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Cryogenic treatment (CT) is one of the possible solutions for an environmentally friendly, sustainable, and cost-effective

technology for tailoring the properties of different metallic materials.
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1. Introduction

The technology of cryogenic treatment (CT) has made tremendous progress in the last 10 years in its application on

metallic materials in various sectors ranging from medicine, aerospace, robotics, materials science (including the steel

industry), nanotechnology, and mining to even more specialized disciplines . The technique has evolved from the first

attempts to treat materials at cryogenic temperatures in the 19th century by James Dewar and Karol Olszewski using

liquefied gases (nitrogen and hydrogen). Later, the first real scientific observation and documentation of CT was made by

NASA (National Aeronautics and Space Administration) in the mid-20th century, when they observed changes in the

properties of materials used in space shuttles returning from space . The selected aluminum components were harder

and more wear-resistant after returning to Earth than they were before the space mission . Since then, CT has been

slowly adapted with different techniques and applications to metallic materials in order to improve macroscopic and

microscopic properties. In the literature, CT can also be called sub-zero treatment, ultra-low temperature processing, or

cryo-processing .

The application of CT in the energy sector can be of particular interest due to the variety of metallic materials that are

used in extreme conditions (high-temperature and high-pressure environments, highly corrosive environments, highly

abrasive environments, etc.). However, the application of CT in the energy sector is still in its infancy, mainly due to the

slow introduction and development of this treatment scheme and the limited research focus on applications in the energy

sector.

2. Mechanisms of Cryogenic Treatments

The mechanisms of CTs are based on the type, which is defined by the selected temperature regime for the CT (Figure
1). CT is usually applied after the material has been hardened and quenched and before being tempered, usually for 24 h

at a predetermined temperature . The most common and the one with the longest tradition is the

conventional cryogenic treatment (CCT), where temperatures as low as 193 K are used .

Figure 1. The heat treatment route(s) for both ferrous and non-ferrous alloys when CT is applied.
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The reason for CCT being the most-used type in the past was the easy availability of media to which the material is

exposed, namely dry ice (solid CO ) . In the past, it was also believed that temperatures as low as 193 K were

sufficient to transform all the retained austenite (RA) in ferrous alloys to martensite, thereby increasing wear resistance

and fatigue strength . The transformation of RA to martensite, particularly in steels, was one of the key properties for

which CTs were commonly applied, which also propagated the initial research on CT . Unfortunately, the negative

results of the first experiments with CCT led many companies to abandon the application and development of this

treatment (1940s–1950s) . This was mainly due to a misunderstanding of the martensitic transformation and its

temperatures as well as simplistic and inconsistent treatment procedures . It was not until years later, after NASA

observations and detailed documentation of the changes at lower temperatures, that the next two types of CT were

developed and tested for materials science applications: shallow (SCT) and deep cryogenic treatment (DCT) .

Shallow cryogenic treatment is defined between 193 K and 113 K. During SCT, more than 50% of the RA is converted to

martensite for generally any ferrous alloy that has instable austenite formation during quenching, causing a change in

mechanical properties (increased hardness), size reduction of carbides, and increased precipitation of carbides .

With the positive results of SCT, the research on CT blossomed and led to further research at even lower temperatures,

resulting in the development of deep cryogenic treatment.

Temperatures for deep cryogenic treatment are below 113 K and typically go as low as 4 K, which is the temperature of

liquid helium. However, the most-used temperature is 77 K, the temperature of liquid nitrogen, which is the most-used

medium in DCT due to abundancy of the media and economic reasons. With DCT, for ferrous alloys, most of the RA is

converted to martensite (>90%), the precipitation of carbides is increased, grain refinement and precipitation of

nanocarbides occurs, and changes to residual stresses are formed . Special mention should be made to a specific type

of DCT, the multi-stage deep cryogenic treatment (MCT), where the DCT treatment of the material consists of rapid

changes between SCT and DCT temperatures for a predefined time and number of cycles to manipulate predefined

properties . DCT performance is influenced by the selected cooling temperature, cooling–warming rate, time the

material is exposed to DCT, type of metallic material (ferrous/non-ferrous alloy or type of steel), chemical composition of

the metallic material, hardening process, tempering temperature, and also the microstructural phenomena present within

the microstructure (such as transformation-induced plasticity (TRIP), austenite reversion transformation (ART), and

twinning-induced plasticity (TWIP)) .

All types of CT alter the bulk and surface properties of metallic materials. The bulk properties affected by CT are

mechanical properties ((micro)hardness , toughness , strength , and fatigue ) and

magnetism . The surface properties affected by CT are corrosion resistance , wear

resistance , roughness , and oxide formation .

Bulk properties and, to some extent, selected surface properties have been studied in more detail than others. There are

still many unknowns and great potential in surface properties and corrosion resistance.

