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Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible

imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such

an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic,

prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize

coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative

and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated

into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery

disease.
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1. Introduction

Coronary artery disease (CAD) remains a leading cause of death despite advances in primary and secondary prevention

strategies . Acute coronary syndrome (ACS) comprising myocardial infarction (MI) and unstable angina is responsible

for much of its mortality and morbidity burden. Vascular inflammation is considered a key driver of atherosclerotic plaque

formation and destabilization resulting in ACS . Randomized studies demonstrate a residual inflammatory risk even after

the aggressive lowering of low-density lipoprotein cholesterol . The landmark CANTOS trial showed that targeting

interleukin-1β with the monoclonal antibody canakinumab reduced recurrent cardiovascular event rates, hence validating

the inflammatory hypothesis of atherosclerosis . This has led to a burgeoning research interest in the non-invasive

detection of vascular inflammation, which has important implications for cardiovascular risk stratification and the initiation

of appropriate risk reduction strategies.

Conventional tests that rely on circulating inflammatory biomarkers (e.g., high-sensitivity C-reactive protein and pro-

inflammatory cytokines) are not directly related to the process of atherogenesis, and not specific enough to identify

coronary inflammation . Advanced imaging tests such as sodium-fluoride positron emission tomography are costly and

not widely available, limiting their applicability in clinical practice .

Coronary computed tomography angiography (CCTA) is rapidly becoming a first-line diagnostic test in the investigation of

suspected CAD . It offers a unique non-invasive modality to image and assess the coronary lumen, plaque, and

perivascular tissue . Currently, CCTA interpretation predominantly relies on visual assessment which disregards the

large volume of three-dimensional datasets recording each pixel’s radiodensity and their relationship to each other.

Recently, improvements with CCTA’s imaging quality and access to high-performance computing have led to the

development of cardiac computed tomography radiomics, introducing the field of artificial intelligence (AI) to

cardiovascular imaging. Radiomics is the process of extracting numerous quantitative features from a given region of

interest to create large data sets in which each abnormality is described by hundreds of parameters. Data mining is the

process of finding new, meaningful patterns and relationships between the different variables. Machine learning can also

be applied to the analysis of radiomics parameters. From these results, novel imaging biomarkers may be identified that

can increase the diagnostic accuracy of CCTA and expand our knowledge of the underlying pathologic processes.

2. Artificial Intelligence, Machine Learning and Big Data

Modern cardiovascular medicine generates a vast amount of biomedical, imaging, and clinical data as part of patient care

delivery. The high dimensionality of data poses demanding analytical challenges but offers rich opportunities for improved

discovery. The term big data refers to extremely large datasets which cannot be analyzed, interpreted, or stored efficiently
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using conventional data-processing techniques . In healthcare, this includes “omic” data (genomics, proteomics, or

lipidomics), biometrics from streaming mobile devices, clinical data from electronic health records, and image-derived

information.

Traditional statistical methods cannot efficiently handle and learn from such elaborate data sets to develop diagnostic and

predictive models for assisting clinical decision-making. Artificial intelligence refers to the use of computational techniques

to perform tasks that are characteristic of human intelligence, such as visual perception, pattern recognition, planning,

problem-solving, and decision making . AI is being increasingly applied in cardiovascular imaging for image

segmentation, automated measurements, and risk stratification .

Machine learning (ML) is a subset of AI which uses computer algorithms with the ability to automatically learn to perform a

task and improve from experience by being exposed to a large amount of data, without being explicitly programmed in

decision making . ML methods complement and extend existing statistical methods, providing tools and algorithms to

understand patterns from large, complex, and heterogeneous data. Although conventional statistical methods are capable

of both discovery and prediction, ML methods are suitable and generalizable across a variety of data types and offer

analyses and interpretation across complex variables . Additionally, ML techniques typically rely on fewer assumptions

and provide superior and more robust predictions.

Common types of ML algorithms include supervised and unsupervised . The selection of the right model often relies on

the operator’s expertise, the nature of the dataset, and the purpose of the final AI system . Supervised
learning algorithm is most commonly employed in CCTA application, which uses a labeled dataset to predict the desired

outcome. This involves the iterative selection, processing, and weighting of individual features to learn the underlying

patterns within the data that best fit the given outcome. Limitations of supervised learning include the need for large,

labeled training datasets and validation datasets. It is also often time-consuming due to the need for the manual labeling

of large amounts of data. Furthermore, supervised algorithms are limited to predicting known outcomes. In unsupervised
learning, unlabeled data are used to predict unknown outcomes, and the algorithm must discover inherent patterns within

the dataset. Such techniques include principal component analysis and the wide array of clustering algorithms (e.g., “k-

means” or hierarchical clustering) which cluster data into groups based on similarity. The major challenge in unsupervised

learning is difficulty in identifying the initial cluster pattern (how many clusters there are, and their respective boundaries),

which may lead to overfitting of the model to the dataset. Hence, these models require validation in multiple cohorts.

