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Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly

easier to recognize 3D objects using only RGB images from single viewpoints. 

deep learning  monocular 3D object detection  6D pose estimation

1. Introduction

Deep learning networks have increasingly been extending the generality of object detectors. In contrast to

traditional methods in which each stage is individually hand-crafted and optimized by classical pipelines, deep

learning networks achieve superior performance by automatically deriving each stage for feature representation

and detection. In addition, new approaches for data-driven representation and end-to-end learning with a

substantial number of images have led to significant performance improvements in 3D object detection. With the

evolution of deep representation, object detection is being widely used in robotic manipulation, autonomous driving

vehicles, augmented reality, and many other applications, such as CCTV systems.

Beyond the significant progress in image-based 2D object detection, 3D understanding of real-world objects is an

open challenge that has not been explored extensively thus far. In addition to the most closely related studies 

, we focus on investigating deep learning-based monocular 3D object detection methods. For location-

sensitive applications, conventional 2D detection systems have a critical limitation in that they do not provide

physically correct metric information on objects in 3D space. Hence, 3D object detection is an interesting topic in

both academia and industry, as it can provide relevant solutions that significantly improve existing 2D-based

applications.

Camera sensors that capture color and texture information have emerged as an essential imaging modality in

many computer vision applications. The passive camera sensors do not interfere with other active optical systems,

and always work well with them when needed. For image-based deep representations that encode depth cues,

monocular images are also highly cost-effective. Owing to considerable accumulations of annotations for RGB

databases, the data-driven representations using deep neural networks make monocular 3D object detectors even

more advantageous without expensive depth-aware sensors or cameras at additional viewpoints.

2. Background on Object Detection
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Given an image with a pixel grid representation, object detection is the task of localizing instances of objects with

bounding boxes of a certain class. An important contribution in solving the 2D object detection problem is the use

of region-based convolutional neural networks (R-CNNs), which involves two main stages: region proposal and

detection. The region of interest (ROI) of an image is proposed on the basis of certain assumptions, such as color,

texture, and size. The ROI is cropped to feed a CNN that performs the detection. By combining prior knowledge

and labeled datasets, the two-stage detection framework has emerged as a classical model in both 2D and 3D

object detection .

Another important algorithm for object detection is the YOLO algorithm . It does not have a separate region

proposal stage; instead, it divides an input image roughly into an N × N grid. Based on each grid cell, localization

and classification tasks are performed together in a unified regression network, followed by further post-processing.

Early end-to-end approaches performed poorly in the detection of small or occluded objects. As new datasets are

being developed, there have been significant innovations in end-to-end networks . As fewer proposal steps

with hand-crafted features are involved in single-stage methods, they are computationally less complex than multi-

state approaches that usually prioritize detection accuracy. In practice, there was active competition between multi-

stage and single-stage methods for object detection tasks. 3D object detection is similar to this overall flow.

The goal of 3D object detection systems is to provide 3D-oriented bounding boxes for 3D objects in the 3D real

world. The 3D cuboids can be parameterized by 8-corners, 3D centers with offsets, 4-corner-2-height

representations, or other encoding methods. In monocular 3D object detection methods, we seek the oriented

bounding boxes of 3D objects from single RGB images. Similarly to 2D-image-based object detection systems,

monocular 3D object detection methods can be also categorized into two main types, as shown in Figure 1. From a

taxonomic point of view, we have extended them to six sub-categories, according to the main distinguishing

features of each sub-category. As shown in Table 1, we have summarized the main features of ten high-quality

datasets, such as descriptions with quick links, input data types, contextual information for different applications,

the availability of synthetic RGB images, the number of 3D object instances/categories, the number of

training/testing images, and lastly, other related references, which can be used for future research. In Table 2, we

have briefly explained key features of the most representative works for each category and the related databases,

computational time, and so on. All of those methods use powerful algorithms that can only run on a high-

performance system using GPUs, and we did not pay attention to lightweight deep learning models for lower-power

embedded/mobile systems.
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Figure 1. Overview of the 2D/3D monocular object detection methods 

.

Table 1. Datasets used for monocular 3D object detection.

