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Drought and waterlogging seriously affect the growth of plants and are considered severe constraints on agricultural and

forestry productivity; their frequency and degree have increased over time due to global climate change. The morphology,

photosynthetic activity, antioxidant enzyme system and hormone levels of plants could change in response to water

stress. 
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1. Introduction

In recent years, drought and waterlogging stress have seriously affected the growth of plants due to extreme climate

change; these stresses are an important limiting factor for global agricultural and forestry productivity . Over the past

decade, the total area of the world’s drylands has increased dramatically, with a clear upward trend in the scope, extent

and frequency of drought, resulting in a total global loss of crop production of approximately $30 billion . Waterlogging

is the second most important climate disaster after drought. Since the 1990s, the scope of waterlogging disasters has

been expanding year by year, and the frequency has also been increasing . Due to the frequency and severity of

drought and waterlogging, the global vegetation loss caused by these stresses is equivalent. The response and

adaptation mechanisms of plants have been the focus of physiological and ecological research related to water stress

(including drought stress and waterlogging stress), and are also very important for breeding water-tolerant varieties.

When plants are damaged by water stress, they will respond to adverse environments with changes to different

morphological structures and physiological metabolisms, such as leaf and root morphology, photosynthesis, antioxidant

enzyme systems and hormone levels . A large number of stress response genes are activated through complex signal

transduction networks and synthesize many functional proteins to improve the ability of plants to resist water stress .

To date, it is believed that drought stress mainly affects the absorption and transport of nutrients from roots to leaves 

, while waterlogging stress is an anaerobic respiratory metabolism caused by the environment around the roots 

.

2. Morphological Structure Responses to Water Stress in Plants

The response of plants to water stress is mainly reflected in leaves and roots, and their external morphological

characteristics and internal anatomical structure can best reflect the adaptability to adverse environments 

(Table 1). Leaves are the most variable organs in long-term adaptation to the environment. They react similarly under

drought and waterlogging stress, showing signs of etiolation, atrophy, curling, senescence and even abscission . In

some cases, stress resulted in stunted leaf growth and reduced leaf number and area  (Figure 1).
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Figure 1. Changes to the morphological and anatomical structure of plant leaves and roots due to water stress. P : net

photosynthetic rate; G : stomatal conductance; T : transpiration rate; ROS: reactive oxygen species; SOD: superoxide

dismutase; CAT: catalase; APX: ascorbic peroxidase; GPX: peroxidase; GSSG: L-glutathione oxidized; MDHA:

dehydroascorbic acid reductase; MDHAR: monodehydroascorbic acid reductase; DHAR: dehydroascorbate reductase

glutathione; GR: glutathione reductase; GSH: glutathione peroxidase; AA: ascorbic acid.

2.1. Morphological Structure Responses to Drought Stress

Drought can limit plant growth by inhibiting the cell division of leaf meristematic tissue and cell expansion in elongation

areas, as well as inducing complex changes in leaf thickness, palisade tissue and spongy tissue during adaptation 

. Rueda et al.  found that the conifers (water-holding capacity of plants) could be improved by increasing the

thickness of leaves and decreasing the thickness of palisade tissue and spongy tissue in drought environments. However,

Zheng et al.  found that Lycium barbarum increased the thickness of palisade tissue and reduced the thickness of

spongy tissue, inhibiting transpiration and preventing tissue from excessive dehydration. The above results presented that

the internal structure of the leaf changes resulted in transpiration reduction, as well as photosynthetic rate.

The root is an important organ for plants to fix and absorb substances from the soil. Drought stress reduces the stele

area, vessel diameter and secondary root cortex cells and increases the number of vessels in the stele to facilitate water

flow . To improve water retention and drought resistance, plants not only extend the root system by increasing the

number of functional roots, but also increase the water-absorbing capacity of the root sheath . Furthermore, plants

improve resistance by changing the root structure (such as root hair and root density) to influence root spatial distribution,

soil fixation and nutrient absorption . Therefore, plants could improve water absorption capacity by changing root

length and internal structure under drought stress conditions.

