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Countries that do not have oil and natural gas but are forced to reduce pollution due to combustion have stimulated
and developed new technologies for absorption, storage, and energy creation based on nanotechnology. These

new technologies are up-and-coming because they will solve the problem without additional environmental

burden.
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| 1. Introduction

The rehabilitation of oil and natural gas in countries that do not have such energy resources and the reduction in
pollution due to combustion has led to the research and development of new technologies for the absorption and
storage of solar energy [1I. We know that energy is not created or destroyed but preserved 2. This principle is the
basis of the technology of storing and exploiting solar energy from a period of low demand to a period of high
demand. Renewable energy sources and storage technologies offer solutions to replace some fuels and make
them life-saving solutions for the future. Energy sources, such as wind, solar, etc., will only apply if ways of storing
the produced energy are found simultaneously. The generated energy can be stored with phase change materials
(PCMs) BBl The application of PCMs is essential where electricity is expensive or in areas where the electricity

supply could be more practical.

PCMs change phases at a specific temperature achieved through internal energy transfer as a heat transfer that
we call “latent heat”. Liquid-dissolved PCMs create another category of materials we call phase change slurries
(PCSs), enclosed in heat transfer circuits 8. PCS can contain up to 40% PCMs with a melting temperature of 60
°C and have a lower physical coefficient of thermal permeability compared to water. One application is water
heaters, which in recent times are now on the market under operating conditions. Recent review publications
present such applications B, This publication examines phase change memory (PCM) materials encapsulated
into containers to improve the performance of devices. Encapsulating PCMs in nanocontainers is a one-way
solution for many applications. PCMs on a paraffin basis dissolve on objects that are applied, e.g., electronic
devices, thereby corroding these devices. Their isolation in a container is indicated to isolate paraffin from the
environment and use its function as an energy storage/cooling material. Another application concerns the slurries

where the systems need to be protected from the solution environment to act for a long time as a kind of heat
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capacity enhancement of this solution. These shells guarantee the long-term operation of the PCM materials.
Another severe problem solved by encapsulating the PCMs into containers is the reduction in temperature
gradients during heat transfer inside or outside the material during heat transfer in and out of the material. In the
last few years, many works have concerned the development of silica shells 1, styrene-methyl methacrylate
copolymer B8 yrea-formaldehyde (UF) BBl polystyrene (PS) &, melamine formaldehyde (MF) [, polymethyl
methacrylate (PMMA) BRI nolycarbonate (PC) B2l and polyurethane (PU) L3]114115]

| 2. Thermal Energy Storage (TES)

Thermal energy storage is achieved through internal energy change, such as thermal (sensible heat and latent
heat) and thermo-chemical 29, Figure 1 summarizes these methods, but in the rest of the text, there will be a

detailed description of the possibilities of storing thermal energy through latent heat.
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Figure 1. Forms of energy storage 111,
2.1. Sensible Heat Storage (SHS)

Sensible heat storage (SHS) materials do not change during heat storage 2. These materials can be liquids or
solids. Energy storage, Q, is carried out by changing the temperature of the material via a charging and
discharging process as well as depends on the thermal specific heat capacity, Cp, and the mass, m, of the
material:

Q=mCp (T;-T)
The parameters T, and T are the initial and final temperatures, respectively.

SHS systems must have a high specific heat capacity but at the same time be stable at the time of their
application, be compatible with the environment of use, have a high density, be cheap, and have almost zero CO,
residues. A space problem often requires as high energy density as possible. Still, the manufacturer must ensure
good thermal insulation of the SHS storage area, especially when the periods of charge and discharge are long, to
limit heat losses.
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2.2. Latent Heat Storage (LHS)