[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23]

[24][25][26][27][28][29][30][30]

Dataset Description Data Type Scene
Type Syn. # 3D

Objects # Images Related
References

PASCAL3D+

A Benchmark
for 3D Object
Detection in
the Wild
(WACV 2014)

RGB + 3D
models

Indoor +
Outdoor

Real
3000 per
cate. 12
categories

>20,000

PASCAL VOC
, ImageNet
, Google

Warehouse

SUN RGB-D

A Scene
Understanding
Benchmark
Suite (CVPR
2015)

RGB-D Indoor Real
14.2 per
image 800
categories

>10,335
in total

NYU depth v2
,

BerkeleyB3DO
 SUN3D 

ObjectNet
3D 

A Large Scale
Database 3D
Object
Recognition
(ECCV 2016)

RGB + 3D
models

Indoor +
Outdoor

Real
+
Syn.

201,888
inst. 100
objects

90,127

ImageNet ,
ShapeNet ,
Trimble
Warehouse

FAT 

A Synthetic
Dataset for 3D
Object
Detection
(CVPRW
2018)

RGB + 3D
models

Household
Objects

Syn.
1–10 per
image 21
objects

61,500 YCB 

BOP Benchmark for
6D Object
Pose
Estimation
(ECCV 2018,

RGB-D +
3D models

Indoor
(various)

Real
+
Syn.

302,791
inst. in
97,818
real
images

>800 K
train, test
RGB-D
(mostly
synthetic)

LM , LM-O
, T-LESS
, ITODD
, YCB-V
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Table 2. Representative monocular 3D object detection methods.

Dataset Description Data Type Scene
Type Syn. # 3D

Objects # Images Related
References

ECCVW
2020)

(test) 171
objects
(w/texture)

, HB ,
RU-APC ,
IC-BIN , IC-
MI , TUD-L

, TYO-L 

Objectron

Object-Centric
Videos in the
Wild with
Pose
Annotations

RGB
Indoor +
Outdoor

Real

17,095
inst.
(multi-
view) 9
categories

>4 M
(14,819
videos)

Open Images
 Similar to

CAMERA 
(Real/syn.
data)

KITTI 3D 

KITTI Vision
Benchmark
Suite—3D
Objects
(CVPR 2012)

RGB
(Stereo) +
PointCloud

Driving
Scenes

Real
80,256
inst. 3
categories

14,999

Virtual KITTI 2
* Photo-

realistically
simulated DB

CityScape
3D 

Dataset and
Benchmark for
9 DoF Vehicle
Detection
(CVPRW
2020)

RGB
(Stereo)

Driving
Scenes

Real
8
categories

5000 CityScape 

Synscapes
A Photo
Synthetic
Dataset for
Street Scenes

RGB
Driving
Scenes

Syn.
8
categories

25,000

Similar to
CityScape 
(Structure,
content)

SYNTHIA-
AL 

Synthetic
Collection of
Imagery and
Annotation—
3D Boxes
(CVPR 2012)

RGB
Driving
Scenes

Syn.
3
categories

>143 K
ImageNet 
SYNTHIA 
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Method Category Key Feature Related
Datasets Computational TimeCode?

Mono3D 2D-driven
Method

An energy minimization
approach that places object
candidates on the 3D plane,
and then scores each
candidate box via several
intuitive potentials encoding
semantic segmentation,
contextual information, size
and location priors and
typical object shape.

KITTI 3D

It takes 1.8 s in a
single core, but
exhaustive search in
the proposal step can
be done efficiently as
all features can be
computed with
integral images.

Yes

DeepMAN
TA 

3D Shape
Informat.

Simultaneous vehicle
detection, part localization
(even if some parts are

KITTI 3D It is approximately
twice faster than
Mono3D, due to the

No

[15]
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Based on a general understanding of object detection, we review 11 datasets for monocular 3D object detection

and more than 29 recent algorithms. The unique properties of 3D object detection systems, such as different data

representations and the availability of both 2D and 3D annotations, make the 3D detection frameworks more

complicated and interesting.

