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Intrinsic conducting polymers (CPs) have excellent electrochemical characteristics, such as tailored electrical conductivity

by electronic doping, high environmental stability, and biocompatibility. This entry intend to overview the use of conducting

polymers (CPs), extensively studied due to their high versatility and electrical properties, as chemical sensor arrays in

electronic tongues and noses. Their performance in terms of sensitivity and other parameters will be studied based on the

characteristic features of common conducting polymers, such as electrical conductivity and nanostructured morphology.

Furthermore, the application of electronic devices in commercial prototypes will also be included here.
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1. Introduction

In the last decades, intrinsic conducting polymers (CPs) have attracted wide attention due to their excellent

electrochemical characteristics, such as tailored electrical conductivity by electronic doping, high environmental stability,

and biocompatibility. Their electrical and optical properties establish them as excellent candidates for chemical sensing

applications targeting the detection/determination of diverse analytes of interest. In this sense, electrochemical sensors

, gas sensing devices , and optical sensors  have been proposed as providing good analytical features in terms of

figures of merit (e.g., sensitivity, limits of detection and quantitation, repeatability, reproducibility, linear range, and

robustness). In addition, the modulation of instrumental conditions during the electrodeposition process , spin coating ,

or sequential solution polymerization technique  allows precise control over the thickness and morphology of the

resulting conducting coating. This advantage is particularly important in the development of electrochemical and gas

sensors .

In this regard, nanostructures can also be conveniently tailored, leading to analytical sensing improvements . In

addition to their morphology, their electrochemical properties can be customized by electronic doping (p or n) extensively

reported in the bibliography . As an illustrative example, the p-doping of PPy is shown in Figure 1. In the first stage, a

radical cation is formed by the oxidation of the polymer, inducing a local deformation within the polymer chains, leading to

the formation of intermediate electronic states between the conducting and valence band. Subsequently, the polymer can

be re-oxidized, increasing the number of charge carriers .

Figure 1. Schematic representation of p-doping process of PPy and structure of electronic bands in different electronic

states: (a) de-doped, (b) polaron, (c) bipolaron, (d) bipolaron coupling.
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This is the reason why the electrochemical characteristics of the conducting polymers, such as electrical conductivity, can

be modulated by electronic doping. This characteristic feature allows the employment of conducting polymers in several

applications previously mentioned, such as electrochemical transducers in sensor devices, electrochromism, solar cells,

batteries and supercapacitors, among others, proving their versatility in comparison with other electrode materials.

Furthermore, the entrapment of enzymes within the polymeric layer may increase the selectivity of the overall system. In

this sense, several examples, including horseradish peroxidase , tyrosinase , and glucose oxidase  can be found in

the literature.

Despite the high number of intrinsic conducting polymers present in the bibliography, great attention was focused on

polythiophene and the corresponding derivatives, as well as on polyaniline and polypyrrole (Figure 2).

Figure 2. Chemical structure of the most relevant intrinsic conducting polymers.

1.1. Polythiophene and Derivatives

Polythiophene (PTh) have several electroactive properties, such as the remarkable ability for doping/de-doping and high

electrical conductivity, which makes them excellent choices for electrochromic supercapacitors and electrochemical

applications . Nonetheless, high potentials are required to oxidize the unsubstituted thiophene ring, which can induce

the overoxidation of the resulting polymeric film. The inclusion of functional groups in the thiophene monomer leads to a

significant reduction of the potentials required for the oxidation due to the presence of electron donor inductive effects

. Among all the polythiophene derivatives, poly-(3,4-ethylenedioxythiophene) (PEDOT) raised based on its low

oxidation potential, which provides a wide oxidation potential window. Hence, the direct electrochemical sensing of

different electroactive species can be performed using PEDOT-based electrochemical devices . Moreover, the

entrapment of biological species onto PEDOT films by several procedures, such as sinusoidal current , sinusoidal

voltages , and drop casting  has been achieved.

