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The signaling pathway of the microtubule-associated protein kinase or extracellular regulated kinase (MAPK/ERK) is a

common mechanism of extracellular information transduction from extracellular stimuli to the intracellular space. The

transduction of information leads to changes in the ongoing metabolic pathways and the modification of gene expression

patterns. In the central nervous system, ERK is expressed ubiquitously, both temporally and spatially. The MAP-ERK

pathway is a key element of the neuroinflammatory pathway triggered by glial cells during the development of

neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral

sclerosis, as well as prionic diseases. The process triggered by MAPK/ERK activation depends on the stage of

development (mature or senescence), the type of cellular element in which the pathway is activated, and the anatomic

neural structure. However, extensive gaps exist with regards to the targets of the phosphorylated ERK in many of these

processes.
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1. Introduction

MAPK signaling pathways intervene and control cellular functions, resulting in a direct function of memory and emotional

processes. Therefore, alterations or modulations of these pathways can lead to different processes implicated in various

human diseases. Throughout this and the next section, we will analyze the state-of-the-art of MAPK signaling pathways in

human disease, with a special focus on neurodegenerative disorders (Table 1).

The role of the MAPK/ERK pathway in neurodegenerative diseases is mainly related to glial cell function and the

inflammatory response. The activation of resident immune cells of the brain, glial cells (microglia and astroglia), triggers

the pro-inflammatory state with the production of nitric oxide (NO), cytokines, and chemokines and the implication of

inflammatory-related pathways . Most of the components of these pathways are cytosolic targets of ERK, suggesting

an essential function of the MAPK pathway in the production or sustaining of such a pathological hallmark, and

consequently, in the noxious events that lead to the specific neurodegeneration.

2. Parkinson´s Disease

Parkinson's disease (PD) is an age-associated disease mostly identified by an extrapyramidal alteration of movement.

From a pathological point of view, PD is characterized by the selective and progressive loss of dopaminergic-melanized

neurons located in caudoventral regions of the substantia nigra, reactive gliosis, and intracytoplasmic inclusions of a-

synuclein known as the Lewy bodies . In this sense, α-Synuclein promotes inflammation via activating p38, ERK, and

JNK pathways in human microglial cells, resulting in the production of IL-1β and TNF-α. The disappearance of neurons in

the substantia nigra leads to dopamine deficiency in their target areas (in the striatum and other nuclei of the basal

ganglia), producing serial functional lesions and the manifestation of symptoms and clinical signs. Many genes, including

23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance, such as SNCA, Parkin, DJ-1,

PINK 1, LRRK2, and VPS35, and over 20 common variants with small effect sizes and 12 genetic risk factors, have been

associated with PD in recent years .

Table 1. Participation of Erk in neurodegenerative diseases.

 Parkinson´s disease References

[1][2][3]

[4]

[5][6]



LRRK2 p-ERK present in Lewy bodies
 

6-OHDA model 6-OHDA elicits sustained ERK phosphorylation related to LID  

MPTP model ERK phosphorylation is implicated in neuroinflammation  

PD patients ERK phosphorylated deposits close to Lewy bodies  

 Alzheimer´s disease  

AD patients Ab dysregulates hippocampal ERK

SH-SY5Y cells
α7nACh induce tau phosphorylation and neurofibrillary tangle formation after

binding to soluble Ab
 

PC12 cells HO1 protects against Aβ-induced oxidative stress  

Transgenic mice ERK-signaling induces Aβ-associated behavioral deficits  

 ALS and HD  

SOD1 transgenic

mice
ERK is down regulated, which induces a dysregulation in axonal transport  

Mutant Htt model
ERK deficiency triggers striatal degeneration and increases glutamate

susceptibility
 

 Prion diseases  

Prion infected

mice
ERK is neuroprotective following prion infection  

Aβ: beta amyloid; AD: Alzheimer´s disease; ALS: amyotrophic lateral sclerosis; HD: Huntington’s Disease; Htt: huntingtin;

LID: Levodopa‐induced dyskinesia; PD: Parkinson´s disease.

Leucine-rich repeat kinase 2 (LRRK2), also known as dardarin, is a 2527 amino acid (~280 kDa) protein that, in humans,

is encoded by the PARK8 human gene and constituted by several functional domains, including leucine-rich repeats, an

Ras-related GTPase domain, an MAP3K domain, and multiple potential protein interaction domains . Several mutations

in the Ras-related GTPase and MAP3K domains of LRRK2 have been associated with familial and idiopathic PD . In

this sense, the G2019S mutation is the most common pathogenic mutation associated with the familial form of PD,

representing about 3% of cases overall (40% in some populations). The LRRK2 locus has also been associated with

idiopathic PD (iPD), as an oxidative mechanism selectively increased wild-type LRRK2 kinase in both the substantia nigra

from iPD patients and in two different rat models of the disease . Although all MAPKs participate in neurodegeneration

associated with LRRK2, ERK is the most plausible downstream mediator of mutant LRRK2 effects . In this regard, it has

been observed that the dysregulation of dopaminergic neurodegeneration-related genes in induced pluripotent stem cells

derived from PD patients harboring a G2019S mutation could be minimized by ERK inhibitors . Additionally, during the

last decade, an increase in pERK in leucocytes from patients carrying the G2019S mutation , the presence of

cytoplasmic granules of pERK in Lewy body aggregates in the substantia nigra of LRRK2 G2019S PD patients , and a