3. Monocular 3D Object Detection Methods

Method Category Key Feature Related
Datasets Computational TimeCode?

hidden), visibility
characterization, and 3D
template for each detection.
Coarse-to-fine object
proposal with multiple
refinement steps for
accurate 2D vehicle
bounding boxes.

lower resolution of
images in the coarse-
to-fine method,
considerably
reducing a search
space.

MF3D Depth
Estimation

Multi-level fusion scheme
for monocular 3D object
detection utilizing a stand-
alone depth estimation
module to ensure the
accurate 3D localization
and improve the detection
performance.

Cityscape,
KITTI 3D

The inference time
including the depth
module achieves
about 120 ms per
img. on a NVIDIA
GeForce GTX Titan
X.

No Partial
implement.

Pseudo-
LiDAR 

Represent.
Transform

Conversion of an estimated
depth map from stereo or
monocular imagery into a
3D point cloud, which
mimics the real LiDAR, and
takes advantage of existing
LiDAR-based detection
pipelines.

KITTI 3D

The paper does not
focus on real-time
processing. More
effective way to
speed up depth
estimation is
required.

Yes

Deep-6D
Pose 

Direct
Regression

An end-to-end deep
learning framework for
detection, segmentation,
and 6D pose estimation of
3D objects. It directly
regress 6D object poses
without any post-
refinements.

LineMOD
(LM), 

Due to the end-to-
end architecture, it
offers an inference
speed of 10 fps on a
Titan X GPU (not
optimized speed).

No Partial
implement.

Tekin et al. 2D-3D
Correspo.

A single-shot approach for
simultaneously detecting an
object in an RGB image and
predicting its 6D pose
without requiring multiple
stages or having to examine
multiple hypotheses. It
predicts the projected
vertices of the object’s 3D
bounding box.

LM, LM-O

A pose refinement
step can be used to
boost the accuracy,
but it runs at 10 fps.
Without additional
post-processing, it
takes 50 fps on a
single Titan X GPU.

Yes
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Researchers have proposed new methods to overcome challenges for monocular 3D object detection. Here, we

categorize these methods into multi-stage and end-to-end approaches.

3.1. Multi-Stage Approaches

First of all, we can deal with an ill-posed problem by employing prior hypotheses on 3D objects. The prior

knowledge includes semantic, context, shape, and location information, and so on. By performing distinct tasks

linearly, including hand crafting features, 2D boxes of interest can be proposed. Alternatively, we can use standard

2D object detectors with simple deep neural networks. As an example of GS3D , 2D detections are converted

into basic 3D boxes using projection knowledge, which is called guidance. Given the guidance, the 3D bounding

boxes are further refined without expensive stereo data or point clouds.

With an additional 3D shape prior, we can perform 3D object detection through CAD template matching. During the

detection process, a template library will be established, and the network will match the best model in the template

library. In the case of the method in , the 3D template, partial visibility, and partial coordinates of the detected

vehicle are given. Then, these features are considered to estimate the localization and orientation with 2D–3D

model fitting. Even if some parts of the test objects are not visible in the 2D case, vehicle models can be retrieved

via template matching.

As monocular images lack depth information owing to the principle of perspective transformation, we can use deep

learning to predict the depth map of the image first, which serves as the basis for 3D object detection in the next

stage. To achieve effective monocular depth estimation, many algorithms have been developed in recent years. In

addition to using the depth estimation module, the object ROI and depth feature map are fused to calculate the

object coordinate and spatial location information . Using a multi-layer fusion scheme, this framework  can

generate the final pseudo-point cloud information for its application.

Likewise, it is also a popular algorithm for converting the image information into point cloud information; the point-

cloud-related network is then used for processing. For another application of representation transform, the

orthographic feature transform (OFT)  maps perspective images to orthographic bird’s eye view (BEV) images in

the deep-learning-based framework. In general, the representation transform selects an application-specific data

representation that is more suitable for the target scenario than the image domain. Hence, it can achieve

satisfactory detection results.

3.1.1. 2D Detection-Driven Methods

Based on PASCAL3D+ , simultaneous 2D object detection and viewpoint estimation was proposed by Su et al.