2.2. Morphological Structure Responses to Waterlogging Stress

The main response symptoms of leaves to waterlogging stress are curling, yellowing, wilting, falling off, rotting, etc.

Leaves have two kinds of adaptation to waterlogging stress: one is to increase the thickness, while the other is to reduce

the thickness. For the former, the water loss is reduced and the water holding capacity of plants is improved by increasing

palisade tissue and spongy tissue, as well as the decrease in leaf and stomata size . The latter takes place

because leaves cannot complete morphogenesis normally due to lack of water and nutrition . Thereby, some plants thin

their leaves or form special leaves to promote the infiltration ability of CO  and inorganic nutrients into the leaves ,

and improve gas exchange to restore and maintain respiration under waterlogging stress . Therefore, the internal

anatomy variation of the leaf is to adjust the stomata and improve transpiration under waterlogging stress, but the reason

is uncertain and further study is needed.

Aerenchyma forming in the adventitious roots are the most obvious adaptation features under waterlogging stress.

Meanwhile, the epithelial cell wall keratinizes gradually under a waterlogged environment to promote oxygen capture by

underwater tissue, and enhance waterlogging tolerance . Yamauchi et al.  found that there are a lot of root hairs

in the adventitious roots, the surface area is large, and the cuticle of the adventitious root is thin, but the aerenchyma is

well developed, which can improve the oxygen content of waterlogging-tolerant plants. Moreover, lignified and embolized

vascular bundle cortical cells contribute to long-distance oxygen diffusion to the root tips, and block the entry of soil toxins

into plants effectively. For instance, Ranathunge et al.  found that rice promoted the early formation and increased
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lignin deposition in both the internal and external epidermis of roots, and prevented ion penetration more effectively under

waterlogged conditions. Abiko et al.  found that waterlogging-tolerant teosinte formed adventitious roots and produced

larger aerenchyma, a stronger lignified vascular bundle cell barrier, and the transport of oxygen from stem base to root tip

was better than normal maize under a waterlogging environment. Therefore, the ways of producing adventitious roots are

diverse in different types of plants under waterlogging stress, and strong waterlogging-tolerant plants are more likely to

have the ability to form adventitious roots. It has been indicated that roots could improve adaptability by creating air

cavities in the aerenchyma to expand storage space, and block the entry of soil toxins into plants.

Table 1. Characteristics of plant roots and leaves under water stress.

Treatment Root Reference Leaf Reference

Drought stress

Root system lengthens;

functional root number increases;

distribution breadth increases.

Wilting; crimping;

stomatal closure.

Area of the stele reduces;

number of vascular bundles

increases but their diameter

reduces.

Thickness of spongy tissue

decreases; vascular bundles

increase.

Waterlogging

stress

Number of roots decreases;

root activity decreases;

adventitious roots are generated.

Etiolation; wilting; abscission;

stomatal closure.

Aerenchyma is formed in

adventitious roots;

size of the stele reduces.

Blade thickness is reduced;

number and area of leaves

decreases.

3. Photosynthetic Characteristics of Plant Responses to Water Stress

3.1. Photosynthetic Characteristics of Plant Responses to Drought Stress

To maintain photosynthesis, plants form a series of defense mechanisms to protect their photosynthetic organs from

damage in the process of adapting to water stress . For most plants, light water stress can control stomata and

transpiration, directly regulate leaf water potential, and self-repair after a return to a normal water supply; some plants

even increase photosynthesis . For example, light drought stress usually leads to a stomatal conductance and

transpiration increase, while moderate and severe drought stress results in a net photosynthetic rate (P ), stomatal

conductance (G ) and transpiration rate (T ) decrease. However, the intercellular carbon dioxide concentration (C ) shows

a different trend. C  increases or decreases with the deepening of stress, while the stomatal limit (L ) first increases and

then decreases. These results indicate that the decrease in P  under drought stress is mainly caused by nonstomatal

factors . Most nonstomatal factors, including chlorophyll content, photosynthetic enzyme activity and active oxygen

metabolism, are induced by moderate and severe drought stress. Drought not only inhibits the formation of chlorophyll

directly , but also causes difficulty in absorbing mineral elements from the soil, causing leaf nutrient deficiency (for

example, leaf etiolation)  (Figure 1). The regulation of photosynthetic enzymes is a very complicated process. Light

drought stress may slightly affect the photosynthetic carboxylation efficiency, but it can inhibit the activity of RuBPCase,

which may result in a decrease in the photosynthetic carboxylation efficiency under severe drought stress .