When the phase change achieves energy absorption and release, you are subjected to (Solid <~ Solid, Solid «
Liquid, and Liquid < Gas) material; the entry is talking about latent heat storage based on phase change from one
physical state to another 141151 When a Solid ~ Solid transition is achieved, the material is converted from one
crystalline form to another, where the volume changes are relatively small compared to the volume changes one
observes in Sold < Liquid and Liquid -~ Gas transitions. Pentaglycerine is a Solid < Solid PCM with promising
properties such as heat of fusion (16 kJ/kg) and phase transition point (81 °C) 8l Solid ~ Gas transitions may
have higher latency heat values. However, it is not easy for the gas created during Solid < Gas transformation to
coexist, which makes these PCMs unsuitable for many applications. On the contrary, Solid < Liquid PCMs are
economically attractive. They are used in latent heat storage systems that aim to reduce the fluctuation of the

interior temperature due to fluctuating solar radiation 7],

Summing up, heat storage in these materials is based on capturing or releasing heat through a PCM phase

change. Energy storage, Q, is given by the following formula:
Q=mI[Cs, (T = T) + anldhp, + Cp (Tt = Tl

where m is the mass of the melted PCM, Ahy,, C,, and Cy, are the specific heat of the solid and liquid PCM at
temperatures T, — T; and T, — T, respectively; this equation expresses the greater Ah, the extended cooling

effect.

The imprint from this equation is that LHS achieves maximum energy density per unit of mass and volume. LHS
systems suitable for space cooling have T,, between 10 and 30 °C, and space heating systems have T,, between
30 and 100 °C.

2.3. Paraffin

Paraffin consists of a chain CH3-(CH,)-CH3 that the segment (CH3) crystallizes, releasing a sizeable latent heat.
The melting point and latent heat fusion depend on the chain length (Figure 2). With the increase in the melting
temperature, as the carbon number increases (Figure 2), heat storage capacity also increases. Various works in
the literature have demonstrated that paraffin has good thermal stability and stable properties after 1000—2000
cycles 28 Furthermore, paraffin possesses high latent heat, thermal stability, chemical stability, and sufficient
mechanical strength while also being non-toxic, non-corrosive, and non-supercooling. On the other hand, leakage
can create problems 19201 Thys, the manufacture of composite PCM after encapsulating it in a highly conductive
material can reduce the pain and, at the same time, affect the ability to store heat [21l. The ol-gel method is one

widely used manufacturing method adopted by various researchers for preparing paraffin PCM composites [22123],
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Figure 2. Paraffin melting temperature as a function of the number of carbon atoms 23],

Lately, there has been an increasing number of publications concerning paraffin in containers. These publications
are concerned with awareness of problems related to conductivity and leakage, stability of the shells in solutions at
higher temperatures, and the other disadvantages of encapsulation. These problems can be solved by combining
them with metallic or non-metallic particles, fibrous materials, expanded or porous materials, and additives that

slow flame spread.
2.4. Non-Paraffins

Non-paraffin is a phase change material that provides energy storage [24. It can be esters, fatty acids, alcohols,
and glycols. Some of the characteristics of these organic materials are as follows: (i) high heat of melting, (ii) some
are flammable, (iii) low thermal conductivity, (iv) low flash points, (v) different levels of toxicity, and (vi) instability at
high temperatures. Saturated fatty acids have the formula CH3(CH,),,COOH 28l Fatty acids have a reproducible
melting and freezing point, showing minimal phase transition volume changes 28, Their disadvantages are low
thermal conductivity and cost, which is higher than paraffin (22, Fatty acid esters are produced from acids where
one alkyl group replaces a hydroxyl group. The transition temperature is narrow, and their mixtures form eutectics
with negligible subcooling. These are available in the cosmetics and clothing industries and are widely available
(271, sugar alcohol has the usual expression HOCH,(CHOH),,CH,OH. They have latent fusion heat of about 300
kJ/kg and 375 MJ/m3. These have a high melting temperature of over 90 °C and can be flammable, which makes

them difficult to use in buildings 8. Polyethylene glycols (PEGs) have the chemical formula H.O.—CH,—(CH,—O—
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CH,—)n—CH2-0.H. They exhibit chemical and thermal stability and are non-flammable, non-toxic, non-corrosive,
and cheap. Their thermal conductivity is low. These PCMs’ melting point and latent fusion heat increase as their
molecular weight increases 29,