3. Energy Sector and Position of Cryogenic Treatments

Cryogenic processing has a great potential in the energy sector due to the use of different materials, from metallic to non-

metallic. The application of CT, especially for metallic materials, has a great potential because it improves the properties

of metallic materials needed in different energy sectors, from corrosion and wear resistance to mechanical properties and

surface modifications . At the same time, it does not require the additional application of any other coating treatment

to improve the properties.

However, the application of CT in this sector has not been widespread due to the lack of known test methods and

quantification and qualification methods. Only a few attempts have been made to provide systematic guidelines for

standards and application of CT for metallic materials . An additional obstacle was that in the past, there

were no large capacity tanks, and no providers of these services or systems were available on an industrial scale, but this

is now changing and, in some cases, improving with the establishment of CT-specialized companies, communities, and

even patents . CT was also not well transferred to other disciplines, as CT was mainly reserved

and developed for improving tools. The research was (and still is) mainly focused on tool steels, such as high-speed

steels, hot work tool steels, and cold work tool steels, where the emphasis is on mechanical and wear properties 

.

As a result, the majority of other types of steels and alloys have been left out of the focus. There is some limited research

on non-ferrous alloys, but even these are mostly related to aluminum alloys used or related to the tooling industry. The
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study of non-ferrous alloys (Al-, Ni-, and Ti-based alloys) showed the improvement of mechanical properties 

 such as microhardness , fatigue , fracture toughness , impact toughness , and tensile

strength .

4. Effect of Cryogenic Treatments on Surface, Interface, and Corrosion
Properties of Metallic Mateirals Used in the Energy Sector

4.1. Metallic Materials Being Tested for the Use in the Energy Sector

There are many metallic materials (ferrous and non-ferrous alloys) that are suitable for use in the energy sector that have

already been tested through various cryogenic treatments, and studies have resulted in changes in the microstructure of

metallic materials, resulting in changes in the properties of the material. The following ferrous and non-ferrous alloys are

used in the following sectors (Table 1).

Table 1. The list of ferrous alloys that were cryogenically treated and have the potential for use in the energy sector.

Ferrous

Alloys
Grades of Steel Tested Properties

Possibilities of

Application in

Selected Energy

Sector

Austenitic

stainless

steel

AISI 304 , AISI

304L , AISI 304LN

, AISI 316 , AISI

316L , AISI 316LN

, AISI 321 , AISI 347 

Hardness, microhardness, wear

(abrasive wear), fracture toughness,

impact toughness, compressive

strength, tensile strength, yield

strength, elongation, friction, erosion,

strain-hardening exponent, surface

roughness, machining of steel, fatigue,

residual stress, surface chemistry, and

oxidation

In all energy

sectors

Martensitic

stainless

steel

AISI 410 , AISI 420 ,

AISI 420 MOD , AISI 430 ,

AISI 431 , AISI 440C ,

AISI P91 ,

10Cr13Co13Mo5NiW1VE ,

13Cr4NiMo , 10Cr .

Yield strength, elongation, tensile

strength, wear, hardness, impact

toughness, fracture toughness,

magnetism tribocorrosion,

electrochemistry, and corrosion

resistance (also stress corrosion

cracking)

In all energy

sectors.

Duplex

steels
AISI 2205 , AISI 2507 Hardness, wear, machinability, residual

stress, and corrosion resistance

Mostly in wind and

solar energy

Carbon

steels

IS 2062 , AISI 1045 

, AISI 1018 

Hardness, wear, surface roughness,

tensile strength, yield strength, ultimate

tensile strength, elongation, and

residual stress

Steels can be used

in hydroelectrical,

biomass, solar, and

geothermal energy
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Ferrous

Alloys
Grades of Steel Tested Properties

Possibilities of

Application in

Selected Energy

Sector

Other

steels

Nitronic steels 40 , 50 

High-strength steels ASTM A36 

Cast steels ASTM A743 , SAE

J431 G10 

ACSR 

Bearing steel AISI 52100 

Low-alloyed steels SAE 1008 ,

AISI 4340 , AISI 4140 

Structural steel S235 , S355 

, S460 

Residual tress, hardness, friction,

wear, fatigue, impact toughness,

corrosion resistance, and machinability

In all energy

sectors

Table 2 presents the non-ferrous alloys that have been CT-treated and have potential in the current and future energy

sectors.

Table 2. The list of non-ferrous alloys that were cryogenically treated and have potential for use in the energy sector.