3.2. Photosynthetic Characteristics of Plant Responses to Waterlogging Stress

Under waterlogging stress, both stomatal and nonstomatal factors inhibit photosynthesis. For stomatal factors, the

chemical signals from roots are transferred to the ground, forcing the stomata of leaves to close, and reducing the
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photosynthetic rate by decreasing the absorption capacity of the photosynthetic substrate CO  ; Another aspect of

stomatal conductance increasing is the supply of CO , which increases the amount of assimilates to maintain growth

under waterlogging. For non-stomatal factors, there is the anaerobic respiration of the plant under hypoxic surroundings.

Lactic acid and ethanol are produced, which break the balance of active oxygen metabolism, degrade chlorophyll and

damage the photosynthetic apparatus, producing excess excitation energy and causing photoinhibition . For severe

waterlogging-tolerant plants, the stomata closed quickly due to the stress reaction of plants at the initial stage. For poor

waterlogging-tolerant plants, leaf carbohydrates may accumulate rapidly within a few days, because root anaerobic

respiration restrains sugar transfer from the stem to the root by reducing sugar consumption in the root, and the

accumulation of photoassimilated products in leaves can form a negative feedback inhibition to the photosynthetic rate.

4. Antioxidant System of Plant Responses to Water Stress

Under normal physiological activities, plants produce reactive oxygen species (ROS), such as superoxide anion radicals

(O ), singlet oxygen (O ), hydroxyl radicals (·OH) and hydrogen peroxide (H O ), as signal transmitters to regulate gene

and protein expression in plant cells, and the production and elimination of ROS are always in a state of dynamic

equilibrium . When the plant is stressed, the balance will be broken, the physiological and biochemical functions of the

plant cell membrane will be disturbed, and the production of reactive oxygen species will increase . Plants have similar

responses to drought and waterlogging, and both stresses activate the antioxidant defense system of plants to avoid cell

damage. The components of the antioxidant defense system are enzymatic and nonenzymatic antioxidants. The

enzymatic antioxidants include superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase

(APX), glutathione reductase (GR), dehydroascorbate reductase glutathione (DHAR) and monodehydroascorbic acid

reductase (MDHAR). The nonenzymatic antioxidants are glutathione (GSH), ascorbic acid (AA) (both water soluble),

carotenoids and tocopherols (lipid soluble). Both components counteract the harm caused by reactive oxygen species 

.

The response of antioxidant enzymes in plants to water stress is mainly related to tolerance and the level of stress. The

activity of SOD in leaves and roots of the same species increases with an increasing level of water stress. Furthermore,

the disproportionation conversion of O  to H O  increases and the content of O  decreases. POD and CAT decompose

H O  to H O, inhibit the accumulation of H O  effectively, protect plants from oxidative damage, and reduce the toxic

effect on plants caused by water stress . This mechanism has been demonstrated in mosses , trifoliate orange

seedlings , and tobacco . There are different antioxidant enzyme activities in different tolerant varieties under the

same water stress. The adaptive mechanism of plants is a very complicated process, and there are no fixed rules to

follow. For example, the SOD activity of Poa pratensis and Festuca arundinacea increased briefly and then decreased,

while the CAT activity of F. arundinacea decreased with increasing drought stress . The SOD activity of the drought-

sensitive cultivar Trifolium repens was inhibited under stress, but there was no significant change in the drought-tolerant

cultivar Debut, which may be related to its higher ability to mitigate oxidative damage . These results showed that

plants could increase the activity of antioxidant enzymes to cope with adverse environments, but the dynamic changes

across individuals and stress degrees.
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