2. Radiomics: Bringing CCTA Imaging into the Age of Artificial Intelligence

CCTA is now recognized as the pivotal non-invasive diagnostic imaging modality of choice for cardiovascular risk

stratification and the assessment of stable and unstable cardiovascular patients . The strength of CCTA lies in its

ability to reliably exclude coronary stenosis and , to directly visualize the vessel wall and plaque morphology .

Over the past years, CCTA technology has developed at unprecedented speed while data analysis and image

interpretation progressed at a slower pace as its diagnostic potential is burdened by a certain degree of subjective visual

assessment and inter-reader variability. For example, even among expert readers, the inter-reader reproducibility of high-

risk plaque features is highly variable (κ range 0.15–0.34) . Furthermore, it is unable to detect the finer characteristics

of high-risk plaques such as macrophage activity, neovascularization, plaque rupture, and plaque erosion, which can all

be detected by optical coherence tomography (OCT) .

CT radiodensity of the vascular tissue has been shown to be a good surrogate marker of histological composition as

correlated with intravascular ultrasound (IVUS) . Therefore, CCTA’s capability to non-invasively acquire isotropic three-

dimensional data creates a unique opportunity to analyze complex spatial image patterns using radiomics. This refers to

the process of extracting a large number of quantitative imaging features from a given region of interest to create big data

in which each abnormality is characterized by hundreds of parameters extending far beyond those that can be

characterized by the human eye . The quantitative features are calculated using dedicated software, which accepts the

image datasets as inputs. Following feature extraction, data mining and ML approaches are used to find new, meaningful

patterns between the different parameters to identify novel imaging biomarkers which may reflect the underlying

pathophysiology of a tissue. Additionally, radiomics offers mathematic objectivity with the use of quantitative image

parameters instead of qualitative markers to express different lesion characteristics.

The transition from qualitative to quantitative radiomics assessment was initiated by oncoradiology and has proven to be a

valuable tool . Several studies have shown radiomics to improve the diagnostic accuracy, staging, and grading of

cancer, response assessment to treatment, and predict clinical outcomes . CCTA radiomics faces

its unique technical challenges as atherosclerotic lesions have a significantly smaller number of voxels for analysis than

tumors as well as having complex geometric shapes.
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3. Overview of Coronary Radiomics Workflow

3.1. Step 1: Images Acquisition

The coronary radiomics workflow begins with the CCTA image, which is represented as a three-dimensional dataset of

different attenuation values using semi-parametric calibrated Hounsfield Units (HU). Each of the different tissues involved

absorbs radiation to a different extent and thus, they are depicted as having different attenuation values on CT. As such,

each voxel is a separate measurement of how much radiation is absorbed in the given volume and correlates with the

underlying biology.

3.2. Step 2: Region-of-Interest Segmentation

Next, a region-of-interest (ROI) is defined so that only information related to the lesion can be extracted. The coronary

artery needs to be segmented at its proximal and distal ends of interest as well as determining the inner and the outer

vessel wall boundaries. Then, the HU values of the voxels need to be discretized into a given number of groups, as voxels

with the identical value rarely occur in medical imaging (Figure 1).

Figure 1. Pipeline for segmentation of region-of-interest.

To date, segmentation of the coronary artery is done either manually or semi-automatically with dedicated software such

as QAngioCT, 3D Slicer, or AutoPlaque . Automatic lumen and vessel contours can be manually edited if needed.

Software such as 3D Slicer has incorporated an installable plugin for the open-source PyRadiomics package for

integrated radiomics analyses. Manual and semi-automated image segmentation can be time-consuming and prone to

observer bias and variability. Therefore, studies using such segmentation technique should assess for intra- and inter-

observer reproducibility of the derived radiomic features and exclude non-reproducible features from further analyses.

Deep learning-based image segmentation is yet to be available for coronary assessment but it is rapidly emerging for

many different organs . This has the advantage of avoiding intra- and inter-observer variability of radiomic features.

