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Cryogenic treatment (CT) is one of the possible solutions for an environmentally friendly, sustainable, and cost-

effective technology for tailoring the properties of different metallic materials.
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1. Introduction

The technology of cryogenic treatment (CT) has made tremendous progress in the last 10 years in its application

on metallic materials in various sectors ranging from medicine, aerospace, robotics, materials science (including

the steel industry), nanotechnology, and mining to even more specialized disciplines . The technique has

evolved from the first attempts to treat materials at cryogenic temperatures in the 19th century by James Dewar

and Karol Olszewski using liquefied gases (nitrogen and hydrogen). Later, the first real scientific observation and

documentation of CT was made by NASA (National Aeronautics and Space Administration) in the mid-20th century,

when they observed changes in the properties of materials used in space shuttles returning from space . The

selected aluminum components were harder and more wear-resistant after returning to Earth than they were

before the space mission . Since then, CT has been slowly adapted with different techniques and applications

to metallic materials in order to improve macroscopic and microscopic properties. In the literature, CT can also be

called sub-zero treatment, ultra-low temperature processing, or cryo-processing .

The application of CT in the energy sector can be of particular interest due to the variety of metallic materials that

are used in extreme conditions (high-temperature and high-pressure environments, highly corrosive environments,

highly abrasive environments, etc.). However, the application of CT in the energy sector is still in its infancy, mainly

due to the slow introduction and development of this treatment scheme and the limited research focus on

applications in the energy sector.

2. Mechanisms of Cryogenic Treatments

The mechanisms of CTs are based on the type, which is defined by the selected temperature regime for the CT

(Figure 1). CT is usually applied after the material has been hardened and quenched and before being tempered,

usually for 24 h at a predetermined temperature . The most common and the one with the longest

tradition is the conventional cryogenic treatment (CCT), where temperatures as low as 193 K are used .
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Figure 1. The heat treatment route(s) for both ferrous and non-ferrous alloys when CT is applied.

The reason for CCT being the most-used type in the past was the easy availability of media to which the material is

exposed, namely dry ice (solid CO ) . In the past, it was also believed that temperatures as low as 193 K were

sufficient to transform all the retained austenite (RA) in ferrous alloys to martensite, thereby increasing wear

resistance and fatigue strength . The transformation of RA to martensite, particularly in steels, was one of the

key properties for which CTs were commonly applied, which also propagated the initial research on CT .

Unfortunately, the negative results of the first experiments with CCT led many companies to abandon the

application and development of this treatment (1940s–1950s) . This was mainly due to a misunderstanding of

the martensitic transformation and its temperatures as well as simplistic and inconsistent treatment procedures 

. It was not until years later, after NASA observations and detailed documentation of the changes at lower

temperatures, that the next two types of CT were developed and tested for materials science applications: shallow

(SCT) and deep cryogenic treatment (DCT) .

Shallow cryogenic treatment is defined between 193 K and 113 K. During SCT, more than 50% of the RA is

converted to martensite for generally any ferrous alloy that has instable austenite formation during quenching,

causing a change in mechanical properties (increased hardness), size reduction of carbides, and increased

precipitation of carbides . With the positive results of SCT, the research on CT blossomed and led to further

research at even lower temperatures, resulting in the development of deep cryogenic treatment.

Temperatures for deep cryogenic treatment are below 113 K and typically go as low as 4 K, which is the

temperature of liquid helium. However, the most-used temperature is 77 K, the temperature of liquid nitrogen,

which is the most-used medium in DCT due to abundancy of the media and economic reasons. With DCT, for

ferrous alloys, most of the RA is converted to martensite (>90%), the precipitation of carbides is increased, grain

refinement and precipitation of nanocarbides occurs, and changes to residual stresses are formed . Special
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mention should be made to a specific type of DCT, the multi-stage deep cryogenic treatment (MCT), where the

DCT treatment of the material consists of rapid changes between SCT and DCT temperatures for a predefined time

and number of cycles to manipulate predefined properties . DCT performance is influenced by the selected

cooling temperature, cooling–warming rate, time the material is exposed to DCT, type of metallic material

(ferrous/non-ferrous alloy or type of steel), chemical composition of the metallic material, hardening process,

tempering temperature, and also the microstructural phenomena present within the microstructure (such as

transformation-induced plasticity (TRIP), austenite reversion transformation (ART), and twinning-induced plasticity

(TWIP)) .

All types of CT alter the bulk and surface properties of metallic materials. The bulk properties affected by CT are

mechanical properties ((micro)hardness , toughness , strength , and fatigue 

) and magnetism . The surface properties affected by CT are corrosion resistance 

, wear resistance , roughness , and oxide formation .

Bulk properties and, to some extent, selected surface properties have been studied in more detail than others.

