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Proteins are localized into different cellular compartments and sub-compartments inside the cell. Each subcellular

compartment has a distinct well-defined function in the cell and has a characteristic physicochemical environment, which

drives proper functioning of the proteins. Each subcellular compartment has a distinct, well defined function in the cell and

is considered to have evolved from the prokaryotic cell. Typical eukaryotic cells have two types of DNAs (i) chromosomal

nuclear DNA and (ii) organelle DNA, which is present in mitochondria and chloroplast while prokaryotic cells have only

single type of DNA called nucleoid.
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1. Introduction

The nuclear DNA encodes the majority of proteins while only a small number of proteins are encoded by organelle DNA.

Eukaryotic cells can synthesize up to 100,000 different types of protein , which are destined for one or more

predetermined subcellular locations. Figure 1 depicts various protein localization prediction methods available for different

cellular compartments.

Figure 1. Typical cell with different subcellular location and with available protein localization prediction tools.

The protein synthesis occurs in the cytoplasm and then the newly synthesized proteins are further transported to their

destined compartment to execute their function. Protein must be targeted to the right compartment in cells to perform their

function and mis-localization of the proteins leads to functional loss or disorder, which contributes to many human

diseases including cardiovascular, neurodegenerative disease and cancers . Assigning subcellular localization for

protein is a significant step to elucidate its interaction partners and predict their functions or potential roles in the cellular

machinery . There are a number of sequences that are deposited every year in the UniProt Knowledgebase (UniProtKB)

but only a few of them were manually annotated and reviewed (UniProtKB/SwissProt), which explains the gap between

the deposited sequence and annotated sequence is increasing every year (Figure 2). Therefore, there is a need of

computational methods to predict subcellular localization with high quality and accuracy, which is of great significance in

understanding cellular proteome and also helpful in designing the drug or targets. To date, many efforts have been made

in this regard. Based on different kinds of characteristics, several machine learning approaches have been developed

such as neural networks , hidden Markov models , support vector machines , deep learning ,

random forest , and extreme gradient boosting  for prediction of subcellular localization of proteins.
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Figure 2. Number of sequences deposited and manually annotated proteins in the UniProt database in the last 10 years.

2. Experimental Approaches for Protein Localization

Several experimental methods are available for determining protein localization, but the most common method is to label

the protein of interest with fluorescent probes and then visualize the distribution of the protein within cells under a

fluorescence microscope such as immunofluorescence microscopy, immunolocalization, mass spectrometry, co-

expression of fluorescent proteins, and electron microscopy. Fractionation based approach such as gradient centrifugation

and 2D gel electrophoresis are also a widely used method to experimentally establish the localization of a protein. These

experimental methods are relatively expensive and time consuming, which explains for a large information gap existing

between known protein and their location information. Consequently, various computational methods have been

developed to help fill this void. In this review, we focused only on the computational approaches and tools for prediction of

protein localization.

3. Computational Approaches for Protein Localization

With the rapid development of advanced genome sequencing methods, the complete genome sequences are increasing

day by day and the challenges for computational biologists are to manage, analyze, and annotate this plethora of

unprocessed raw biological data. To now, a number of computational methods have been developed to solve this

problem. While many have attempted to explore uncharacterized protein information, others have used the whole

proteome sequence information to develop new machine learning algorithms for different things such as the prediction of

motifs, prediction of ligand binding sites, etc. Based on protein sequence information, the computational method can be

divided into the following categories: (1) sequence feature-based methods, (2) homology-based methods, (3) protein

domain and motif information-based methods, (4) signal peptide-based methods, (5) non-sequence derived features-

based methods, and (6) integrated methods, which could use a combination of two or more methods.

3.1. Sequence Feature-Based Method

Sequence features are commonly used in localization prediction since some differences in the sequence features are

empirically known to be correlated with different localization sites. Nishikawa and Ooi  first noted the correlation of

amino acid composition to its biological and functional character in 1982. After that in 1983 Nakashima developed the first

sequence-based method for subcellular localization . They used amino acid composition to discriminate between

intracellular and extracellular proteins. Later several research groups successfully used amino acid composition as a tool

for subcellular localization predictions .