Non-

Ferrous

Alloys

Grades of Alloys Tested Properties
Possibilities of Application

in Selected Energy Sector

Al-based

alloy

2xxx series: 2024 

3xxx series: A356 

, A390 

6xxx series: 6026 

, 6061 ,

6063 

7xxx series: 7075 

Hardness, wear (abrasion), corrosion

resistance, tensile strength, machinability,

fatigue, strain-hardening coefficient, residual

stress, fracture toughness, and corrosion

resistance

Mostly in hydroelectrical,

biomass, wind, and solar

energy

Ni-based

alloy

Inconel: 200 , 600

, 617 , 625

, 690 , 800

, 800H 

Hastelloy C276 , C22

, X 

Fatigue, surface roughness, machinability,

durability, impact toughness, microhardness,

and tensile strength

In all energy sectors
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Non-

Ferrous

Alloys

Grades of Alloys Tested Properties
Possibilities of Application

in Selected Energy Sector

Other

alloys

HEA 

W-based alloys 

Cu-based alloys 

Ti-based alloys Ti6Al4V

Microhardness, compressive strength, and

plasticity

Mostly in advanced

nuclear power (fusion),

geothermal, and solar

energy

5. Effect of Cryogenic Treatments on Metallic Materials Potenitally Used in
the Energy Sector

The surface properties that are the focus of this research and that also need more attention in order to carry out more

research on them are corrosion resistance and oxide formation, while wear resistance and roughness have been

observed and researched by many studies in the cryogenic community.

5.1. Oxide Formation

Oxide formation is one of the properties that is seldomly researched and not fully understood in CT. The fact is that most

of the studies focus on the corrosion resistance and its improvement by CT, and not many studies strive for deeper

understanding of the origin of altered corrosion resistance by CT. A major contribution is provided by passive layers and

oxide formation (corrosion products) that can be manipulated by CT and CT-induced changes to the bulk properties of the

treated material. The influence of CT on oxide formation has been demonstrated for bearing, high-speed, and cold work

tool steels . The oxidation dynamics after the application of CT was mainly studied by Jovičević-Klug et al.,

where the observations showed a different development of oxides compared to conventional heat treatment (CHT).

Jovičević-Klug et al. 2021  suggested that the chemical composition of the oxide formation directly corresponds to the

higher number of precipitates and the higher surface-to-volume ratio of the carbides. Furthermore, the study indicates that

the reduced amount of carbide clusters after CT could be directly correlated with the passivation layer and the oxidation

state of the surface and the corresponding corrosion products.

In the next study, Jovičević-Klug et al. 2021  suggested that the Cr oxide layer is thicker on the cryogenically treated

samples compared to the CHT samples. These observations also suggest that due to the formation of the Cr-oxide-

passivation layer on the CT sample, there is no microscopic-related stress corrosion cracking of the matrix, which in turn,

combined with the thicker passivation layer, reduces corrosion propagation.

The next factor observed in relation to CT was the formation of Fe oxides. The study by Jovičević-Klug et al. 

suggested that Fe-oxides form different layers compared to the CT sample, which is attributed to the local excessive

corrosion damage in the CHT sample.

The same researchers, Jovičević-Klug et al. 2022 , also observed the different layering of the oxides in the samples.

The results of ToF-SIMS provided the novel insight that nitrogen from CT is present in greater amounts in the CT samples,

which then influences the complex oxide formations (corrosion products), which ultimately influence the corrosion

resistance. Nitrogen acts as an exalter for the formation of green rust, which then acts as a precursor for the formation of

the next layer (magnetite). As a result, corrosion propagation is greatly retarded due to the higher density and stability of

magnetite. The same study also confirmed that the CT-induced passive film is more stable than its CHT counterpart. As a

result, the CT-treated sample showed lower corrosion and wear loss, which was also confirmed in extreme environments

(elevated temperatures and vibrations).

The above examples show that there is a need for research on oxide formation as the basis for successful tailoring of

corrosion resistance and prolonged component life of treated materials. The studies only focused on tool and bearing

steels, which means that other steels such as high-Cr steels, stainless steels, duplex steels, and non-ferrous alloys are

still potential research areas with great opportunities for the application of CT to manipulate oxide formation and modify

corrosion resistance. To date, no similar studies or research have been conducted or found for non-ferrous alloys.
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5.2. Corrosion Resistance

The influence of CT on corrosion resistance has not only been investigated in relation to tool steels, but many studies

have also tested other ferrous (bearing steels and stainless steels) and non-ferrous (mostly Al-based alloys) alloys. The

first part focuses on the corrosion testing of ferrous alloys, while the second part focuses on the non-ferrous alloys in

relation to CT.

Corrosion Resistance of Ferrous Alloys

The studies on tool steels showed that corrosion resistance is influenced by CT . The corrosion

resistance of bearing and tool steels can be improved by up to 65% in an alkaline environment, with the improvement

depending on the steel type and heat treatment strategy . This was also observed by Senthilkumar 2014 , who found

that in alkali conditions, CT improves corrosion resistance, which was postulated to be a result of formation of more stable

passive film. Furthermore, in extreme alkaline environments, such as elevated temperatures and vibrations, the CT-

treated samples (tool steels) suggested improvement of corrosion resistance by 90% in the study of Jovičević-Klug et al.