However, the generalizability of trained algorithms is a major limitation currently, and applying those algorithms on a

different dataset often results in complete failure. Thus, further research is needed for the development of robust and

generalizable algorithms for automated image segmentation.

3.3. Step 3: Radiomic Features Extraction

Feature extraction refers to the calculation of feature descriptors to quantify the characteristics of the grey levels within the

ROI. Since many different ways and formulas exist to calculate those features, adherence to the Image Biomarker

Standardization Initiative guideline is recommended . These radiomic features can be broadly grouped into four major

categories: (1) shape based, (2) intensity based, (3) texture based, and (4) transformed based (Table 1). In practice,

feature extraction means simply running the dedicated software package and waiting for the computation to be finished.

Shape-based metrics are more widely used in clinical routines and easily comprehensible. It describes the shape of the

traced ROI and its geometric properties such as volume and the maximum diameter along different orthogonal planes.

Intensity-based metrics describe the distribution of individual voxel values but without accounting for their spatial

relationships. These are histogram-based properties reporting the average and variation (mean, median, maximum, and

minimum values of the voxel intensities on the image). The shape of the distribution can be quantified by skewness

(asymmetry) and kurtosis (flatness). Lastly, the heterogeneity of the sample values can be quantified by uniformity and

randomness (entropy).

Texture-based metrics are obtained by calculating the statistical inter-relationship between neighboring voxels . They

provide a measure of the spatial arrangement of the voxel intensities, and hence of intra-lesion heterogeneity. The gray-

level co-occurrence matrix (GLCM) is a matrix whose row and column numbers represent gray values, and the cells
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contain the number of times corresponding gray values are in a certain relationship (angle, distance), as shown in Figure

2. Features calculated on GLCM include entropy (related to heterogeneity), energy (also defined as angular second

moment, also describes heterogeneity of an image), contrast (measures local variation), cluster shade (sensitive to

heterogeneity), homogeneity, dissimilarity, and correlation .

Figure 2. Example calculation of radiomic texture features. Whereas the gray-level co-occurrence matrix (GLCM) relies

on pixel pairs, the gray-level run-length matrix (GLRLM) relies on runs, and the gray-level size zone matrix (GLSZM) relies

on areas of neighboring pixels with the same gray-level.

Gray-level run-length matrix (GLRLM) quantifies consecutive voxels with the same intensity along fixed directions (Figure

2) . It is represented as a two-dimensional matrix in which each element describes the number of times a gray level

appears consecutively in the direction specified. Gray-level size zone matrix (GLSZM) is a matrix in which the elements at

row r and column s store the number of zones (the connected voxels with the same gray level) with gray level r and size s

(Figure 2).

An image is represented in the spatial domain where a vast number of pixel/voxel values are distributed along with the

spatial coordinates. The image can be transformed into the frequency domain by representing the pattern and rate at

which the image intensity values change along with spatial directions. One method is the wavelet transformation which

decomposes the data into high- and low-frequency components. At high frequency, the wavelets can capture

discontinuities, ruptures, and singularities in the original data. At low frequency, the wavelets characterize the coarse

structure of the data to identify the long-term trends. Thus, numerous hidden and significant temporal features of the

original data can be extracted while improving the signal-to-noise ratio of imaging studies .

3.4. Step 4: Feature Selection/Dimensionality Reduction

The process of feature extraction will yield a large number of radiomics features. Using all the extracted features in a

statistical model would lead to overfitting, where the model corresponds too closely to the training dataset, such that it

picks up noise and performs poorly in internal and external validation. The purpose of feature selection is to identify the

optimal set of radiomics features to be taken forward for model building and aim to include model features that are most

informative and robust while removing those that are unstable or provide repetitive information.

Robustness of features can be assessed through test–retest, with the removal of those with poor repeatability. Many

radiomics features will be expected to reflect duplicate information (for example, the diameter, surface area, and volume

of a sphere shape), and these will need to be identified and to select only those that are most informative. Cluster analysis

aims to create groups of similar features (clusters) with high intra-cluster redundancy and low inter-cluster correlation.
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This is often depicted by a cluster heat map as shown in Figure 3. A single feature may be selected from each cluster as

representative and used in the following association analysis. Principal component analysis through different methods

reduces the extracted features to a subset that provides nearly as much information as the whole feature set .