In sequence feature-based methods, the complete sequence of proteins is transformed into a numerical feature vector,

which is then used to predict the subcellular location. There are different types of sequence feature-based methods

available: (i) amino acid composition based method, in which the frequency of 20 different amino acids is calculated but it

ignores the sequence order information of each residue. (ii) Chou’s Pseudo amino acid composition (PseAAC) , which

considers the amino acid composition along with the potential interaction among the adjacent residues. This can be

further categorized into different modes of PseAAC such as the gene ontology mode, functional domain mode and

sequential evolution mode. (iii) Hybrid method, which allows the integration of different parameters or features for the

prediction and usually results in an increased the prediction performance .

3.2. Homology Based Method

This is the most common way to predict the uncharacterized protein on the basis of the presence of homologous

sequences of known function with an assumption that function is evolutionarily conserved . This approach first identifies

for homologous sequences in the proteins with known subcellular location and then extrapolates to predict the location of

unknown proteins, hence this approach is also known as “Annotation by Homology Transfer”. Homology is a qualitative

term, which attributes evolutionary relationships among different protein sequences. Orthologous proteins also typically

have similar sequences and thus similar subcellular localization patterns. Proteins with a highly similar sequence correlate
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well with the cellular localization site while those with dissimilar sequences indicate that they are distant and may or may

not be colocalized. In 2002, Nair and Rost  showed the correlation between sequence similarity with subcellular

localization. They considered 11 different compartments and observed sequence conservation among the major

compartments. BLAST, PSI-BLAST, and hidden Markov models (HMM) are routinely used for searching homologous

sequences. The limitation of homology-based methods is more pronounced in cases where no homology is found

between the query sequence and the annotated proteins sequence. Additionally, it is known that a single amino acid

substitution in localization signals can change the localization of a protein . Thus, sequence homology is a

noncausal feature for the localization prediction and should be used with caution when applied to nonnative sequences or

in case when homology is less .

3.3. Functional Motifs, Domains, and other Signatures Based Method

Proteins have evolved in different compartments, which limit their interactions with other proteins and ultimately impact

their functions. Some of these proteins preserved some sequential or structural patterns or motifs. Though not all of these

motifs and domains are specific to subcellular localization, many preferentially occur in some specific compartments and

such domains can be used to predict the localization of any proteins. Studying proteins at a domain/motif level allows

more accurate functional inference . In 2002, Mott et al.  first used 300 Simple Modular Architecture Research Tool

(SMART) domains to predict three subcellular locations viz secreted, cytoplasm, and nucleus. After that, several works

have been used for the protein motif and domains as features for protein localization predictions .

These motifs are not just limited to sequence patterns, but also extended to the structural information. There are a couple

of tools such as PROSITE  and MEME  that employed this feature to use for protein localization. While the structure

is not available for a big chunk of protein sequences, this gap is filled by several proteins structure predictions servers, like

I-TASSER and C-I-TASSER servers .

3.4. Signal Peptide Based Method

Signal peptides are short amino acid sequences in the amino terminus of the newly synthesized proteins and are found in

all organisms including bacteria, archaea, and eukaryotes. The function of the signal peptide is to enable the transport

machinery to translocate the proteins to different subcellular locations. They are present in secretory proteins and in

transmembrane proteins and the protein residing in different eukaryotic organelles have different types of signal peptide

sequences . The signal peptide is followed by a stretch of amino acids that form the cleavage site recognized by

peptidases and the signal peptide is removed after translocation, except in the case of transmembrane proteins. In case

of transmembrane proteins, this signal peptide serves as signal anchor sequences. The importance of various signal

peptide sequences in proteins in their subcellular localization has led to attempts to predict the subcellular location on the

basis of the signal peptide present in proteins. The prediction of the signal peptide involves two main tasks: (1)

discriminating between the signal peptide and signal anchor sequences and (2) also predicting the position of the signal

peptide cleavage site . The major challenge in signal peptide prediction is discriminating between true signal

sequences and other hydrophobic regions. In addition to it, the accurate prediction of the cleavage site is also very

important due to the high variability of the signal sequence length and the absence of sequence motifs that

unambiguously mark the position of the cutting site . A number of prediction methods are available that recognize and

predict the subcellular location on the basis of signal peptides (Table 1). SignalP was the first publicly available method 

and there are many versions available, which were developed based on different methods. Version-1  was based on

artificial neural networks, while version-2  was based on hidden Markow models, version-3  has an improved

cleavage site prediction, version-4  has improved discrimination of signal peptides and TM helices, and version-5  is

a deep neural network-based method combined with a conditional random field classification and an optimized transfer

learning for improved signal peptide prediction.