. Given an input RGB image and a bounding box from an off-the-shelf detector, a deep representation was

tailored specifically for viewpoint estimation. The authors selected category-specific orientations of objects with a

novel loss layer adapted over synthetically generated viewpoint labels. Experimental results indicated that the

performances of both joint detection and viewpoint estimation can be significantly improved on PASCAL 3D+. 2D

images and 3D shapes/scans can be connected through their image synthesis pipeline; thus, information can be

[16]
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transported between the two domains bidirectionally. When training datasets for deep learning need to be manually

annotated, this approach infers 3D information with negligible human effort.

For encoding raw images with different sensor modalities in compact descriptors, Wohlhart et al.  used pair-wise

and triplet-wise constraints on training images and template views. By considering the dissimilarity and similarity of

the descriptors, they efficiently captured both the object categories and the 3D poses. The constraints untangle the

input images with different objects from different views into several clusters, which are not only well separated but

also structured as the corresponding sets of 3D poses. The Euclidean metric between descriptors is sufficiently

large when the descriptors are given from different objects. Furthermore, when the encoded descriptors are given

from the same object, the distance is directly associated with the different 3D poses of the object. In this manner,

the learned descriptors can be generalized to classify unseen objects as well. This approach requires binary masks

of the objects of interest; however, it works well with either RGB or RGB-D images of the LineMOD dataset .

To use a standard CNN method for high-quality detections, Chen et al.  assumed that objects are always on the

ground plane. Initially, given a set of category-specific object proposals, the monocular 3D object detection is

formulated as an energy minimization task that optimally locates object candidates in the 3D world. Based on prior

information such as object size, location, shape, segmentation, and contextual information, each intuitive loss

function accurately optimizes a 3D box. Hence, Mono3D  uses two stages with a 2D object detection network.

The detection performance of this approach was quantitatively confirmed on the challenging KITTI benchmark.

When objects have significant truncation, occlusion, and scale variations in the CNN-based detection pipeline,

region proposals can often be a bottleneck. To alleviate this issue, subcategory-aware CNNs  have an

interesting region proposal network whereby the proposal step is guided by subcategory information. The

subcategory concept refers to categories of objects that share similar attributes, such as 3D shape and pose.

Based on this key assumption, the SubCNN considers a new detection network for joint detection and subcategory

classification. In addition, test objects at different scales are handled using image pyramids in an efficient manner.

While exploring the effects of subcategory information on CNN-based object detection, extensive experiments were

conducted on the PASCAL VOC 2007, PASCAL3D+, and KITTI detection benchmarks.

In GS3D , 2D detections are converted into basic 3D boxes using projection knowledge, which is called

guidance. Given the guidance, the 3D bounding boxes are further refined without expensive stereo data or point

clouds. To remove representation ambiguities in 2D bounding boxes, the underlying 3D structure in the surface

feature is extracted. In practice, coarse cuboids are reported to have sufficient accuracy for determining the 3D

bounding boxes of objects by refinement. To refine the 3D detections, the surface feature extraction module, which

is an affine extension of RoIAlign, is also used. In this framework, the complex residual regression problem is

reformulated as a classification task, which is much easier to train. Finally, the discriminative ability is enhanced by

the quality-aware loss. This approach was evaluated using the KITTI 3D benchmark.

Figure 2 shows 2D detection-driven GS3D. 2D detections and the orientations of target objects are obtained using

the CNN-based model (2D+O subnet). Then, the proposed algorithm generates the guidance using the given 2D

[62]
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bounding box and orientation with a projection matrix. The refinement model (3D subnet) uses the extracted

features from visible parts and 2D detections of the projection guidance. Instead of direct regression, the

reformulated classification task is adopted by the refinement model with the quality-aware loss to achieve a more

accurate result.

Figure 2. Overview of GS3D .

3.1.2. 3D Shape Information

While Mono3D , an optimization-based pioneering method, does not show satisfactory accuracy and speed, its

successor, Mono3D++ , achieves improved performance with better template matching, as does the Ceres

toolbox . Mono3D++  uses coarse and fine 3D hypotheses to infer the object shape and pose from one RGB

image. Specifically, a fine representation for vehicles is generated by morphable wireframe models with different

shapes and poses. For lower sensitivity to 2D landmark features, a coarse representation aims to model 3D

bounding boxes to improve stability and robustness. For joint energy minimization with a projection error, three

priors are considered, namely, vehicle shape, a ground plane constraint, and unsupervised monocular depth.