Figure 3. Graphic representation of radiomic feature clustering. Each radiomic feature was compared with all other

features using linear regression analysis. Features were clustered based on the absolute values of the correlation

coefficient of the corresponding regression models and plotted along both axes (ranging from 0 to 1 with greater values

are shown in yellow with increasing intensity). In this example, the yellow blocks along the diagonal identify the clusters

containing the highly correlated radiomic features. The first cluster in the top left corner demonstrated very high

redundancy for radiomic features (represented by the high homogeneity of the yellow blocks). The blue blocks visualize

the low correlation observed between the radiomic features. Adapted from Rizzo et al. .

3.5. Step 5: Model Building

Once the final sets of radiomics features are identified, they can be used as predictor/discriminatory variables of the

classification model. The model building starts by using a training set consists of example cases (training examples) with

input vectors consists of the final set of radiomic features which are paired with desired model output labeled with the

known outcome. The algorithm determines how much weight (importance) is placed on each feature to achieve optimal

model performance. In some cases, logistic regression will be adequate to address a simple classification problem. More

commonly, machine learning algorithms (random forest, neural networks, or least absolute shrinkage and selection

operator) are used to train different models; from these, the model with the best performance is selected.

3.6. Step 6: Validation

Before the predictive model can be applied in a clinical setting, the model’s stability and reproducibility must be assessed.

The first step in model validation is internal cross-validation which uses an internal dataset that has not mixed with the

training data during the model building or feature selection process.

External validation with an independent external dataset is important for the assessment of model performance and

generalizability. The models are able to compute a probability of belonging to a class and not only a discrete value. Model

performance is thus assessed using measures of sensitivity, specificity, receiver operating curves, and area under the

curve (AUC).

5. Current Literature on Radiomics Analysis for Coronary Artery Disease

Recently, there has been increasing research interest in CCTA radiomics to identify new biomarkers associated with

plaque vulnerability (Table 2). This has been facilitated by the ever-growing size of CCTA datasets and registries, and its

unique capability to capture reliable qualitative and quantitative information of coronary plaques and the surrounding

adipose tissue on the entire coronary tree.
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5.1. Radiomics Assessment of Coronary Plaques

Coronary atherosclerotic plaques consist of distinct histological components with different attenuation values on CTA;

each voxel is a separate measurement of the amount of radiation absolved in the given volume. This has enabled the

assessment of plaque morphology in vivo, and several qualitative and quantitative imaging biomarkers are known to

associate with adverse cardiovascular events. Advanced atherosclerotic plaques that are prone to cause ACS are

characterized by large lipid-rich necrotic cores, increased amounts of inflammatory cells, and thin fibrous caps .

Invasive imaging modalities, such as IVUS and OCT offer sub-millimeter spatial resolution and can depict distinct

morphologic markers of plaque vulnerability, which have been validated by histology and clinical investigations .

While CCTA might not have sufficient spatial resolution, its unique ability to non-invasive image atherosclerotic lesions

holds great potential to identify high-risk plaques. Four distinct plaque characteristics (positive remodeling, low

attenuation, spotty calcification, and napkin-ring sign) derived from CCTA have been linked to major adverse

cardiovascular events . However, these visually detectable adverse plaque characteristics show only a modest

correlation with IVUS- or OCT-derived features .

The first study to perform radiomics analysis of the coronary artery demonstrated the feasibility and potential clinical utility

of CCTA radiomics to reliably identify plaques with the napkin-ring sign . This high-risk plaque phenotype is composed

of a thin fibrotic cap above a lipid-rich necrotic core, an extracellular conglomerate within the intima induced by necrosis

and apoptosis of lipid-laden macrophage foam cells . This qualitative CT feature is defined as a plaque cross-section

with a central area of low CT attenuation in contact with the lumen, which is surrounded by a ring-shaped higher

attenuation tissue. Kolossváry et al. compared 30 patients with plaques with the napkin-ring sign to 30 matched patients

with plaques without such sign but with similar degrees of calcification, luminal obstruction, localization, and acquisition

parameters. The study showed that 20.6% of radiomic features showed significantly higher discrimination of the napkin-

ring sign than conventional quantitative measures. Furthermore, parameters incorporating the spatial distribution of voxels

(GLCM, GLRLM, and geometry-based parameters) have a better predictive value than first-order statistics.