Table 1. Some useful signal peptide-based methods.

Method Tools Used Performance
Matrix Locations/Organism Availability Year

SignalP-
5.0 *

convolutional and
recurrent (LSTM)
neural networks

MCC,
precision and

recall

Archaea, Gram-positive
Bacteria, Gram-

negative Bacteria and
Eukarya

http://www.cbs.dtu.dk/services/SignalP/ 2019

TargetP
2.0 *

recurrent neural
networks (RNNs)

network

Precision,
recall, F1-

score, MCC

mitochondrial,
chloroplastic,

secretory pathway
http://www.cbs.dtu.dk/services/TargetP/ 2019

SigUNet Convolutional
neural network

MCC,
precision,
recall, F1
measure

Eukaryotes, Gram-
positive and Gram-
negative bacteria

https://github.com/mbilab/SigUNet 2019

DeepSig Convolutional
Neural Networks

MCC, False
Positive Rate,
precision and

recall

Eukaryotes, Gram-
positive bacteria and

Gram-negative bacteria
https://deepsig.biocomp.unibo.it 2018
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Method Tools Used Performance
Matrix Locations/Organism Availability Year

SChloro SVM

Accuracy,
Recall,

Precision, F1-
score, and

MCC

six chloroplastic sub-
compartments http://schloro.biocomp.unibo.it 2017

PredSL

combination of
neural networks,
Markov chains,

scoring matrices
(PrediSi), and

HMMs,

Accuracy Eukaryotic subcellular
location http://bioinformatics.biol.uoa.gr/PredSL/ 2006

TatP HMM/artificial
neural networks.

S-score and
the C-score, Y-
score, D-score

bacteria http://www.cbs.dtu.dk/services/TatP/ 2005

ChloroP Neural network
MCC,

sensitivity,
specificity

chloroplast transit
peptides http://www.cbs.dtu.dk/services/ChloroP/ 1999

* There are different versions of the software available, but here we mentioned only the recent one.

The signal peptide-based method is a good approach to predict the proteins that contain the signal peptide, but it has

some drawbacks, which make these methods not able to be applied for proteome scale prediction. (i) Not all proteins

contain signal peptides. There are many proteins that do not have any reported signal peptide sequence and despite this

are still translocated to their respective subcellular location. (ii) Many proteins follow the “piggyback import” mechanism

during protein translocation, which means these proteins do not have any specific signal peptide for the localization, but

they interact and bind to different proteins that have a signal peptide for translocation and then are co-imported to specific

target locations .

3.5. Non-Sequence Derived Features

A variety of non-sequence derived features have been used to predict subcellular localization. For example, LOC3D ,

which used the structural information for identification and prediction of proteins subcellular locations. There are a number

of non-sequence derived features that have been used in an automated classifiers including immunohistochemistry 

, fluorescence microscopy image , protein–protein interaction (PPI) data , expression data , and

recommendation systems .

3.6. Integrated Method

The different strategies for predicting protein localization have their own strengths and weaknesses. To enhance the

performance of prediction methods, it is important to combine multi-characteristic strategies, which give more complete

information to understand the relationship between protein localization with its sequence, structure, physicochemical

properties, and function. Hence a combination of different input vectors and different tools will be the successful strategy

in protein subcellular localization prediction. Many methods have successfully utilized the combination of protein features

to enhance the performance of protein subcellular localization predictions. The Protein Subcellular Localization Prediction

Tool (PSORT) family method is one of the integrated methods, which contains several tools for localization prediction. The

family includes a number of tools: (i) PSORT , the first integrated method of the PSORT family (http://psort.org) for the

plant and bacterial protein, (ii) PSORT II  for yeast and animal proteins, (iii) iPSORT  for N-terminal sorting signals

for plant or non-plants; (iv) PSORTb  for bacterial and archaeal proteins, and (v) WoLF PSORT  for eukaryotic

proteins including plants, animals, and fungi.