1.2. Polyaniline

Polyaniline (PANI) is constituted by three ideal oxidation states: leucoemeraldine (reduced form), emeraldine (half-

oxidized state), and pernigraniline (fully oxidized state) . The reversible redox conversion between emeraldine base,

non-conducting form, to emeraldine salt, conducting form, has been exploited in several electronic devices, e.g., gas

sensors, supercapacitors, electrochromic devices, and electrochemical sensors . Regarding electrochemical

devices, the electroactivity of polyaniline film plays a relevant role. Low electroactivity of the polyaniline film at neutral and

basic electrolytic media can be found, which can be ascribed to the deprotonation of emeraldine salt at higher pH.

Polyaniline composites were developed and used for electrochemical sensing to avoid the deprotonation of the

conducting polymer backbone. In this sense, self-doped polyaniline-based devices showed electroactivity at neutral

media .

1.3. Polypyrrole

Polypyrrole (PPy) is a versatile conducting polymer, characterized by redox properties, high electrical conductivity, and

reversible redox switching . The redox conversion of neutral form (yellow) to oxidized form (black grey) is useful for

electrochromic applications . The electrochemical performance of polypyrrole composites towards several compounds
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for electrochemical and gas sensors is also reported in several review papers . Furthermore, the entrapment of

several enzymes in conducting polypyrrole films to design biosensor devices is also reported in the bibliography .

Based on the previous subsections, the feasible employment of these conducting polymers in complex and high

demanding sensing devices, such as electronic tongues (E-tongues) and noses (E-noses), is evident.

1.4. Electronic Systems: Electronic Tongues and Noses

Electronic systems (E-tongues/noses) emerged during the beginning of the 21st Century as useful low-time consuming

tools to obtain qualitative and quantitative information about several biological, pharmaceutical, and food samples.

Currently, the demand for these devices has been largely increasing in the last years. The terms electronic “tongue” or

“nose” arose due to their mimicking properties of taste and smell senses, respectively. To illustrate their growing scientific

interest, the number of reports related to their development published per year is shown in Figure 3.

Figure 3. Number of scientific publications containing “electronic tongues” (E-tongues) and “electronic noses” (E-noses)

terms published per year. Information obtained from Science Direct database (2021).

E-tongues/noses are mainly constituted by two blocks: a sensing unit, able to produce signals from target chemical

species, and their processing part usually based on multivariate calibration methods. The latter permits the discrimination

of samples, control of chemical adulteration (qualitative analysis), and correlation between experimental results and

chemical parameters (quantitative analysis) by monitoring several features of the target samples .

2. Electronic Tongues (E-Tongues) Based on CPs

2.1. Sensing Unit: Electrochemical Sensors

The sensing mechanism of conducting polymer-based electrochemical devices has been deeply studied in different

pieces of research . As an illustrative example, the electrochemical oxidation of ascorbic acid and dopamine using

PEDOT-modified sensors in a neutral medium was evaluated. Attractive ionic forces between ascorbate, usually found at

neutral medium, and the conducting layer was proposed, leading to an electrocatalytic effect for ascorbic acid oxidation.

On the other hand, a repulsive interaction between dopamine and the p-doped conducting film was established .

Therefore, the PEDOT sensor allows the simultaneous voltammetric determination of both analytes in neutral medium

(Figure 4).
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Figure 4. Proposed mechanism for ascorbic acid and dopamine interaction using PEDOT-modified electrodes.

The interaction between the polymeric backbone and the target analyte was also reported for other heterocyclic

conducting polymers, such as 3-amino-5-mercapto-1,2,4-triazole , polyaniline , and poly-(N-dimethylaniline) .

In addition to their doping properties, the inclusion of redox mediators in the conducting film may improve the

electrochemical performance of the resulting devices for sensing diverse analytes of interest. In this regard, several

electrochemical sensors employed in electrochemical assays in buffer and real matrices are listed in Table 1.