In a subsequent study, the radiomics-based ML model has been shown to outperform conventional and histogram-based

CCTA analysis in differentiating between early and advanced atherosclerotic lesions identified by histologic cross-sections

. Analyzing 21 coronary arteries obtained ex vivo from seven male donors, lesions were considered advanced if early

fibroatheroma, late fibroatheroma, or thin-cap atheroma was found. Eight different radiomics-based ML models were

tested, and the least angles regression models provided the best discriminatory power on the training set. The radiomics-

based ML model outperformed expert visual assessment for the identification of advanced lesions (AUC 0.73 vs. 0.65, p =

0.04).

More recently, sodium-fluoride positron emission tomography (NaF -PET) has been introduced as a radionuclide imaging

modality to identify inflammation and microcalcifications in coronary atherosclerotic plaques . Vascular calcification is

viewed as a cellular response to a necrotic, inflammatory microenvironment and also a marker of plaque metabolic activity

. Detecting areas of microcalcification at its earliest stages can help to identify high-risk lesions, but these do not

become detectable on CCTA until late in the natural history of atherosclerosis . In a retrospective analysis,

Kolossváry et al. were able to demonstrate that CCTA radiomic parameters (compared to conventional CT parameters)

consistently correlates better with the invasive and radionuclide imaging markers of high-risk plaques . Among the

calculated radiomic parameters, textural features (fractal dimensions) correlated best with attenuated plaque identified by

IVUS (AUC 0.72, CI 0.65–0.78) and thin-cap fibroatheroma by OCT (AUC 0.80, CI 0.72–0.88). While the surface of high

attenuation voxels correlated best with NaF -positivity (AUC 0.87, CI 0.82–0.91). These microcalcifications were most

likely recorded as voxels with higher HU values but were visually imperceptible. Furthermore, since the microcalcifications

are not grouped in one cluster like the calcified plaques, the surface area of these high attenuation voxels will be larger.

It has been shown that both conventional and nonconventional cardiovascular risk factors (such as cocaine use and HIV

infection) affect the different pathways of atherosclerosis progression at a molecular level . Cocaine use impairs

nitric oxide release and increases the levels of cell and leukocyte adhesion molecules, causing the migration of white

blood cells into the intimal layers. HIV infection causes the chronic activation of the innate immune system, which results

in increased levels of inflammatory cytokines (such as interleukin-6, CD14, and CD163) and activation of white blood cells

resulting in chronic vasculopathy. In a study involving 300 patients with subclinical CAD, Kolossváry et al. demonstrated

that cocaine use, HIV infection and elevated atherosclerotic cardiovascular disease risk were each associated with their

own distinct sets of radiomics parameters (23.7%, 1.3%, and 8.2%, respectively) .
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5.2. Radiomics Assessment of Pericoronary Adipose Tissue

Beyond plaque, it is now established that the coronary artery wall and its pericoronary adipose tissue (PCAT) interact in a

bidirectional manner . Exposure of PCAT to pro-inflammatory cytokines suppress the differentiation of pre-adipocytes

while triggering their proliferation, resulting in numerous smaller adipocytes with fewer intracellular lipid droplets . This

creates a gradient of differing PCAT density with a lipid-rich/less-aqueous phase adjacent to a non-diseased vessel to

lipid-poor/more-aqueous phase adjacent to an inflamed artery. This inflammatory process was paralleled by reduced gene

expression of the adipocyte differentiation markers PPARγ, CCTAT/enhancer binding protein α (CEBPA), and fatty acid

binding protein-4 (FABP4).

Routine CT employs a Hounsfield Units scale of attenuation (reduction in signal), which can be used as a non-invasive

measure of adipose tissue (AT) quality . AT is detected within the window of −190 to −30 HU , and experimental

animal studies have shown lower HU to be associated with more lipid-dense AT . The link between biopsy-proven

PCAT inflammation and CT attenuation was established in a landmark study by Antonopoulos et al. . On ex vivo CT

scans of AT explants and in vivo CCTA, they demonstrated an inverse association of PCAT attenuation with histological

adipocyte size and degree of adipocyte differentiation, with higher PCAT attenuation (less negative HU) reflecting smaller

adipocytes with lower lipid content. This surrogate measure of coronary inflammation has been shown to predict plaque

progression and cardiac mortality in patients undergoing CCTA for suspected CAD and to differentiate stages of CAD 

. However, PCAT attenuation is akin to an intensity-based parameter that simply enumerates the average voxel

intensity values, without considering the spatial relationship among voxels.

Following on from their landmark study establishing the utility of PCAT attenuation, Oikonomou et al. performed radiomics

analysis of their original cohort of 167 patients . The authors found that wavelet-transformed mean attenuation (an

intensity-based metric) was most correlated with the relative expression of TNF-α (a surrogate marker of inflammation).