3D shape information-based methods tend to become slow when the number of shape templates or object poses

increases, because hand-crafted steps for comparing them are required for optimization. To tackle this problem

with some physical quantities, Konishi et al.  proposed a new image feature based on orientation histograms of

random projection images from CAD models. Similarly, in , coarse initialization was adopted for 3D poses of

texture-less objects. In , temporally consistent, local color histograms were used for pose estimation and

segmentation of rigid 3D objects. For handheld objects, the statistical descriptors can be learnt online within a few

seconds.

Instead of optimizing separate quantities, Chabot et al.  proposed a multi-tasking network structure for 2D and

3D vehicle analysis from a single image. For simultaneous part localization, visibility characterization, vehicle

detection, and 3D dimension estimation, the many-tasks network (MANTA) first detects 2D bounding boxes of

vehicles in multiple refinement stages. For each detection, it also gives the 3D shape template, part visibility, and

part coordinates of the detected vehicle even if some parts are not visible. Then, these features are considered to

estimate the vehicle localization and orientation using 2D–3D correspondence matching. To access the 3D

information of the test objects, the vehicle models are searched for template matching. The real-time pose and

orientation estimation uses the outputs of the network in the inference stage. At the time of publication, this

approach was the state-of-the-art approach using the KITTI 3D benchmark in terms of vehicle detection, 3D

localization, and orientation estimation tasks.
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As shown in Figure 3, an input image is passed forward to the deep MANTA network where convolution layers with

the same weights have the same color. The existing architecture is split into three blocks. With these networks, the

object proposals are refined iteratively until the final detection that is associated with the part’s coordinate, the

part’s visibility, and the template similarity. Moreover, non-maximum suppression (NMS) removes some redundant

detections. Based on the outputs, the best 3D shape is chosen in the inference stage. 2D and 3D pose

computation is then performed with the associated shape.

Figure 3. Overview of the deep MANTA approach .

In the ROI-10D algorithm , a monocular deep network directly optimizes a novel 3D loss formulation and then

lifts a 2D bounding box to 3D shape recovery and pose estimation. Using CAD templates and synthetic data

augmentation, deep feature maps are generated and combined to obtain the shape dimensions. Then, shape

regression is performed to obtain the object information. In particular, the pose distributions are well analyzed in the

KITTI 3D benchmark. In metrically accurate pose estimation, learning synthetic data is useful for increasing the

pose recall; however, some hand-crafted modules such as 2D and 3D NMS have a strong influence on the final

results.

3.1.3. Depth Estimation

On the basis of deep-learning-based monocular depth estimation, Xu and Chen  proposed the multi-level fusion-

based 3D object detection (MF3D) algorithm, which combines the Deep3Dbox algorithm  and a standard depth

estimation module. Using deep CNN features, it basically uses the existing detectors. In addition to 2D proposals,

the disparity estimation is computed to generate a 3D point cloud. Thus, the deep features derived from the RGB

images and the point cloud are fused to enhance the object detection performance. The depth feature map and the

ROI for objects are combined to obtain the 3D spatial location. The key idea of this framework is to use the multi-

level fusion scheme, taking advantage of the standalone module for disparity computation. Experimental results

showed that the performance of 3D object detection can be boosted by 3D localization. Figure 4 shows sub-

networks of the MF3D framework . The task-specific modules are responsible for objectness classification, 2D

box regression, and disparity prediction. Based on region proposals and point cloud maps from the estimated

disparity, the 3D bounding box of the object is optimized and visualized as shown in the figures on the right.

[18]
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Figure 4. MF3D for 3D object detection from monocular images .