2022 . Also, the study by Jovičević-Klug et al. 2021  showed that in an alkaline environment, the formation of pits is

modified by CT (for tool and bearing steels). The study showed that pits in CT specimens expand only in the exposed

upper part and decrease continuously deeper into the material. It was suggested that this is due to the confinement of the

corrosion attack to the grain boundaries and the exposure of the pit opening to the oxidative media, which is limited by the

change in orientation of the crack with respect to the sample surface. In addition, the 2021 study by Jovičević-Klug et al.

 also showed that in the alkaline environment, the CT samples did not show any stress corrosion cracking of the

passivation layer, and the presence of Mo in the steel allowed the continuous growth of the protective Cr oxide layer,

which reduced the formation and growth of pits. The results show that CT samples have a 3× slower corrosion rate of

pitting corrosion, which can be directly correlated to the slower material degradation and prolonged functionality of the

metallic material.

Only a few studies have been conducted on stainless steels and a few other types of steels that are more commonly used

in energy sector applications. The studies showed different results of CT on the corrosion resistance of steels used in the

energy sector. A study by Wang et al. 2020  showed that there is an increase in corrosion resistance for high-strength

stainless steel. On contrary, a study by Baldissera and Delprete 2010  postulated that CT has no effect on austenitic

stainless steel. Another study by Cai et al. 2016  indicated that for austenitic stainless steel, CT could improve

corrosion resistance, which is suggested through Cr-carbide precipitation at the austenite grain boundary, which then

reduces the intergranular corrosion. For martensitic stainless steels, CT has been shown to improve corrosion resistance

in correlation with both the general and pitting corrosion, as was shown by Ramos et al. 2017 . Another explanation for

the higher pitting corrosion potential was proposed by He et al. 2021 , in which pitting corrosion was reduced by

increased carbide precipitation and Si segregation at the interface boundaries between M C  and martensite in the

matrix. For structural steels, a 95% improvement in corrosion resistance was determined by Ramesh et al. 2019 ,

which is suggested to be a consequence of uniform and homogenous carbide precipitation and microstructure

modification.

The above research shows that there has been some research on corrosion enhancement with CT but only on a limited

selection of ferrous alloys. Furthermore, the research shows that there is a great need for research on the corrosion

resistance of ferrous alloys used in the energy sector in combination with CT. Such research could open up new avenues

and applications for CT to improve corrosion resistance alone or in combination with coatings, which could further expand

the energy sector from both an economic and sustainable point of view.

Corrosion Resistance of Non-Ferrous Alloys

The corrosion resistance of CT-treated non-ferrous alloys has been mainly focused on the Al-based alloys of the 2xxx

, 5xxx , and 7xxx  series. The study by Cabeza et al. 2015  on Al-based alloys from the 2xxx series

suggested that CT improves the resistance to stress corrosion cracking due to changes in compressive residual stresses.

Another study by Aamir et al. 2016  showed that for the 5xxx Al-alloy, the corrosion resistance is increased due to the

minimization of dislocation densities and noncontinuous distribution of the β-phase. From the 7xxx series, the tested

representative was the 7075 Al-alloy. A study by Ma et al. 2021  showed an improvement in corrosion resistance after

the application of CT, which was attributed to the increased precipitation of the η′ phase. They postulated that the grain

boundary from the η′ resulted in short chains of carbides, which then blocked corrosion channeling, thus enhancing the

corrosion resistance of the alloy. Similar observations were also made by Su et al. 2021 . Ma et al., from their study in

2022 , additionally showed that the optimized combination of aging and CT can influence the rate of the corrosion

improvement when CT is applied.
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Compared to ferrous alloys, research on non-ferrous alloys is also considered to be lacking and is mostly focused on

specific alloys, mainly aluminum alloys. The research clearly confirms the lack of research on non-ferrous alloys, which

have a great potential for use in the future energy sector. The lack of research can be particularly evident in the case of Ni

alloys and corrosion resistance in combination with CT, which are one of the main non-ferrous alloys used in different

energy sectors due to their versatility. Other non-ferrous alloys such as Cu-based, Mg-based, V-based, W-based, etc., are

also completely excluded from the studies, and therefore, this could be another potentially interesting niche to study in

more depth the influence of CT on these alloys, which could be applied to the future energy sector. Furthermore, in most

cases, the reasons for improved or sometimes reduced corrosion performance are based on speculation. Fundamental

research is needed to elucidate the reasons for the effects of CT on corrosion performance.
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