Higher-order features (such as small area low gray-level emphasis, short-run low gray-level emphasis, and informal

measure of correlation) correlated with relative expression of COL1A1 (a surrogate marker of fibrosis) and CD31 (a

surrogate marker of vascularity). The authors subsequently developed a ML model (random forest) using a pool of 5487

patients who underwent CCTA from either the CRISP-CT study or the SCOT-HEART trial . The selected CCTAs

were then randomly split into a training/internal validation (80%) and an external validation set (20%). In total, 1391

radiomic features for PCAT were included in the model, from 101 patients who presented with MACE at 5 years, against

101 matched controls. Compared with established clinical risk prediction models, the used algorithm was able to

accurately discriminate cases over controls both in the validation study and when applied to the SCOT-HEART study

population (∆C-statistic = 0.126, p < 0.001). In the third part of their study, the authors have demonstrated that there is a

significant difference in the radiomics profile between their cohort of 44 patients with AMI compared with 44 matched

controls. Interestingly, in a subset of 16 patients who underwent repeat CCTA 6 months later, there was no significant

change with the radiomics profile but there was a significant decrease with the Fat Attenuation Index (intensity-based

metrics).

On the other hand, radiomics analysis of PCAT performed by Lin et al. showed that textural (GLCM and GLRLM) and

geometric, rather than intensity-based radiomic features, to be most significant in distinguishing patients with and without

MI . Consistent with the previous study, the authors found no significant change in the radiomics profile at 6 months of

follow-up. This study utilized a state-of-the-art boosted ensemble ML algorithm (XGBoost) to create a predictive model for

identifying patients with MI . Radiomic features provided incremental value over and above PCAT attenuation and

clinical features (including hs-CRP and cardiac risk factors) for discriminating patients with MI.

6. Challenges and Future Perspectives

Radiomics is an exciting new discipline with the potential to increase our knowledge in CCTA imaging inform downstream

decision making. However, like most emerging techniques, there is a need for standardized acquisition protocols and data

analysis techniques to provide a robust framework for radiomics analysis. Several studies have shown that imaging

parameters, reconstruction settings, or segmentation algorithms all affect the radiomics signature of lesions (Table 3) 

. Furthermore, it has been shown that the variability caused by these changeable parameters is in the range or

even greater than the variability of radiomic features of tumor lesions . To date, there are several contributions that aim

to facilitate standardization of radiomics implementation, and data reporting .

Additionally, the current radiomics analysis workflow remains technically complex and time-consuming to be a useful

addition to the daily clinical routine. There is a need to develop user-friendly automated software solutions capable of

implementing radiomics without increasing the clinical load.
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In the future workflow, a useful radiomics tool should seamlessly integrate into the clinical radiological workflow and be

incorporated into or interfaced with the existing RIS/PACS system. Such system should provide a deep learning-based

fully automated segmentation tool with the option for manual correction. Known important radiomics features could then

be displayed alongside other quantitative imaging biomarkers and the images themselves. The clinician could then use all

the available information to precisely predict the patient’s cardiovascular risk and prescribed personalized preventive

therapy.

Lastly, CCTA radiomics is an emerging research tool and there is a need for prospective data, multi-center studies, and

cost analysis before it has the potential for implementation into clinical workflow. It is also vital to have large datasets

available to optimize external validation and enhance the generalizability of the prediction models. This can be facilitated

by cooperation between academic institutions.

7. Conclusions

For many years, CCTA was regarded as a rule-out test for obstructive coronary artery disease due to its excellent

negative predictive value. Radiomics presents a novel quantitative image analysis technique with the potential to greatly

augment CCTA phenotyping in a manner that enhances our diagnostic and predictive capabilities. CCTA radiomics

features may also provide unique insights into the pathophysiology of atherosclerosis at the tissue level and aid

understanding of the mechanism of the “vulnerable plaque”. However, current clinical data remains in its infancy and

further effort is needed to standardize radiomics analysis protocols among different centers. Moreover, several technical

aspects need to be further investigated to ensure the reliability and generalizability of the radiomic features. Furthermore,

before radiomics can become of the daily clinical routine, further effort is required to render such technology sufficiently

user friendly and time effective. Despite its present technical challenges, there is great promise for radiomics to facilitate

an individualized assessment of cardiovascular biology and risk.
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