G2019S-LRRK2-associated neurite retraction triggered by ERK-dependent mechanisms in a PD in vitro model have been

described .
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The impact of ERK in PD-associated neurodegeneration has also been analyzed using the most relevant animal models

of parkinsonism, both neurotoxins 6- OHDA and 1-Methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP), suggesting that

ERK may contribute to the pathogenesis of neurodegeneration.

6-OHDA remains the most widely used tool to induce a selective nigrostriatal lesion in murine models and dopaminergic

cell lines. In this regard, B65 6-OHDA-induced cell death depends on chronic ERK activation, and this dopaminergic death

can be mostly attenuated using an MEK blocker . Conversely, when the same cell line is treated which hydrogen

peroxide, also inducing transient ERK activation, MEK blockers are ineffective for modifying cell death . Moreover, a

recent study revealed the inhibition of L-DOPA-induced dyskinesias (LID) following the counteraction of ERK in the

dopamine-depleted striatum of 6-OHDA-treated mice .

MPTP is a compound that, having passed through the blood–brain barrier, is catabolized by astrocytes to its neurotoxic

form MPP+ and causes permanent symptoms of parkinsonism selectively affecting dopaminergic neurons in the

substantia nigra. The addition of MPP+ to neuroblastoma cell lines increases a-synuclein, induces the activation of ERK,

and triggers cell death that can be reverted using the MEK-P inhibitor U0126 . As the action of this inhibitor excludes

altering a-synuclein levels, it seems that both ERK activation and a-synuclein pathways are independent . In this

sense, ERK is almost exclusively activated in the microglia localized in striatum and substantia nigra pars compacta of

MPTP-treated mice . Moreover, the administration of Galectin-1, with an anti-neuroinflammatory effect, to MPTP-

treated mice resulted in microglial p38 and ERK1/2 dephosphorylation, followed by IκB/NFκB signaling pathway inhibition

ameliorating the neurodegenerative process .

Finally, the implication of the ERK pathway in PD is beyond animal models. The substantia nigra of PD patients presents

phosphorylated-ERK associated with fibrillar bundles inside coarse discrete cytoplasmic granular accumulations

surrounding Lewy bodies, suggesting a potential interaction between the mitochondrial function and the MAPK/ERK

signaling pathway in dopaminergic neurodegeneration .

3. Alzheimer´s Disease

Alzheimer's disease (AD) is the most common form of dementia and the most prevalent neurodegenerative disease .

AD is a neurodegenerative disorder of an unknown etiology characterized by the progressive loss of memory and other

cognitive functions that lead to dementia. The brains of AD patients have several distinctive neuropathological features:

Intracellular neurofibrillary tangles (NFTs), whose main component is the abnormally phosphorylated tau protein ;

senile plaques (SP), primarily consisting of beta-amyloid (Aβ) ; and neurodegeneration , especially relevant in the

basal telencephalon, the origin of cortical and hippocampal cholinergic innervation . Besides, the disease

progresses through a reduction of synaptic proteins , changes in the synaptic morphology and structure , and

neuroinflammation . AD usually occurs sporadically, but approximately 5–10% of patients manifest it in a familiar way.

MAPK pathways differentially activate during AD. All three MAP-kinases are implicated in mild and severe cases (Braak

stages III–VI), both ERK and JNK/SAPK are implicated in Braak stages I and II and in non-demented cases without

pathology hallmarks (Braak stage 0), and either ERK alone or JNK/SAPK alone can be activated . This different

participation suggests that both oxidative stress (JNK/SAPK and p38) and mitotic signaling alterations (ERK) are

independently able to initiate, but both are necessary to disseminate, disease pathogenesis.

Amyloid b, the principal component of amyloid plaques, constitutes the main link with ERK pathway activation. In this

sense, it has been established in both in vivo and in vitro studies that chronically elevated levels of Ab induce the

dysregulation of hippocampal ERK MAPK . Additionally, increased p-ERK was revealed in brain extracts of AD

patients . On the other hand, the oxidative stress induced by Ab activates p38 MAPK and triggers the

hyperphosphorylation of tau, which is the other main neuropathological hallmark in AD .

Interacting with both AD-associated proteins, the α7 nicotinic acetylcholine receptor (α7nAChR) binds to soluble amyloid-

beta, resulting in tau phosphorylation and the formation of neurofibrillary tangles. Moreover, α7nAChR mediates the

activation of p38 MAPK and ERK1/2 signaling pathways, suggesting an essential role of both a7nAChR and MAPK

signaling pathways in the uptake and accumulation of b-amyloid .