2.5. Inorganic Phase Change Materials

Inorganic materials are subordinated to salt hydrates and minerals [24[28I301[31I[32][33)[34][35][36][37]  These phase-
change materials do not thaw significantly, and the melting heat does not change with repeated transitions. Salt
hydrates contain a crystalline solid of the general formula AB-nH,O. The solid-liquid transformation of salt hydrates
is saltwater dehydration, although this process resembles thermodynamic melting or cooling. Because they have a
high density, the latent heat of fusion per volume is greater than that of organic materials 2. The thermal
conductivity is low to moderate but flammable and cheaper than paraffin. However, they are thermally unreliable for
long periods of operation because the phase separation occurs under cooling and heating cycles 8. One way to
avoid this problem is to add fattening agents. The melting process leading to salt and water causes salt
precipitation due to the difference in density between salt and water and changing the stoichiometry after several
cycles. Other materials, such as clay, must be added to extend their lifespan and eventually reach 1000 cycles
without altering their properties 2. Mg(NO3),-6H,O were incorporated in nano-poly(ethyl-2-cyanoacrylate)
capsules with 100 to 200 nm size. The DSC method showed the stability of the salt hydrates, which remained
unchanged after 100 thermal cycles, with a latent heat of 83.2 J/g. This method of encapsulation and volume

improvements of Mg(NO3),-6H,0 in nanocontainers guides its structural integrity and chemical stability.

Using the sol-gel process, the sodium thiosulfate pentahydrate (SoTP) was encapsulated in silica containers.
According to SEM measurements, the MicroPCM has a spherical shape of approximately 200 nm. Supercooling
has significantly been reduced. The thermal conductivity of SoTP in silica varied between 0.6035 and 0.7718
W/(m-k) 29 Na,SO, 10H,0 suffers from phase separation and supercooling in heat storage applications. These
effects can be diminished when implanted in silicon nanocontainers. Its inclusion of Na,SO, 10H,O@SiO, from the

SiO, matrix suspends its supercooling due to its limitation to the nanocontainer.

Microcapsules with modified methyl polymethacrylate (PMMA) were loaded with disodium hydrogen phosphate
heptahydrate (Na,HPO,4-7H,0), and their thermal properties were tested. The analysis showed an improved

degree of supercooling, making this a valuable combination for thermal energy storage materials 411,

A eutectic mixture is one compound consisting of two or more components, such as mixtures of organic—organic,
organic—inorganic, and inorganic—inorganic compounds. The eutectic compound changes phases without phase
separation and has a single cooling—melting point 28, Note that their melting temperature is lower than their
compounds 22,

2.6. Phase Change Materials (PCMs)

Heat storage in materials based on phase change is called latent heat storage and occurs when a material is

converted from solid to liquid or liquid to solid . The temperature in these materials rises as they absorb heat.
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PCMs absorb and give off heat almost constantly (Figure 3). As a result, they store 5-14 times more heat per unit
volume than logical storage materials such as water, masonry, or rock. These materials must exhibit specific
desirable thermodynamic, kinetic, and chemical properties. In addition, there are economic criteria for their use.

One important consideration is the easy availability of these materials.
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Figure 3. PCM energy storage.

Figure 4 shows the fusion heat versus the melting temperature of the various PCMs. This figure shows the multiple
PCMs’ defined temperature and enthalpy ranges that determine their applications. Paraffin, fatty acids, and
hydrates are suitable for producing low-temperature heat (up to 100 °C) for use in the building and solar thermal
industries, thermal storage in structural elements, and ventilation and air conditioning thermos units. With
comprehensive service in the range of medium temperatures from 100 to 250 °C, this area can intersect the needs
of the manufacturing sector and the whole range of heating and cooling needs of large industries. Many industries
in this area also generate small-scale electricity, including in tourist resorts’ cooling and heating facilities and

devices operating in this area, such as solar cookers, from where these PCMs are necessary. The encapsulation of
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PCMs in containers of various sizes, from a few microns to a few centimeters, is required in many applications

where they meet the devices. It can lead to corrosion or dispersion that follows their dissolution and deactivation [,
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Figure 4. Melting enthalpy vs. melting temperature for most common PCMs.

Many PCMs have the “supercooling” effect, resulting in the crystallization rate being very low in temperature
compared to the melting point. Supercooling is a state where the liquid solidifies below the melting point, and the
lag in the melting process only depends on the discharge speed from this material starting from the melting
temperature.