Table 1. Electrochemical sensors based on polythiophene (PTh), poly-(3,4-ethylenedioxythiophene) (PEDOT), polyaniline

(PANI), and polypyrrole (PPy) currently reported in literature.

Electrochemical Device Analyte
Working

Media
Sample

Analytical

Parameters

Ref.
LD

(µM)

LR

(µM)

PTh

MWCNT/PTh/Pt BPA PBS pH 7.5 Water 0.009 0.05–0.4

MnO /PTh/rGO/GCE MP PBS pH 7
Human urine and

blood
0.0057 0.5–10

GO-4-ATP-Au-PTh/Au GCE Nicotine PBS pH 7
Serum, urine,

cigarette
0.17 1.0–30

PTh-AgBr Glucose NaOH
Human blood

plasma
0.31 4–5000

PTh-Ag/GCE L-Tryp PBS pH 7 Soybeans extract 0.020 0.2–400

PEDOT
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Electrochemical Device Analyte
Working

Media
Sample

Analytical

Parameters

Ref.
LD

(µM)

LR

(µM)

PEDOT/IL/GCE DA PBS pH 7.4 Human urine 0.033 0.2–328

UiO-66-NH @PEDOT/GA/GCE PCMC ABS pH 6 Tap water 0.2 0.6–18

PEDOT/AG/GCE AC PBS pH 7 Local tablets 0.041
0.15–

5881

Cu O/PEDOT/MWCNT Glucose NaOH
Human blood

serum
0.04

0.495–

374

GC/PEDOT-AuNPs-SV CA PBS pH 7 Juice 4.24 10–1000

PEDOT-Tyr/SNG-C CA PBS pH 7 Wine, beer 4.33 10–300

PEDOT/PEDOT-SH/Au Nitrite PBS pH 6.9 Tap water, milk 0.051
0.15–

1000

PEDOT/Au UA PBS pH 6.6 Milk 7.0 6–200

GCE/PEDOT-MC/AgNPs Rutin PBS pH 3 Tablets 0.0035 0.005–0.5

Pt/PEDOT-PBNPS H O ABS pH 5.5 Human blood 1.4 5–1000

PANI

Co O @PANINFs/GCE Glucose PBS pH 7.4 Human serum 60 100–8000

TiO @PANI@Au/GCE Hydrazine
NH /NH

pH 9

Power plant

sewage
0.15 0.9–1200

PANI/SnO /GCE Nitrite PBS pH 6 - 0.04
0.12–

7777

GCE/PANI-Fe O DA PBS pH 7 Water 0.176 0.2–2.4

GCE/PANI-NiO DA PBS pH 7 Water 0.166 0.2–2.4
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Electrochemical Device Analyte
Working

Media
Sample

Analytical

Parameters

Ref.
LD

(µM)

LR

(µM)

α-Fe O /PANI/GCE UA PBS pH 7 Human urine 0.038 0.01–5

NiO-NPs@PANINS/SPE Glucose NaOH
Human blood

serum
0.06 1–3000

MeGO/PANI AA PBS pH 7.4 - 2.0 8–5000

PPy

Fe O @PPy/MWCNTs/GE AT BR pH 4 Serum, tablets 0.0230
0.0314–

201

AuNP/PPy/GCE L-dopa PBS pH 7 Urine 0.075 0.1–6.0

PDA/PPy/GCE UA PBS pH 8
Human serum,

urine
0.11 0.5–40

PGE/CuO-NPs/PPy TR PBS pH 8.5 Tablets 0.001
0.005–

380

PPy:LAC Lactate KNO
Human tear, rat

blood
81.0

100–

10,000

AuCu/PPy/Cu-TCCP H O PBS pH 8
Medical H O

solution
0.0067

0.71–

24,100

AA: ascorbic acid; ABS: acetic buffer solution; AC: acetaminophen; AT: atorvastatin; ATP: adenosine triphosphate; BPA:

bisphenol A; BR: Britton-Robinson; CA: caffeic acid; CuO-NPs: copper oxide nanoparticles; DA: dopamine; PTh:

polythiophene; GA: graphene aerogel; GCE: glassy carbon electrode; IL: ionic liquid; LAC: lactate; LD: limit of detection;