There are still many unknowns and great potential in surface properties and corrosion resistance.

3. Energy Sector and Position of Cryogenic Treatments

Cryogenic processing has a great potential in the energy sector due to the use of different materials, from metallic

to non-metallic. The application of CT, especially for metallic materials, has a great potential because it improves

the properties of metallic materials needed in different energy sectors, from corrosion and wear resistance to

mechanical properties and surface modifications . At the same time, it does not require the additional

application of any other coating treatment to improve the properties.

However, the application of CT in this sector has not been widespread due to the lack of known test methods and

quantification and qualification methods. Only a few attempts have been made to provide systematic guidelines for

standards and application of CT for metallic materials . An additional obstacle was that in the past,

there were no large capacity tanks, and no providers of these services or systems were available on an industrial

scale, but this is now changing and, in some cases, improving with the establishment of CT-specialized companies,

communities, and even patents . CT was also not well transferred to other disciplines, as

CT was mainly reserved and developed for improving tools. The research was (and still is) mainly focused on tool

steels, such as high-speed steels, hot work tool steels, and cold work tool steels, where the emphasis is on

mechanical and wear properties .

As a result, the majority of other types of steels and alloys have been left out of the focus. There is some limited

research on non-ferrous alloys, but even these are mostly related to aluminum alloys used or related to the tooling

industry. The study of non-ferrous alloys (Al-, Ni-, and Ti-based alloys) showed the improvement of mechanical

properties  such as microhardness , fatigue , fracture toughness , impact

toughness , and tensile strength .
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4. Effect of Cryogenic Treatments on Surface, Interface, and
Corrosion Properties of Metallic Mateirals Used in the
Energy Sector

4.1. Metallic Materials Being Tested for the Use in the Energy Sector

There are many metallic materials (ferrous and non-ferrous alloys) that are suitable for use in the energy sector

that have already been tested through various cryogenic treatments, and studies have resulted in changes in the

microstructure of metallic materials, resulting in changes in the properties of the material. The following ferrous and

non-ferrous alloys are used in the following sectors (Table 1).

Table 1. The list of ferrous alloys that were cryogenically treated and have the potential for use in the energy

sector.

Ferrous Alloys Grades of Steel Tested Properties

Possibilities of

Application in

Selected Energy

Sector

Austenitic

stainless

steel

AISI 304 , AISI

304L , AISI 304LN

, AISI 316 ,

AISI 316L , AISI

316LN , AISI 321 , AISI

347 

Hardness, microhardness, wear

(abrasive wear), fracture

toughness, impact toughness,

compressive strength, tensile

strength, yield strength,

elongation, friction, erosion, strain-

hardening exponent, surface

roughness, machining of steel,

fatigue, residual stress, surface

chemistry, and oxidation

In all energy

sectors

Martensitic

stainless

steel

AISI 410 , AISI 420 

, AISI 420 MOD , AISI 430

, AISI 431 , AISI

440C , AISI P91 ,

10Cr13Co13Mo5NiW1VE ,

13Cr4NiMo , 10Cr .

Yield strength, elongation, tensile

strength, wear, hardness, impact

toughness, fracture toughness,

magnetism tribocorrosion,

electrochemistry, and corrosion

resistance (also stress corrosion

cracking)

In all energy

sectors.
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Table 2 presents the non-ferrous alloys that have been CT-treated and have potential in the current and future

energy sectors.

Table 2. The list of non-ferrous alloys that were cryogenically treated and have potential for use in the energy

sector.

Ferrous Alloys Grades of Steel Tested Properties

Possibilities of

Application in

Selected Energy

Sector

Duplex

steels
AISI 2205 , AISI 2507 

Hardness, wear, machinability,

residual stress, and corrosion

resistance

Mostly in wind and

solar energy

Carbon

steels

IS 2062 , AISI 1045 

, AISI 1018 

Hardness, wear, surface

roughness, tensile strength, yield

strength, ultimate tensile strength,

elongation, and residual stress

Steels can be

used in

hydroelectrical,

biomass, solar,

and geothermal

energy

Other

steels

Nitronic steels 40 , 50 

High-strength steels ASTM A36 

Cast steels ASTM A743 , SAE

J431 G10 

ACSR 

Bearing steel AISI 52100 

Low-alloyed steels SAE 1008 ,

AISI 4340 , AISI 4140 

Structural steel S235 , S355

, S460 

Residual tress, hardness, friction,

wear, fatigue, impact toughness,

corrosion resistance, and

machinability

In all energy

sectors
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Non-

Ferrous

Alloys

Grades of Alloys Tested Properties
Possibilities of Application in

Selected Energy Sector

Al-

based

alloy

2xxx series: 2024 

3xxx series: A356 

, A390 

Hardness, wear (abrasion), corrosion

resistance, tensile strength, machinability,

fatigue, strain-hardening coefficient,

residual stress, fracture toughness, and

corrosion resistance

Mostly in hydroelectrical,

biomass, wind, and solar

energy
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5. Effect of Cryogenic Treatments on Metallic Materials
Potenitally Used in the Energy Sector

The surface properties that are the focus of this research and that also need more attention in order to carry out

more research on them are corrosion resistance and oxide formation, while wear resistance and roughness have

been observed and researched by many studies in the cryogenic community.