Furthermore, during the last decade, it has been suggested that mitochondrial dysfunction is an early pathological feature

of AD related to oxidative stress and Ca2+ homeostasis that triggers Ab-induced synaptic dysfunction . It has been

proved that heme oxygenase-1 (HO-1) plays a role in protecting neurons against Aβ-induced oxidative stress . Recent

studies have demonstrated that acteoside induces HO-1 expression through Nrf2 activation. This activation depends on

ERK and PI3K/Akt pathways, but not on JNK and p38MAPK pathways .
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However, the role of ERK in AD is not clear, since an increase of total ERK, specifically within synaptosomes, is

associated with a deficient memory task performance in AD transgenic mice . In this sense, the activation of ERK,

downstream of NMDA NR2B receptor activity, plays an interesting role in regulating memory processes . Moreover,

alterations in NR2B phosphorylation and MAPK/ERK signaling induce beta amyloid-associated behavioral deficits in an

AD murine model . Recently, it has been demonstrated that changes in synaptosome MAPK/ERK signaling following

ACE2-activator administration increased signaling through the NR2B receptor, inducing significant protection against

cognitive decline and decreasing the amyloid accumulation .

4. Amyotrophic Lateral Sclerosis and Huntington’s Disease

Amyotrophic lateral sclerosis (ALS), a term proposed by Charcot in 1874 , is a degenerative neurological disease that

affects the pyramidal pathway along its first and second motor neurons and results in the progressive loss of bulbar and

limb function. Therefore, the existence of lateral sclerosis involves the damage of projection axons of the first motor

neuron and amyotrophic damage of the second motor neuron. The diagnosis of this pathology is primarily clinical ,

classically reflected in the criteria of El Escorial of 1998 . Moreover, in 2008, electromyographic criteria were defined as

a diagnostic tool for second motor neuron injury, despite the absence of semiological findings pathologically (Awaji

criteria) . Most ALS cases are sporadic; however, around 10% of cases may be familial due to mutations in genes,

including those for Cu/Zn superoxide dismutase 1 (SOD1), dynactin, TAR DNA binding protein 43 (TDP-43), and

chromosome 9 open reading frame 72 (C9orf72) . Although the latest research suggests that p38 and JNK MAPK play

a determinant role in ALS , ERK pathway alteration is also related, since SOD1(G93A) transgenic mice present a

dysregulation in axonal transport associated with the down-regulation of ERK correlating with the up-regulation of JNK

and caspase-8 .

Huntington's disease (HD) is one of nine autosomal dominant neurological diseases caused by an expansion mutation of

CAG triplets encoding polyglutamine (polyQ) sequences in N-terminal domains. It affects 3–7 cases per 100,000 of the

Western Europe population, and its symptoms include motor disorders (chorea and stiffness, among others), cognitive

disorders (subcortical dementia), and psychological disorders (such as irritability and depression), which end with the

death of patients. While the wild-type huntingtin (Htt) protein modulates intracellular vesicular trafficking and neuronal

development, mutant Htt, with an elongated polyQ domain, generates toxic N-terminal fragments after undergoing

proteolytic processing .

Mutant Htt presents kinase downstream ERK deficiency involved in transcriptional dysregulation and by triggering striatal

degeneration, it also decreases the response to cortico-striatal BDNF signaling and downregulates ERK-dependent

glutamate transporter expression, increasing cells susceptible to glutamatergic excitotoxicity .

5. Prion Diseases

A prion is the altered form of a 23-kDa constitutive protein (PrP in mammals) that has lost its normal function, but has

acquired the property of transforming the standard form into a pathological form. This protein has a regular conformation

called PrPc, encoded by a gene (PRNP) localized to human chromosome 20. In prion pathologies or prionopathies, an

altered isoform originating as a result of the incomplete proteolysis of PrPc, called PrPsc, tends to form amyloid

aggregates in the form of plaques in the brain. Prionopathies are disorders of the conformation of proteins, which manifest

themselves as spongiform encephalopathy in animals, such as scrapie, and as neurodegenerative diseases in humans.

The accumulation of PrPsc causes the involvement of the gray matter with neuronal death, gliosis, and spongiform

changes. Activated microglia is a classic hallmark of neuroinflammation associated with prions, as these cells phagocytize

and eliminate amyloid plaques . As a part of the neuroinflammatory scenario, activated microglial cells regulate

MAPK signaling pathways .

Scrapie-infected hamster's brains present an up-regulation of both pJNK and pERK . ERK is neuroprotective following

prion infection, since the inhibition of phospho-ERK triggered the death of scrapie-infected cells. Even more, membrane-

resident PrP proteins trigger phospho-ERK activation . After prion infection, there is an increased level of the phospho-

ERK complex, but this is also related to a decrease in MEK complex activation, suggesting a divergent action of some

phosphatases on ERK1/2 upon chronic prion infection .
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