LR: linear range; L-Tryp: L-tryptophan; MC: mesoporous carbon; MP: methyl parathion; MWCNT: multi-walled carbon

nanotubes; PANI: polyaniline; PANINS: polyaniline nanofibers; PBNPS: Prussian blue nanoparticles; PBS: phosphate

buffer solution; PCMC: p-chloromethylcresol; PEDOT: poly-(3,4-ethylenedioxythiophene); PGE: pencil graphite electrode;

PPy: polypyrrole; rGO: reduced-graphene oxide; SPE: screen-printed electrode; SV: sinusoidal voltage; TCCP: meso-

tetra-(4-carboxyphenyl)-substituted porphyrins; TR: tramadol; and UA: uric acid.

2.2. Analytical Application of E-Tongues

Electronic tongues have been successfully applied in the analysis of a wide range of samples. Their multiple applications

in different ambits employing potentiometric and/or voltammetric sensor arrays were overviewed by many researchers

.

The preliminary studies regarding electronic tongues containing conducting polymers developed by C. Mattoso and

coworkers involves the use of ultrathin layers of PPy electrodeposited and their application in the distinction of some

beverages . One year later, De Saja developed an E-tongue by using PPy, PTh, and PANI coatings as

voltammetric sensor arrays. Each one provided characteristic voltammetric signals, increasing the cross-selectivity of the

2 3
[75]

[76]

[77]

3 4
[78]

[79]

[80]

[81]

3
[82]

2 2
2 2 [83]

[84]

[85][86][87]

[88][89][90]



resulting device and discriminating solutions with different tasting properties . Moreover, conducting polymers were

tested as well for qualitative analysis of tea and coffee samples and the quantitative determination of specific analytes

contained in green Korean tea . Notably, subsequent sensor arrays composed by conducting electrodeposited polymer

coatings are relevant for food analysis at industrial scale. Table 2 shows several electronic tongues employed in

electroanalysis of some foodstuffs.

Table 2. Electronic tongues containing sensors based on conducting polymer coatings applied in the analysis of food

samples.

Sensor Array

Sample Use
Multivariate

Calibration
Ref.

No CP Sensor CP Sensor

SNG-C PEDOT/Pt Musts

Discrimination of samples

collected at different ripening

times

PCA

iPLS

PLS

- PEDOT/Pt
Red

wines

Classification of different

samples and origin

PCA

PLS

Pt

Au
PEDOT/Pt Fruit juice

Discrimination between

samples from different fruits

PCA

PLS-LDA

IDE

PA6/IDE

PA6/PANI/IDE (0.25–

5.0% PANI)

Bovine

milk

Discrimination of samples

according to tetracycline

residue content

PCA

CE

AuCE

rGO-CE

rGO-AuCE

PANI-CE

PANI-AuCE

Vinegar,

sugar
Multiflavor detection PCA

C/SPE

NiO/C/SPE

MWCNT/C/SPE

SWCNT/C/SPE

Pt

PANI/C/SPE Red wine Phenolic content PCA

SWCNT/SPCE

MWCNT/SPCE
PPy-DSA/SPCE

White

wine

Discrimination according to

varietal origin

PCA

LDA

CPE-CoPc

CPE-LuPc

CPE-LuPc

PPy-dopant/Au

Dopant: SO , DSA,

FCN, AQDS, PWA, TSA

Red wine
Evaluation of chemical

adulteration

PCA

PLS
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Sensor Array

Sample Use
Multivariate

Calibration
Ref.