5.1. Oxide Formation

Oxide formation is one of the properties that is seldomly researched and not fully understood in CT. The fact is that

most of the studies focus on the corrosion resistance and its improvement by CT, and not many studies strive for

deeper understanding of the origin of altered corrosion resistance by CT. A major contribution is provided by

passive layers and oxide formation (corrosion products) that can be manipulated by CT and CT-induced changes

to the bulk properties of the treated material. The influence of CT on oxide formation has been demonstrated for

bearing, high-speed, and cold work tool steels . The oxidation dynamics after the application of CT was

Non-

Ferrous

Alloys

Grades of Alloys Tested Properties
Possibilities of Application in

Selected Energy Sector

6xxx series: 6026 

, 6061 

, 6063 

7xxx series: 7075 

Ni-

based

alloy

Inconel: 200 , 600

, 617 , 625

, 690 ,

800 , 800H 

Hastelloy C276 ,

C22 , X 

Fatigue, surface roughness, machinability,

durability, impact toughness,

microhardness, and tensile strength

In all energy sectors

Other

alloys

HEA 

W-based alloys 

Cu-based alloys 

Ti-based alloys Ti6Al4V

Microhardness, compressive strength, and

plasticity

Mostly in advanced

nuclear power (fusion),

geothermal, and solar

energy
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mainly studied by Jovičević-Klug et al., where the observations showed a different development of oxides

compared to conventional heat treatment (CHT).

Jovičević-Klug et al. 2021  suggested that the chemical composition of the oxide formation directly corresponds

to the higher number of precipitates and the higher surface-to-volume ratio of the carbides. Furthermore, the study

indicates that the reduced amount of carbide clusters after CT could be directly correlated with the passivation

layer and the oxidation state of the surface and the corresponding corrosion products.

In the next study, Jovičević-Klug et al. 2021  suggested that the Cr oxide layer is thicker on the cryogenically

treated samples compared to the CHT samples. These observations also suggest that due to the formation of the

Cr-oxide-passivation layer on the CT sample, there is no microscopic-related stress corrosion cracking of the

matrix, which in turn, combined with the thicker passivation layer, reduces corrosion propagation.

The next factor observed in relation to CT was the formation of Fe oxides. The study by Jovičević-Klug et al. 

suggested that Fe-oxides form different layers compared to the CT sample, which is attributed to the local

excessive corrosion damage in the CHT sample.

The same researchers, Jovičević-Klug et al. 2022 , also observed the different layering of the oxides in the

samples. The results of ToF-SIMS provided the novel insight that nitrogen from CT is present in greater amounts in

the CT samples, which then influences the complex oxide formations (corrosion products), which ultimately

influence the corrosion resistance. Nitrogen acts as an exalter for the formation of green rust, which then acts as a

precursor for the formation of the next layer (magnetite). As a result, corrosion propagation is greatly retarded due

to the higher density and stability of magnetite. The same study also confirmed that the CT-induced passive film is

more stable than its CHT counterpart. As a result, the CT-treated sample showed lower corrosion and wear loss,

which was also confirmed in extreme environments (elevated temperatures and vibrations).

The above examples show that there is a need for research on oxide formation as the basis for successful tailoring

of corrosion resistance and prolonged component life of treated materials. The studies only focused on tool and

bearing steels, which means that other steels such as high-Cr steels, stainless steels, duplex steels, and non-

ferrous alloys are still potential research areas with great opportunities for the application of CT to manipulate oxide

formation and modify corrosion resistance. To date, no similar studies or research have been conducted or found

for non-ferrous alloys.

5.2. Corrosion Resistance

The influence of CT on corrosion resistance has not only been investigated in relation to tool steels, but many

studies have also tested other ferrous (bearing steels and stainless steels) and non-ferrous (mostly Al-based

alloys) alloys. The first part focuses on the corrosion testing of ferrous alloys, while the second part focuses on the

non-ferrous alloys in relation to CT.