A similar approach was taken by many researchers where they integrated biological or empirical sequence features

correlated with subcellular location with a variety of machine-learning algorithm such as KNN, SVM, and deep learning:

MultiLoc, integration of the phylogenetic profile and GO terms of retrieved homologues such as MultiLoc2, CELLO2.5,

SherLoc2, YLoc, iLoc-Euk, Loctree3, DeepLoc, etc. People are also integrating different computational tools for predicting

subcellular localization. The Bologna Unified Subcellular Component Annotator (BUSCA)  is an example of such an

integrated tool where the author combines methods for identifying signal and transit peptides (DeepSig and TPpred3),

GPI-anchoes (PredGPI), and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating

subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci, and SChloro). This integrated

method performs better than the other methods based on single feature approaches. There are a number of recently

developed subcellular localization methods available, which are used by a wide range of researchers (Table 2).

Table 2. List of subcellular localization methods.
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Method Tools Used Performance
Matrix Feature Based Locations/Organism Availability

DeepPred-
SubMito

Convolutional
neural

network

Accuracy,
MCC Sequence information

Mitochondrial and
submitochondrial

proteins
https://github.com/jinyinping/DeepPred-SubM

SubMito-
XGBoost

Extreme
gradient
boosting

(XGBoost)

Sensitivity,
Specificity,

False
positive

rate, MCC,
F1-measure,

precision

Sequence information Submitochondrial
proteins https://github.com/QUST-AIBBDRC/SubMito-X

mRNALoc SVM

Sensitivity,
Specificity,
Accuracy,

MCC

Sequence information eukaryotic http://proteininformatics.org/mkumar/mrna

SCLpred-
EMS

Convolutional
neural

network

Sensitivity,
Specificity,

False
positive

rate, MCC

Sequence information
endomembrane

system and
secretory pathway

http://distilldeep.ucd.ie/SCLpred2/

BUSCA

Integrated
method of
DeepSig,
TPpred3,
PredGPI,

BetAware and
ENSEMBLE3.0

Precision,
recall, F1-

score, MCC

Sequence information,
signal and transit

peptides,
glycophosphatidylinositol

(GPI) anchors and
transmembrane domains

Gram-positive,
gram-negative,

fungi, plant, animal
http://busca.biocomp.unibo.it

SubMitoPred SVM

Sensitivity,
Specificity,
Accuracy,

MCC

Sequence and domain
information

Mitochondrial and
submitochondrial

proteins
http://proteininformatics.org/mkumar/submit

pLoc-mEuk

ML-GKR
(multi-label
Gaussian

kernel
regression)
classifier

Coverage,
Accuracy,
Absolute

true,
Absolute

false

Gene Ontology and
Chou’s general PseAAC

22 different
subcellular

localizations of
eukaryotic proteins

http://www.jci-bioinfo.cn/pLoc-mEuk/

ERPred SVM

Sensitivity,
Specificity,
Accuracy,

MCC

Sequence information, ER Proteins http://proteininformatics.org/mkumar/erpred/in

DeepLoc

deep
recurrent

neural
networks

Accuracy,
MCC Sequence information

10 different location
of eukaryotic

proteins
http://www.cbs.dtu.dk/services/DeepLo

SubNucPred SVM

Sensitivity,
Specificity,
Accuracy,

MCC

Sequence and domain
information

Nuclear and
subnuclear protein http://proteininformatics.org/mkumar/subnuc

LocTree3 SVM and
homology

Accuracy,
recall,

standard
deviation,
standard

error

Homology-based, Gene
Ontology

18 classes for
eukaryotes, in six
for bacteria and in
three for archaea

http://www.rostlab.org/services/loctree3

PlantLoc localization
motif search accuracy localization motif

information
11 different location

of plant proteins http://cal.tongji.edu.cn/PlantLoc/

iLoc-Cell,
package of
predictors

for
subcellular
locations of
proteins. It
includes

iLoc-Hum,
iLoc-Animal,
iLoc-Plant,
iLoc-Euk,

iLoc-Virus,
iLoc-Gpos,
iLoc-Gneg

multi-label
learning,

multi-label
KNN

Accuracy,
Precision,

Recall,
Absolute-
true rate,
Absolute-
false rate,

Sequence information,
gene ontology, PSSM,

Different subcellular
location of Human,

animals, plants,
eukaryotic, Virus,

gram-positive,
gram-negatives

http://www.jci-bioinfo.cn/iLoc-Cell



Method Tools Used Performance
Matrix Feature Based Locations/Organism Availability