No CP Sensor CP Sensor

GdPc /CSPE

DyPc /CSPE

CSPE

PPy-dopant/CSPE

Dopant: FeCN, NP, Mo
Beef

Determination of ammonia

and putresceine

PCA

PLS-LDA

-

PPy- dopant/Pt

Dopant: DSA, H SO ,

FCN, AQDS, PWA, TSA

Beer
Evaluation of bitterness and

alcoholic strength

PCA

PLS

-

PPy-dopant/Pt

Dopant: FCN, NP, PWA,

H SO , MO, AQS

Olive oil Evaluation of bitterness
PCA

PLS

-
PPy-dopant/SPCE

Dopant: DSA, SO , FCN
Wine

Classification of wines

according to vintage year

PCA

LDA

Graphite-epoxy

PtNPs

CuNPs

PANI

PPy
Wine

Classification of wines and

recognition of the oxygenation

effect

PCA

AQDS: anthraquinone-2,6-disulfonic acid, disodium salt; AQS: anthraquinone-2,6-disulfonic acid; CNT: carbon nanotubes;

CoPc: cobalt phthalocyanine; CPE: carbon paste electrode; CuNPs: copper nanoparticles; DSA: sodium 1-

decanesulfonate; FCN: potassium hexacyanoferrate (II); IDE: interdigitated electrodes; LDA: linear discriminant analysis;

LuPc2: lutetium bis-phthalocyanine; MO: sodium molybdate; MWCNT: multi-walled carbon nanotubes; PA6:

polyacrilamide; PANI: polyaniline; PCA: principal component analysis; PEDOT: poly-(3,4-ethylenedioxythiophene); PLS:

partial least squares regression; PPy: polypyrrole; PWA: phosphotungstic acid; PtNPS: platinum nanoparticles; rGO:

reduced-graphene oxide; SNG-C: sonogel-carbon; SPCE: screen-printed-carbon electrode; SPE: screen-printed

electrode; SWCNT: single-walled carbon nanotubes; and TSA: p-toluenesulfonic acid.

3. Electronic Noses (E-Noses) Based on CPs

3.1. Sensing Unit: Chemiresistors

In principle, three types of sensing units can be employed in gas sensing: chemiresistors, quartz crystal microbalance

gravimetry, and optical sensors . Among all of them, the first one is, by far, the most employed unit in electronic noses,

and thus, this review will be focused on chemiresistors as the sensing unit.

The sensing performance of chemiresistor-based conducting polymers has been widely reported in bibliography. In brief,

after exposing the conducting film to gases, the resistance changes depending on the initial concentration of the flowing

gas. The overall resistance (S) measured with the p-doped polymeric device was calculated by the ratio between the

resistance in air (R ) and the resistance in the presence of the flowing gas (R ) by using the following equation .
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The sensing mechanism of p-doped conducting polymers towards different pollutants is overviewed in several review

papers  and shown in Figure 5. The target gas can act as an electron donor of the conducting polymer

layer, leading to a decrease in the number of holes by electron-hole combination, and thus, increase the charge

resistance. On the other hand, electrons from the conducting band of the polymer can be removed by an electron-

acceptor compound, leading to the increase in the number of holes, and, hence, decrease the electrical resistance.

Figure 5. Overall mechanism of gas sensing using a reducing gas (NH ) (a) and an oxidant gas (O ) (b) as examples.

The p-doped polymer resistance changes depending on the nature of the target analyte: oxidant gases, such as NO  and

O  induce an increase in the number of major charge carriers, decreasing the resistance (Figure 5b). Reducing gases,

such as NH , CO, and H S, induce the opposite effect by decreasing the charge carriers of the conducting film (Figure
5a) .

The protonation/deprotonation of the conducting layer due to the vapor exposure is also reported in the literature for some

conducting polymers, such as PANI . Figure 6 illustrates a possible interaction between ammonia, a reducing

gas widely employed as model analyte, and PANI.

Figure 6. Possible interaction mechanism between ammonia and PANI.

