9 × 10  cm /min). For the modification and improvement of membranes for

RFB applications, inorganic–organic hybrid membranes and polymer blending composite membranes are widely

used to reduce the undesired permeation of metallic ions and improve the ion selectivity of IEMs (ion-exchange

membranes) .

The main hazard of zinc dendrites is to pierce through the membrane/separator and result in the battery short

circuit. To avoid zinc dendrites from piercing the membrane/separator, membranes with high mechanical strength

can be selected, such as the PBI (polybenzimidazole) membrane . The PBI membrane with heterocyclic rings

may ensure the rapid transportation of OH  . Concurrently, the PBI membrane owns strong mechanical

stability and can resist zinc dendrites well, thus, ensuring the long-term cycling stability of alkaline ZIRFBs. At the

same time, the use of porous ion-conducting membranes instead of traditional IEMs solves the problem of an

increased internal resistance of the membrane due to iron ion pollution, and improves the conductivity of ions from

the neutral medium through the membrane, which greatly improves the performance and stability of neutral

ZIRFBs. 

3.1.3. Adding Additives to the Electrolyte

The electrolyte is the source that affects the generation and growth of zinc dendrites. Therefore, the employment of

additives into the catholyte/anolyte is a common method to suppress zinc dendrites by direct intervention in the

formation of crystal nuclei. Additives can be mainly divided into three categories: metal ions, organic molecules,

and polymers.

Metallic ions may influence Zn nucleation, and thus, affect the growing process. Therefore, a compact and

homogeneous Zn deposit layer is obtained . Zhang et al. reported that the aqueous CaCl  solution containing

NH Cl is appropriate to be a supporting electrolyte . Severe Zn dendrites are detected by SEM in 0.1 M ZnCl

[34][36]
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solution. Meanwhile, bulk Zn metal is detected with 1 M NH Cl as the supporting electrolytes. The cyclic

voltammogram (CV) curves show the redox peaks sharpen obviously in the presence of NH Cl and independent of

the amounts of NH Cl, meaning that the nucleation hysteresis decreases significantly. It can be confirmed that the

addition of NH Cl may promote Z-P/S significantly. However, no prominent Zn dendrite, but only bulk Zn with

random holes, is detected in the CaCl /H O (3.5 m) solution with 0.5 M NH Cl. The CV curves are analogous to

those in aqueous NH Cl solutions, but the redox peak currents enhance with the addition of NH Cl. Therefore, for

Z-P/S, a preferable supporting electrolyte has been an aqueous CaCl  and NH Cl solution. The charge–discharge

curves under various current densities demonstrate a clear plateau with an average voltage of 1.5 V. The CE and

EE reach 94% and 75% at 20 mA cm , respectively.

3.1.4. Flow Field Regulation

The electrolyte flow acts a vital role in Zn dendrites, not only owing to changing the gradient distribution of zinc

ions, but also reshaping the orientation of dendritic growth. When electrolyte flow velocity is 50 mL min , the

species concentration distribution is uniformly obtained by numerical simulation . It is very clear that two different

zinc-depositing morphologies can be observed under the conditions of the quiescent electrolyte and the flowing

electrolyte . A higher flow rate of the electrolyte may enhance the transport velocity of Zn  which accelerates

the diffusion process on the electrode accessory surface and the mass-transfer process in the bulk electrolyte,

thus, finally reducing the Zn  concentration gradients and constraining the formation and growth of dendrites.

Furthermore, a relatively high flow rate results in mitigating dendritic growth, as the formed dendrites are washed

away directly by the electrolyte .

3.2. Fe(III) Hydrolysis Suppression

Both Fe  and Fe  have hydrolytic reactions in an aqueous solution. It has been reported that the hydrolysis

product of iron ions will combine with the sulfonic group in the membrane to increase membrane resistance .

The hydrolytic reactions of Fe  are much stronger than those of Fe  and, consequently, occur at a much lower

pH . However, the hydrolysis of Fe  is easier to be suppressed in a hydrochloric acid environment .

In the catholyte of acidic ZIRFBs, polymerization takes place more seriously during the Fe  oxidation reaction, and

ferrihydrite precipitation takes place during the Fe  hydrolysis process. The polymerization and hydrolysis

reactions are rapidly promoted by enhancing H /OH  ions formed due to water electrolysis. To address this issue,

seven types of Fe -complexing ligands are tested and reported, but some issues remain if its consider the binding

stability and electrochemical performance of the Fe -ligand complex . It can be concluded that a novel Fe -

pyridine complexation in the catholyte has been presented for acidic ZIRFBs with a long cycle life and high

performance over other Fe -complexing ligands. In comparison to other complexing ligands, the Fe -

complexation with pyridine presents the highest electrochemical activity and reversibility . 

3.3. Electrolyte Optimization

3.3.1. Concentration and Additives
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By optimizing the composition of the electrolyte, Yuan et al. made the concentration of the Fe(CN) /Fe(CN)

redox couples achieve 1 mol L , far exceeding the previously reported concentration (0.4 mol L ) . The high

concentration of active redox couples enables the system with a high-energy density. The battery can realize 500

cycles of charge–discharge cycling under 80 and 160 mA cm , and still maintain an EE over 80% and CE over

99% at 160 mA cm . The results verified the outstanding stability of this system. Most important of all, the

functionality of this work is further verified by assembling a kW battery stack at a capital cost of less than USD 90

per kWh.

3.3.2. Zinc–Bromide Complexation

To ensure the long-term operation stability of neutral ZIRFBs, Yang et al. proposed the use of Br  ions to stabilize

Zn  through complexation interactions in the neutral electrolytes . The results of cyclic voltammetry indicate that

the redox reversibility has been significantly enhanced between Zn  and Zn. To tackle the issue of the sluggish

kinetics of the coordination interaction between Br  and Zn , ZnBr  as the electrolyte additive was directly

selected to boost the process of complexation. By employing active K Fe(CN)  in the catholyte and modified

species in the anolyte, the proposed neutral ZIRFB demonstrates excellent efficiencies and cycle stability (without

obvious capacity decay) during 2000 cycles (356 h) .

3.3.3. pH

For ZIRFBs, plate electrodes or porous CFs are generally adopted for Z-P/S. During charging, zinc ions or zincate

ions are continuously converted to zinc metal, and then, finally, are completely plated on the electrode. Once the

deposition is finished on the electrode completely, no further electroplating will be carried out. Further charging will

lead to a sharp increase in the charge potential, thus, resulting in the irreversible HER in the negative half-cell.

Liu et al. investigated the effect of several inorganic and organic additives on water migration in alkaline ZIRFBs

. Although all these additives are proved to be effective to suppress water migration, the organic additive, such

as xylitol, sorbitol, and mannitol with several hydroxyl groups, can increase the alkalinity of the electrolyte, which in

turn, accelerates the corrosion rate of zinc metal and further aggravates the HER of the battery.

3.3.4. Mix System

Fe–Cr RFB in the mixed electrolyte was first invented to tackle the cross-contamination issue . Hybrid RFBs,

such as Zn–Fe, all-Fe, Sn–Fe, have been widely explored in order to get rid of the bondage of high-cost membrane

materials. Zhou et al. reported an Sn–Fe RFB, employed SnCl  and FeCl  as both an anolyte and catholyte, and

delivered 78.5% of EE and 0.96‰ per cycle of the capacity decay rate at 200 mA cm  . At present, a long

lifetime and a high-power density of Zn–Fe RFBs are achieved through additional operation and structural design.
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