MARSpred SVM

Sensitivity,
specificity,
Accuracy,

MCC

Sequence information,
PSSM

cytosolic and
mitochondrial

aminoacyl tRNA
synthetase

http://www.imtech.res.in/raghava/marspre

SCLPred Neural
Network

Sensitivity,
specificity,

False
positive

rate, MCC

primary sequence and
multiple sequence

alignments

four classes for
animals and fungi

and five classes for
plants

http://distill.ucd.ie/distill/

AtSubP SVM

Sensitivity,
specificity,
error rate,
MCC, ROC

curve

Sequence information,
PSSM

subcellular
localization of
Arabidopsis

http://bioinfo3.noble.org/AtSubP

Euk-mPLoc
2.0

OET-KNN
(Optimized
Evidence-

Theoretic K-
Nearest

Neighbor)
classifiers

accuracy

gene ontology
information, functional

domain information, and
sequential evolutionary

information

eukaryotic proteins
among the

following 22
locations

http://www.csbio.sjtu.edu.cn/bioinf/euk-mu

PSORTb SVM

Precision,
recall,

accuracy,
MCC

Sequence information

Different subcellular
location of Gram-
negative, Gram-

positive, archaea

http://www.psort.org/psortb

YLoc

naïve Bayes
alongside

entropy-based
discretization

overall
accuracy,
F1-score

Sequences information,
GO-term and motif

animal, fungal and
plant proteins www.multiloc.org/YLoc

SubChlo

evidence-
theoretic K-

nearest
neighbor (ET-

KNN)
algorithm

overall
accuracy,
accuracy

Sequences information
(PseAAC), chloroplast proteins http://bioinfo.au.tsinghua.edu.cn/subchl

MultiLoc2 SVM

Sensitivity,
specificity,
Accuracy,

MCC

phylogenetic profiles and
gene ontology terms

Plant, Animal,
Fungal

https://abi-services.informatik.uni-
tuebingen.de/multiloc2/webloc.cgi

AAIndexLoc SVM

Sensitivity,
specificity,
Accuracy,

MCC

Sequence information
and physicochemical

properties

Animal, Fungal and
plants http://aaindexloc.bii.a-star.edu.sg

Cell-PLoc
package of
predictors

for
subcellular
locations of
proteins. It
includes

Euk-mPLoc,
Hum-mPLoc,
Plant-PLoc,
Gpos-PLoc,
Gneg-PLoc,
Virus-PLoc

KNN or OET-
KN algorithm

Accuracy
and F1
score

GO and functional
domain information

22 subcellular
location of

eukaryotic, human,
plant, Gram-positive

bacterial, Gram-
negative bacterial
and viral proteins

http://chou.med.harvard.edu/bioinf/Cell-PL

ProLoc-GO

SVM-GO, k-
NN-GO and
fuzzy k-NN-

GO

MCC GO term information eukaryotic, human, http://iclab.life.nctu.edu.tw/prolocgo

ProLoc SVM Accuracy physicochemical
composition

subnuclear
localizations http://iclab.life.nctu.edu.tw/proloc

SherLoc SVM
Sensitivity,
specificity,

MCC
Sequence information eukaryotic proteins http://www-bs.informatik.uni-

tuebingen.de/Services/SherLoc/

MitPred SVM

Sensitivity,
specificity,
Accuracy,

MCC

Sequence information Mitochondrial
proteins http://www.imtech.res.in/raghava/mitpre



Method Tools Used Performance
Matrix Feature Based Locations/Organism Availability

BaCelLo SVM

Coverage,
Normalized
Accuracy,
geometric
average
, overall

accuracy,
Generalized
Correlation

Sequence information Plant, Animal,
Fungal http://www.biocomp.unibo.it/bacell/

HSLpred SVM

Accuracy,
MCC,

Reliability
index

Sequence information Human Protein http://www.imtech.res.in/raghava/hslpre

PSLpred SVM

Accuracy,
MCC,

Reliability
index

Sequence information gram-negative
bacterial proteins http://www.imtech.res.in/raghava/pslpre

ESLpred SVM

Accuracy,
MCC,

Reliability
index

Sequence information
and PSSM eukaryotic proteins http://www.imtech.res.in/raghava/eslpred
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