Osmium-180

Subjects: Nuclear Science & Technology Contributor: HandWiki Zheng

Osmium (76Os) has seven naturally occurring isotopes, five of which are stable: 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotopes, 184Os, and 186Os, have extremely long half-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.56×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago. There are also 30 artificial radioisotopes, the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 94 days. There are also nine known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Keywords: nuclear isomers ; radioisotopes ; cretaceous-paleogene

1. Uses of Osmium Isotopes

The isotopic ratio of osmium-187 and osmium-188 (¹⁸⁷Os/¹⁸⁸Os) can be used as a window into geochemical changes throughout the ocean's history.^[1] The average marine ¹⁸⁷Os/¹⁸⁸Os ratio in oceans is 1.06.^[1] This value represents a balance of the continental derived riverine inputs of Os with a ¹⁸⁷Os/¹⁸⁸Os ratio of ~1.3, and the mantle/extraterrestrial inputs with a ¹⁸⁷Os/¹⁸⁸Os ratio of ~0.13.^[1] Being a descendent of ¹⁸⁷Re, ¹⁸⁷Os can be radiogenically formed by beta decay.^[2] This decay has actually pushed the ¹⁸⁷Os/¹⁸⁸Os ratio of the Bulk silicate earth (Earth minus the core) by 33%.^[3] This is what drives the difference in the ¹⁸⁷Os/¹⁸⁸Os ratio we see between continental materials and mantle material. Crustal rocks have a much higher level of Re, which slowly degrades into ¹⁸⁷Os driving up the ratio.^[2] Within the mantle however, the uneven response of Re and Os results in these mantle, and melted materials being depleted in Re, and do not allow for them to accumulate ¹⁸⁷Os like the continental material.^[2] The input of both materials in the marine environment results in the observed ¹⁸⁷Os/¹⁸⁸Os of the oceans and has fluctuated greatly over the history of our planet. These changes in the isotopic values of marine Os can be observed in the marine sediment that is deposited, and eventually lithified in that time period.^[4] This allows for researchers to make estimates on weathering fluxes, identifying flood basalt volcanism, and impact events that may have caused some of our largest mass extinctions. The marine sediment Os isotope record has been used to identify and corroborate the impact of the K-T boundary for example.^[5] The impact of this ~10 km asteroid massively altered the ¹⁸⁷Os/¹⁸⁸Os signature of marine sediments at that time. With the average extraterrestrial ¹⁸⁷Os/¹⁸⁸Os of ~0.13 and the huge amount of Os this impact contributed (equivalent to 600,000 years of present-day riverine inputs) lowered the global marine ¹⁸⁷Os/¹⁸⁸Os value of ~0.45 to ~0.2.^[1]

Os isotope ratios may also be used as a signal of anthropogenic impact.^[6] The same ¹⁸⁷Os/¹⁸⁸Os ratios that are common in geological settings may be used to gauge the addition of anthropogenic Os through things like catalytic converters.^[6] While catalytic converters have been shown to drastically reduce the emission of NO_x and CO₂, they are introducing platinum group elements (PGE) such as Os, to the environment.^[6] Other sources of anthropogenic Os include combustion of fossil fuels, smelting chromium ore, and smelting of some sulfide ores. In one study, the effect of automobile exhaust on the marine Os system was evaluated. Automobile exhaust ¹⁸⁷Os/¹⁸⁸Os has been recorded to be ~0.2 (similar to extraterrestrial and mantle derived inputs) which is heavily depleted (3, 7). The effect of anthropogenic Os can be seen best by comparing aquatic Os ratios and local sediments or deeper waters. Impacted surface waters tend to have depleted values compared to deep ocean and sediments beyond the limit of what is expected from cosmic inputs.^[6] This increase in effect is thought to be due to the introduction of anthropogenic airborne Os into precipitation.