MonoGRNet  uses depth estimation for similar reasons. However, it does not require precise pixel-level depth

annotation; only instance-level depth is considered for 3D localization. The unified MonoGRNet uses four sub-

networks for instance depth estimation (IDE), 2D object detection, 3D localization, and corner regression. In the

IDE module, the depth of a target object is predicted at the center of its 3D bounding box. With sparse supervision,

this network performs depth inference only on the areas of objects detected as 2D bounding boxes. By avoiding

depth estimation for the entire image, it reduces the computational requirements considerably. The global 3D

position is achieved by simply estimating the object location in the vertical and horizontal dimensions. Then, the

corner coordinates are regressed in the local context. By optimizing the poses and positions of 3D bounding boxes,

MonoGRNet is trained in the global context.

3.1.3. Representation Transform

Pseudo-LiDAR  assumes that the main innovation for bridging the gap between LiDAR-based and pure image-

based 3D object detection is the computational representation itself for expressing the 3D scene. In other words,

the point cloud representation may be more suitable for monocular 3D object detection than the image-based

representation with the same quality of depth information. Thus, the image-based depth maps are converted into

the proposed pseudo-LiDAR representations mimicking real liDAR signals. For this reason, the deep ordinal

regression network (DORN)  has been exploited for monocular depth estimation, and the mathematical

relationship between the 2D image coordinates and the 3D pseudo-point cloud has been derived. After processing

two additional networks for pseudo-point data, the representation transform makes it possible to apply any LiDAR-

based algorithms to monocular 3D object detection.

The BEV image is another popular representation for applications involving autonomous vehicles. A common

technique for converting images into BEV images is inverse perspective mapping (IPM); however, it typically

assumes that all the pixels should be on the ground plane and it requires accurate camera parameters for

estimating the plane homography. Without needing to calibrate extrinsic parameters, the OFT  maps perspective

images to orthographic BEV images in the deep-learning-based framework. The overall architecture and its output

is shown in Figure 5. To encode camera images, the authors used a front-end ResNet-18 architecture and

accumulated image-based features into a voxel-based representation. The voxel features were then collapsed

along the vertical dimension to yield orthographic ground plane features. Another network was finally employed to

remove the distortional effects of perspective projection and refine the BEV map. The top-down network processes

these features in the BEV space. At each location on the ground plane, it predicts a confidence score S, a position

[21]
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[23]
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offsetpos, a dimension offsetΔdim, and an angle vectorang. Reasoning in the 3D space improves the performance,

and the network is robust to objects that are distant or occluded.

Figure 5. Architecture overview for the orthographic feature transform .

In fact, the method proposed in  is similar. The two-phase approach basically uses IPM to infer the distance from

the 3D scene. In the first phase, camera motions such as pitch and roll rotations are removed using inertial

measurement units. The front view is corrected and projected onto the BEV via the IPM module. In the second

phase, the position, orientation, and size of the vehicle are detected by the CNN. By canceling the camera pitch

and roll rotations, a vanishing point is moved to infinity so that it is not affected by any vehicle attitude. The

resulting projection image is parallel and linear with respect to the x-y coordinate system of the vehicle. For 3D

localization of objects in the real world, the bounding box detected from the BEV is transformed by the inverse

projection matrix for conversion into metric units. The proposed algorithm was quantitatively validated using KITTI

3D.

The representation transform is also a promising candidate for robotics, augmented reality, and 3D scene

understanding. Wang et al.  recently proposed a novel normalized object coordinate space (NOCS) for indoor

applications. It defines a shared space with consistent object orientation and scaling. To estimate the metrically

accurate size and pose of unseen objects, the NOCS map is predicted by the proposed network and used with the

depth map for pose fitting. Extensive experiments on the CAMERA dataset  demonstrated that the proposed

method can estimate the sizes and poses of unseen object instances robustly in real environments.

3.2. End-to-End Approaches

Some recent methods directly return 3D location information of objects and pose parameters of a camera. For

example, a well-known deep representation uses the shared 2D and 3D detection space to build an independent

monocular 3D area recommendation network, which achieved the best performance at the time of its publication

. In practice, the space for directly searching for rotation parameters is nonlinear, making it difficult for the CNN

[24]
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to recognize the rotation of an object. To avoid this problem, some algorithms have been proposed to discretize the

rotation space or refine the result iteratively. Post-processing is often crucial for direct regression.