2.7. Classification

Table 1 suggests that the PCMs are classified as organic, inorganic, and eutectic. Table 1 shows these categories
of materials. Organic PCMs are divided into paraffin and non-paraffin PCMs. Inorganic PCMs include hydrates,
metals, and alloys. These have high latent heat and thermal conductivity and are non-toxic and non-flammable,
contrasting with the organic PCMs.

Table 1. Classification of PCMs.

PCM
! ! !
Organic Inorganic Eutectic
! ! !
ParaffinNon-Paraffin Salt-HydratesMetal Organic-Organic
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| 9. Heat Generation

Water heaters use solar selective coatings to convert solar energy into thermal energy. These coatings must meet

three criteria to be helpful: showing high absorption, a, in the spectral range from 0.4 to 2.5 pm, having a low
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emission, g, in the infrared range from 2.5 to 50 um, and demonstrating high selectivity, a/e, at 100 °C. The ideal
selective coating shows reflection with R = 0 in the visible region and R = 1 in the infrared, i.e., the black body
spectra. Tabor produced the first commercially valuable absorbent coating by electro-galvanization 1995 [6€l,
Chrome has become the typical product in the marketplace 2. Today’s commercial absorbent layers are produced
with vacuum deposition techniques with excellent results. Alanod launched on the market various commercial
products such as mirotherm Control®, mirotherm®, eta plus®, and mirosol® with ag and €1 up to 97% and 4% (b/w =
24.25), with the PVD technique €8, In recent years, scientists have manufactured solar absorbent coatings with the
sol-gel process to reduce the cost of the production facilities of these returns with great success 69, Based on
CoCuMnOy spinels with SiOy coatings, coatings CuO@SiO, were prepared with values ag = 0.85-0.91 and &t
below 0.036 (a/e = 17-18) LA |n coatings with CuCoMnO, produced on an aluminum substrate, CuO@SiO,
micro-containers were incorporated into these coatings of 980 um + 30 nm. CuO micro-containers 715 pm + 15 nm
in size were first prepared. The TEM measurement demonstrates that the CuO micro-containers are internally
empty . CuO micro-containers are coated with SiO, to produce CuO@SiO, double-shell micro-containers 2. The
concentration of CuO@SiO, micro-containers in the spinel coatings varied from 0 to 1 wt.%. The resulting a/e ratio

was measured in these samples &,

| 10. Electricity Generation

In a past study, it was shown that light could be trapped in ZnO micro-containers. These ZnO-type hollow light
traps are beautiful as photovoltaic sun solar cells due to their high surface area for absorbing incident light, high
electron mobility, and low production costs. In one study, the ZnO spheres exhibited a 400-500 nm diameter, with a
power conversion efficiency of 4.33% and a short-circuit current density of 9.56 mAcm=2 Z2. To improve the
coefficient of efficiency of ZnO microspheres, multi-shell spheres with well-defined structures were produced with a
defined number of inner shells and controlled distances between them through the production process. This
research showed that hollow ZnO microspheres with different shell structures exhibit various energy conversion
efficiency factors. The quadruple shell microstructure is one in which sunlight reflects internally multiple times,
losing its energy internally, raising its performance to 5.6% [Z3l. The corresponding spectrum of U.V./vis diffuse
reflectance behaves accordingly. The multi-shelled ZnO hollow microspheres (M.S. ZnO HMS) were decorated with
TiO, nano-tree (N.T.) (24, The TiO, decoration significantly enhances light scattering and increases the specific
area of ZnO HMS. The I-V tests show a significant enhancement of short-circuit current density (Jsc) by controlling
M.S. Combining ZnO HMS shell numbers and M.S. ZnO HMS with TiO, NT reaches a power conversion efficiency
(PCE) of 7.40% 4l In addition, combining T.S. ZnO HMS with TiO, NT increases light-collecting efficiency and
extends electron lifetime. Another approach was made using CdS and CdSe quantum dots to decorate the surface
of the ZnO core/shell hollow microspheres to increase the light scattering of the ZnO hollow structure 2. The new
system improved power conversion efficiency by 76.22% and 21.74%, higher than in ZnO N.P.s and ZnO HMS 73],
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