The long half-life of ¹⁸⁴Os with respect to alpha decay to ¹⁸⁰W has been proposed as a radiometric dating method for osmium-rich rocks or for differentiation of a planetary core.^[I]

2. List of Isotopes

Nuclide [8]	z	N	<u>(a)(10)</u> Half-life (11) mod	Decay mode	•	Spin and parity [15][16]	Physics:Natural abundance (mole fraction)		
_		Excitation energy		رغفا			[<u>12</u>]	Normal proportion	Range of variation
¹⁶¹ Os	76	85		0.64(6) ms	α	¹⁵⁷ W			
¹⁶² Os	76	86	161.98443(54)#	1.87(18) ms	α	¹⁵⁸ W	0+		
					α	¹⁵⁹ W			
¹⁶³ Os	76	87	162.98269(43)#	5.5(6) ms	β⁺, p (rare)	¹⁶² W	7/2-#		
					β ⁺ (rare)	¹⁶³ Re			
¹⁶⁴ Os 76	00	102 07004(22)	21(1)	α (98%)	¹⁶⁰ W	0.			
05	76	88	163.97804(22)	21(1) ms	β ⁺ (2%)	¹⁶⁴ Re	0+		
¹⁶⁵ Os			40407070(00)//	74 (0)	α (60%)	¹⁶¹ W	/= /- ·		
0s	76	89	164.97676(22)#	71(3) ms	β ⁺ (40%)	¹⁶⁵ Re	(7/2–)		
166.0 -	70		405 070004(00)	010(0)	α (72%)	¹⁶² W	0+		
¹⁶⁶ Os	76	90	165.972691(20)	216(9) ms	β ⁺ (28%)	¹⁶⁶ Re			
¹⁶⁷ Os					α (67%)	¹⁶³ W	a.c:		
Os	76	91	166.97155(8)	810(60) ms	β ⁺ (33%)	¹⁶⁷ Re	3/2-#		
168 -	¹⁶⁸ Os 76		167.967804(13)	2.06(6) s	β ⁺ (51%)	¹⁶⁸ Re	0+		
Os		92			α (49%)	¹⁶⁴ W			
¹⁶⁹ Os	160 -	76 93 168.967019(27)		3.40(9) s	β ⁺ (89%)	¹⁶⁹ Re	3/2-#		
Os	76		168.967019(27)		α (11%)	¹⁶⁵ W			
¹⁷⁰ Os	76	94	169.963577(12)	7.46(23) s	β ⁺ (91.4%)	¹⁷⁰ Re	0+		
					α (8.6%)	¹⁶⁶ W			
¹⁷¹ Os	76	95	170.963185(20)	8.3(2) s	β⁺ (98.3%)	¹⁷¹ Re	(5/2-)		
					α (1.7%)	¹⁶⁷ W			
¹⁷² Os	76	96	171.960023(16)	19.2(5) s	β⁺ (98.9%)	¹⁷² Re	0+		
					α (1.1%)	¹⁶⁸ W			
¹⁷³ Os	76	97	172.959808(16)	22.4(9) s	β ⁺ (99.6%)	¹⁷³ Re	(5/2-)		
					α (.4%)	¹⁶⁹ W			
¹⁷⁴ Os	76	98	173.957062(12)	44(4) s	β ⁺ (99.97%)	¹⁷⁴ Re	0+		
					α (.024%)	¹⁷⁰ W			
¹⁷⁵ Os	76	99	174.956946(15)	1.4(1) min	β ⁺	¹⁷⁵ Re	(5/2–)		
¹⁷⁶ Os	76	100	175.95481(3)	3.6(5) min	β ⁺	¹⁷⁶ Re	0+		
¹⁷⁷ Os	76	101	176.954965(17)	3.0(2) min	β ⁺	¹⁷⁷ Re	1/2-		
¹⁷⁸ Os	76	102	177.953251(18)	5.0(4) min	β ⁺	¹⁷⁸ Re	0+		
¹⁷⁹ Os	76	103	178.953816(19)	6.5(3) min	β+	¹⁷⁹ Re	(1/2-)		