As it can be observed in the previous figure, PANI can be deprotonated under ammonia exposure, leading to the de-

doped state of PANI. This process is reversible, and thus, PANI can be protonated again, leading to the desorption of

ammonia. The performance of some chemiresistors based on conducting polymers, in terms of concentration detected,

response and recovery times, are shown in Table 3.

Table 3. Chemiresistors based on polythiophene (PTh), poly-(3,4-ethylenedioxythiophene) (PEDOT), polyaniline (PANI),

and polypyrrole (PPy).

Gas Sensor Device Target Gas
Range

(ppm)

Sensing Performance

Ref.
Gas Conc.

(ppm)

Recovery Time

(s)

Response Time

(s)

SnO /PTh NO 10–200 10 - 2.07

P3CT/CNT NMPEA
0.004–

0.032
0.004 40 20

PEDOT:PSS/FeCl NH 0.2–200 0.5 - 20
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Gas Sensor Device Target Gas
Range

(ppm)

Sensing Performance

Ref.
Gas Conc.

(ppm)

Recovery Time

(s)

Response Time

(s)

WO -PEDOT:PSS LPG 500–3000 500 54 29.4

PANI/PVDF NH 0.2–5 0.2 235 174

PANI/SnO NO 5–55 37 25 17

SnO /rGO/PANI H S 0.05–10 2 78 82

PANI-NF LPG 100–1000 700 200 50

PPy/rGO NH 1.0–4.0 1.0 300 60

PPy thin film NO 10–100 10 374 218

PPy nanoribbons CH CH OH - 100 31 2

PPy-Ag CH COCH 25–600 580 150 175

PPy-CNT H 1–100 10 - >1.0

CNT: carbon nanotubes; LPG: liquified petroleum gas; NF: nickel ferrite; NMPEA: n-methylphenethylamine; P3CT: poly[3 -

(6-carboxyhexyl)thiophene-2,5-diyl]; PANI: polyaniline; PEDOT: poly-(3,4-ethylenedioxythiophene); PPy: polypyrrole; PSS:

poly(styrenesulfonate); PTh: polythiophene; PVDF: polyvinylidene; and r-GO: reduced-graphene oxide.

3.2. Analytical Application of E-Noses

Among the multiple possible applications of E-noses, the early diagnosis of diseases and the evaluation of food quality in

a non-invasive manner are the most relevant for society. Importantly, electronic nose devices based on conducting

nanocomposites have proved their suitability in both scenarios during the last decade .

Despite its high interest currently, investigations of the role of conducting polymers in electronic noses started in the

previous century, with the development of PPy, PTh, and PANI derivatives to detect alcoholic volatile compounds .

However, new discoveries have been carried out at the beginning of this century, leading to great improvements in the

development of these devices. In this regard, Stella and coworkers developed an E-nose system based on PEDOT, PANI,

and PPy coatings for the distinction of three Italian olive oils by using their aromatic substances content as a

differentiating parameter . Contrarily, other authors have vastly explored the role of several dopants. For example,

Barisci et al. developed gold tracks supported on silicon chip coated with PPy doped with 12 different chemical

compounds to detect aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene . In spite of the lack of

concise explanations, the authors must be praised for the wide spectrum of polymers assayed. In fact, the evaluation of

different dopants in CPs seems to be the quintessence of a great number of pieces of research. Particularly, PANI

coatings with different doping agents are commonly reported in bibliography as sensor arrays in E-nose devices to

monitor several parameters in foodstuffs and human body fluids . Table 4 shows some illustrative examples

recently reported in the literature.

Table 4. Electronic noses based on polyaniline (PANI) films applied for analytical purposes in the last decade.
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PANI Sensor Array Sample Use
Multivariate

Calibration
Ref.