Corrosion Resistance of Ferrous Alloys
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The studies on tool steels showed that corrosion resistance is influenced by CT . The

corrosion resistance of bearing and tool steels can be improved by up to 65% in an alkaline environment, with the

improvement depending on the steel type and heat treatment strategy . This was also observed by Senthilkumar

2014 , who found that in alkali conditions, CT improves corrosion resistance, which was postulated to be a result

of formation of more stable passive film. Furthermore, in extreme alkaline environments, such as elevated

temperatures and vibrations, the CT-treated samples (tool steels) suggested improvement of corrosion resistance

by 90% in the study of Jovičević-Klug et al. 2022 . Also, the study by Jovičević-Klug et al. 2021  showed that

in an alkaline environment, the formation of pits is modified by CT (for tool and bearing steels). The study showed

that pits in CT specimens expand only in the exposed upper part and decrease continuously deeper into the

material. It was suggested that this is due to the confinement of the corrosion attack to the grain boundaries and

the exposure of the pit opening to the oxidative media, which is limited by the change in orientation of the crack

with respect to the sample surface. In addition, the 2021 study by Jovičević-Klug et al.  also showed that in the

alkaline environment, the CT samples did not show any stress corrosion cracking of the passivation layer, and the

presence of Mo in the steel allowed the continuous growth of the protective Cr oxide layer, which reduced the

formation and growth of pits. The results show that CT samples have a 3× slower corrosion rate of pitting

corrosion, which can be directly correlated to the slower material degradation and prolonged functionality of the

metallic material.

Only a few studies have been conducted on stainless steels and a few other types of steels that are more

commonly used in energy sector applications. The studies showed different results of CT on the corrosion

resistance of steels used in the energy sector. A study by Wang et al. 2020  showed that there is an increase in

corrosion resistance for high-strength stainless steel. On contrary, a study by Baldissera and Delprete 2010 

postulated that CT has no effect on austenitic stainless steel. Another study by Cai et al. 2016  indicated that

for austenitic stainless steel, CT could improve corrosion resistance, which is suggested through Cr-carbide

precipitation at the austenite grain boundary, which then reduces the intergranular corrosion. For martensitic

stainless steels, CT has been shown to improve corrosion resistance in correlation with both the general and pitting

corrosion, as was shown by Ramos et al. 2017 . Another explanation for the higher pitting corrosion potential

was proposed by He et al. 2021 , in which pitting corrosion was reduced by increased carbide precipitation and

Si segregation at the interface boundaries between M C  and martensite in the matrix. For structural steels, a

95% improvement in corrosion resistance was determined by Ramesh et al. 2019 , which is suggested to be a

consequence of uniform and homogenous carbide precipitation and microstructure modification.

The above research shows that there has been some research on corrosion enhancement with CT but only on a

limited selection of ferrous alloys. Furthermore, the research shows that there is a great need for research on the

corrosion resistance of ferrous alloys used in the energy sector in combination with CT. Such research could open

up new avenues and applications for CT to improve corrosion resistance alone or in combination with coatings,

which could further expand the energy sector from both an economic and sustainable point of view.

Corrosion Resistance of Non-Ferrous Alloys
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The corrosion resistance of CT-treated non-ferrous alloys has been mainly focused on the Al-based alloys of the

2xxx , 5xxx , and 7xxx  series. The study by Cabeza et al. 2015  on Al-based alloys from the

2xxx series suggested that CT improves the resistance to stress corrosion cracking due to changes in compressive

residual stresses. Another study by Aamir et al. 2016  showed that for the 5xxx Al-alloy, the corrosion resistance

is increased due to the minimization of dislocation densities and noncontinuous distribution of the β-phase. From

the 7xxx series, the tested representative was the 7075 Al-alloy. A study by Ma et al. 2021  showed an

improvement in corrosion resistance after the application of CT, which was attributed to the increased precipitation

of the η′ phase. They postulated that the grain boundary from the η′ resulted in short chains of carbides, which then

blocked corrosion channeling, thus enhancing the corrosion resistance of the alloy. Similar observations were also

made by Su et al. 2021 . Ma et al., from their study in 2022 , additionally showed that the optimized

combination of aging and CT can influence the rate of the corrosion improvement when CT is applied.

Compared to ferrous alloys, research on non-ferrous alloys is also considered to be lacking and is mostly focused

on specific alloys, mainly aluminum alloys. The research clearly confirms the lack of research on non-ferrous

alloys, which have a great potential for use in the future energy sector. The lack of research can be particularly

evident in the case of Ni alloys and corrosion resistance in combination with CT, which are one of the main non-

ferrous alloys used in different energy sectors due to their versatility. Other non-ferrous alloys such as Cu-based,

Mg-based, V-based, W-based, etc., are also completely excluded from the studies, and therefore, this could be

another potentially interesting niche to study in more depth the influence of CT on these alloys, which could be

applied to the future energy sector. Furthermore, in most cases, the reasons for improved or sometimes reduced

corrosion performance are based on speculation. Fundamental research is needed to elucidate the reasons for the

effects of CT on corrosion performance.
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