¹⁸⁰ Os	76	104	179.952379(22)	21.5(4) min	β+	¹⁸⁰ Re	0+	
¹⁸¹ Os	76	105	180.95324(3)	105(3) min	β*	¹⁸¹ Re	1/2-	
^{181m1} Os	48.9)(2) ke\	/	2.7(1) min	β+	¹⁸¹ Re	(7/2)-	
^{181m2} Os	156.5(7) keV			316(18) ns			(9/2)+	
¹⁸² Os	76	106	181.952110(23)	22.10(25) h	EC	¹⁸² Re	0+	
¹⁸³ Os	76	107	182.95313(5)	13.0(5) h	β+	¹⁸³ Re	9/2+	
^{183m} Os 170.71(5) keV			(e)/	9.9(3) h	β ⁺ (85%)	¹⁸³ Re	1/2-	
03	^{33m} Os 170.71(5) keV				IT (15%)	¹⁸³ Os	1/2-	
¹⁸⁴ Os	76	108	183.9524891(14)	1.12(23)×10 ¹³ y ^[7]	α ^{[<u>17]</u>}	¹⁸⁰ W	0+	2(1)×10 ⁻⁴
¹⁸⁵ Os	76	109	184.9540423(14)	93.6(5) d	EC	¹⁸⁵ Re	1/2-	
^{185m1} Os	^{185m1} Os 102.3(7) keV			3.0(4) μs			(7/2–)#	
^{185m2} Os	275.7(8) keV			0.78(5) μs			(11/2+)	
¹⁸⁶ Os ^{[<u>18]</u>}	76	110	185.9538382(15)	2.0(11)×10 ¹⁵ y	α	¹⁸² W	0+	0.0159(3)
¹⁸⁷ Os ^[19]	76	111	186.9557505(15)	Observatio	onally Stable	[20]	1/2-	0.0196(2)
¹⁸⁸ Os ^[19]	76	112	187.9558382(15)	Observatio	onally Stable	[21]	0+	0.1324(8)
¹⁸⁹ Os	76	113	188.9581475(16)	Observationally Stable ^[22]		3/2-	0.1615(5)	
^{189m} Os	30.812(15) keV		keV	5.81(6) h	ІТ	¹⁸⁹ Os	9/2-	
¹⁹⁰ Os	76 114 189.9584470(16)		189.9584470(16)	Observationally Stable ^[23]			0+	0.2626(2)
^{190m} Os	1705.4(2) keV		keV	9.9(1) min	ІТ	¹⁹⁰ Os	(10)-	
¹⁹¹ Os	76	115	190.9609297(16)	15.4(1) d	β-	¹⁹¹ lr	9/2-	
^{191m} Os	74.3	882(3) H	veV	13.10(5) h	п	¹⁹¹ Os	3/2-	
¹⁹² Os	76	116	191.9614807(27)	Observatio	onally Stable	[24]	0+	0.4078(19)
^{192m} Os	2015.40(11) keV			F 0/1) o	IT (87%)	¹⁹² Os	(10–)	
03	OS 2015.40(11) KeV			5.9(1) s	β ⁻ (13%)	¹⁹² lr	(10-)	
¹⁹³ Os	76	117	192.9641516(27)	30.11(1) h	β-	¹⁹³ lr	3/2-	
¹⁹⁴ Os	76	118	193.9651821(28)	6.0(2) y	β⁻	¹⁹⁴ lr	0+	
¹⁹⁵ Os	76	119	194.96813(54)	6.5 min	β-	¹⁹⁵ lr	3/2-#	
¹⁹⁶ Os	76	120	195.96964(4)	34.9(2) min	β-	¹⁹⁶ lr	0+	
¹⁹⁷ Os	76	121		2.8(6) min				

1. \uparrow ^mOs – Excited nuclear isomer.

2. \uparrow () – Uncertainty (1 σ) is given in concise form in parentheses after the corresponding last digits.

3. ↑ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

4. \uparrow **Bold half-life** – nearly stable, half-life longer than age of universe.

5. ↑ Modes of decay:

EC:	Electron capture
IT:	Isomeric transition
p:	Proton emission

6. \uparrow **Bold italics symbol** as daughter – Daughter product is nearly stable.

7. \uparrow **Bold symbol** as daughter – Daughter product is stable.

8. $\ensuremath{^{\uparrow}}$ () spin value – Indicates spin with weak assignment arguments.