PANI-dopant/IDGEs

Dopant: CSA, DBSA, HCl

Strawberry

Grape

Apple

Discrimination of samples according

to aromatic substances
PCA

PANI-HCl/PGIEs

PANI-HCl/IDEs

Strawberry

Grape

Apple

Detection of different aromas PCA

PANI-dopant/IDGEs Dopant:

HCl, TSA, CSA, MSA
Cow’s estrus

Determination of estrus times of

cows
PCA

PANI-dopant/IDEs

Dopant: HCl, TSA, CSA, MSA
Bananas Monitoring of bananas ripeness PCA

PANI-dopant/PGIEs

Dopant: CSA, HCl, DBSA
Gummy candies

Monitoring of aromas during candy

storage
PCA

PANI-CSA/Chitosan

PANI-DBSA/TiO

PANI-DBSA/CNT

Simulated

human breath

Preliminary diagnoses of kidney

disease

PCA

LDA

PANI/AuNPs Human breath Early diagnoses of renal diseases
PCA

LDA

PANI-dopant/MWCNT

PANI-dopant/GO

Dopant: CSA, DBSA, HCl

Essential oils
Determination of quality of essential

oils
PCA

CSA: camphorsulfonic acid; DBSA: dodecylbenzenesulfonic acid; GO: graphene oxide; IDE: interdigitated electrode;

MSA: methanesulfonic acid; MWCNT: multi-walled carbon nanotubes; PANI: polyaniline; and TSA: p-toluene sulfonic acid.

4. Future perspectives: integration of E-tongues and E-noses in
commercial systems

It is not ambitious to think that the analytical applications of E-Tongues/Noses possess a great impact, not only in the

foodstuff ambit but also in the health and environmental sector. Besides, this impact is rising sharply, reflecting the great

need in society for these devices. Therefore, their implementation in commercial devices is exceedingly pursued by many

sensor companies. Currently, there are some examples of its commercialization.

4.1 Commercial prototypes of E-tongues

Concerning E-tongues, Alpha M.O.S and Insent Inc. offers two models (αAstree and TS-5000Z, respectively) that have

been used in the evaluation of food quality in the last decade . Other laboratory prototypes were also

employed for pharmaceutical analysis, providing very satisfactory results, as those obtained with commercial systems .
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4.2 Commercial prototypes of E-noses

Regarding E-noses, a commercial system containing several conducting polymers as sensor arrays (Cyranose 320 ),

offered by Sensigent, was employed in the screening of several diseases (breast and lung cancer , asthma

 and amyotrophic lateral sclerosis , among others), identification of foodstuffs (rice, wines  and fruits ) and

classification of road asphalt samples . Additionally, fecal VOCs can be inspected as well, informing about the

microbial enterotype of infants . Other companies also supply E-noses. For example, AromaScan A32S  (Osmetech

Inc.) provides useful information about the diagnose of urban trees, being able to discriminate VOCs from healthy and

decay woody samples  and the assessment of the quality of catfish meat . In this work, off-flavour in catfish filets

can be identified from good-flavour ones by means of PCA. Notably, the new device tested displayed promising features

for the analysis of commercial beverages .

4.3 Final remarks: challenges of electrochemical/gas sensing devices

Despite the excellent analytical results provided at laboratory scale in food, pharmaceutical and medical sectors, only

some timid examples can be found commercially available. In our modest opinion, the inclusion of CPs and their

development may pave the way to keep growing and reach the desired applicability of E-tongues and E-noses systems.

Nowadays, in order to climb up into higher technological readiness levels (TRLs), the developed devices must be able to

perform reliable, robust, fast, accurate and in-situ measurements using diverse samples, by using a non-complex, low

cost and portable instrumentation. The stability of the conducting coatings is another issue to take into account, since the

repeatability of the responses provided with the devices can be affected. The conducting film may be passivated after

performing successive electrochemical assays, as well as film overoxidation can take place at high potentials.

Furthermore, stability can be affected by swelling/deswelling phenomena. With the aim to minimize these factors, several

parameters, including analyte concentration, film characteristics (e.g thickness and morphology) and instrumental

conditions should be carefully controlled. Further research in this sense is under study to accomplish all the commercial

requirements mentioned.
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