- 9. ↑ # Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- 10. \uparrow Theorized to also undergo $\beta^{+}\beta^{+}$ decay to ^{184}W
- 11. ↑ primordial radionuclide
- 12. ↑ 12.0 12.1 Used in rhenium-osmium dating
- 13. \uparrow Believed to undergo α decay to ^{183}W
- 14. \uparrow Believed to undergo α decay to ^{184}W
- 15. \uparrow Believed to undergo α decay to ^{185}W
- 16. \uparrow Believed to undergo α decay to ^{186}W
- 17. \uparrow Believed to undergo α decay to ¹⁸⁸W or $\beta^{-}\beta^{-}$ decay to ¹⁹²Pt with a half-life over 9.8×10¹² years

References

- 1. Peucker-Ehrenbrink, B.; Ravizza, G. (2000). "The marine osmium isotope record". Terra Nova 12 (5): 205–219. doi:10.1046/j.1365-3121.2000.00295.x. Bibcode: 2000TeNov..12..205P. https://dx.doi.org/10.1046%2Fj.1365-3121.2000.00295.x
- Esser, Bradley K.; Turekian, Karl K. (1993). "The osmium isotopic composition of the continental crust". Geochimica et Cosmochimica Acta 57 (13): 3093–3104. doi:10.1016/0016-7037(93)90296-9. Bibcode: 1993GeCoA..57.3093E. https://www.sciencedirect.com/science/article/abs/pii/0016703793902969.
- Hauri, Erik H. (2002). "Osmium Isotopes and Mantle Convection". Philosophical Transactions: Mathematical, Physical and Engineering Sciences 360 (1800): 2371–2382. doi:10.1098/rsta.2002.1073. PMID 12460472.
 Bibcode: 2002RSPTA.360.2371H. https://www.jstor.org/stable/pdf/3558902.pdf?casa_token=p6-bDQ9BM-MAAAAA:Yth2X1Fs8mkdzw_8F9zk2QZO-uKvrhqig3A1iJ_1LoMc2meSlwV7jIYXzgRy6is74M698rx6jq2dyYIZs-4LUOUtbKHdfHkjGF5jLRk1sYBoOZk4xM0V.
- 4. Lowery, Chistopher; Morgan, Joanna; Gulick, Sean; Bralower, Timothy; Christeson, Gail (2019). "Ocean Drilling Perspectives on Meteorite Impacts". Oceanography 32: 120–134. doi:10.5670/oceanog.2019.133. https://dx.doi.org/10.5670%2Foceanog.2019.133
- Selby, D.; Creaser, R. A. (2005). "Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes". Science 308 (5726): 1293–1295. doi:10.1126/science.1111081. PMID 15919988. Bibcode: 2005Sci...308.1293S. https://dx.doi.org/10.1126%2Fscience.1111081
- Chen, C.; Sedwick, P. N.; Sharma, M. (2009). "Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination". Proceedings of the National Academy of Sciences 106 (19): 7724–7728. doi:10.1073/pnas.0811803106. PMID 19416862. Bibcode: 2009PNAS..106.7724C. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2683094
- 7. error
- 8. mOs Excited nuclear isomer.
- 9. () Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- 10. # Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- 11. Bold half-life nearly stable, half-life longer than age of universe.
- 12. Modes of decay: EC: Electron capture IT: Isomeric transition p: Proton emission
- 13. Bold italics symbol as daughter Daughter product is nearly stable.
- 14. Bold symbol as daughter Daughter product is stable.
- 15. () spin value Indicates spin with weak assignment arguments.
- 16. # Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- 17. Theorized to also undergo $\beta+\beta+$ decay to 184W
- 18. primordial radionuclide
- 19. Used in rhenium-osmium dating
- 20. Believed to undergo α decay to 183W

- 21. Believed to undergo α decay to 184W
- 22. Believed to undergo α decay to 185W
- 23. Believed to undergo α decay to 186W
- 24. Believed to undergo α decay to 188W or β - β decay to 192Pt with a half-life over 9.8×1012 years

Retrieved from https://encyclopedia.pub/entry/history/show/75418