Meanwhile, algorithms that use key points for an algebraic solver do not directly obtain the pose of the object from

a monocular image, but focus on 2D–3D point correspondences to find a firm geometric model using the

perspective-n-point (PnP) algorithm . 2D key point detection is easier than 3D localization and rotation

estimation; however, it requires a model of a known 3D object and some predefined key points. One of the clear

trends is to increase the number of matching pairs. For example, a pixel-wise voting network (PVNet)  predicts

pixel-level indicators corresponding to the key points so that they can handle truncation or occlusion of object parts.

Each pixel votes for the predefined key points, which are optimized by the Ceres toolbox . PVNet can achieve

good results compared to the previous algorithms.

In this section, we will review these methods using end-to-end CNNs with monocular images.

3.2.1. Direct Regression

Mousavian et al.  proposed Deep3Dbox, a method that estimates the 3D pose and the size of the 3D bounding

box of an object. Similarly to previous 2D-based object detectors, it partitions the parameter space of the 3D

bounding boxes into multiple bins (MultiBin). From the shared convolution features, the proposed architecture

estimates the dimensions, angles, and confidences using fully connected layers, which can facilitate robust

MultiBin-based regression. Instead of using the L2 loss function to extract a rotation angle directly, the angle is

separated into numerous bins. Then, the confidence of each bin and the offset are predicted using the residual of

the center bin. In the object space size estimation, the L2 loss function is directly used to compute the offset of the

space size. After determining the size and rotation angle of the object, we can restore the object’s 6D pose by

computing the rotation matrix of the object. This method outperforms other previous methods in terms of the

orientation accuracy on the KITTI dataset and viewpoint estimation on Pascal3D+.

Xiang et al.  proposed PoseCNN for 6D object pose estimation. It consists of feature extraction, embedding, and

classification/regression blocks. The feature extraction network is based on a single-shot detector (SSD) . Here,

the extracted features are shared among all the tasks performed by the second stage. Semantic labeling can

provide rich information for the objects, and this pixel-level classification is effective at dealing with occlusions.

Inspired by the implicit shape model, it can regress the center position and object distance. It is difficult for the CNN

to regress the 3D rotation matrix directly owing to the nonlinearity of the target space. Hence, a discretization

scheme was proposed for the space of rotation. However, the accuracy of estimating the rotation matrix may be

degraded by converting the regression of the rotation into a classification problem. To overcome this problem, in

PoseCNN , two new loss functions were designed for estimating the 3D rotation matrix to handle symmetric

objects and to match object shapes by decoupling the estimations of 3D translation and 3D rotation. Poirson et al.

 also used SSD , the 2D object detector, to integrate the pose estimation for each detected object in the same

network. The previous two-stage approach requires at least three resamplings of the image for region proposals,
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object detection, and pose estimation. By combining these steps into a single network, they achieved very fast

object detection and pose estimation of up to 46 frames on a Titan X GPU.

Deep-6DPose  achieves simultaneous estimations of object detection, segmentation, and pose estimation using

an end-to-end network. Interestingly, it takes advantage of the concept in Mask-RCNN , in order to directly

regress 6D poses of objects without further post-processing. The remarkable contribution of this approach is the

separate regression of translation and rotation matrices using a Lie group. Compared with a conventional

orthonormal matrix or quaternion-based representation, a Lie algebra gives an optimal solution owing to fewer

parameters and the unconstrained condition. Deep-6Dpose achieves rapid processing through its end-to-end

architecture, and it is suitable for various robotic applications.

M3D-RPN  uses a shared space of 2D detection and 3D detection for a single 3D region proposal architecture.

It gives greater weight to the relationship of 2D and 3D aspects. To improve the 3D parameter estimation accuracy,

depth-aware convolution has been proposed for learning more high-level features with spatial information, as

shown in Figure 6. Then, the pose optimization algorithm is adopted for orientation estimation, followed by 2D

detections and 3D projections. Applying M3D-RPN to BEV and 2D and 3D object detection tasks shows the

effectiveness of the single-stage network.

Figure 6. Overview of M3D-RPN . It consists of parallel paths for global and local feature extraction.

Liu et al.  proposed measuring the degree of visual fitting between the object and the projected 3D proposals for

achieving high-precision localization. After regressing the 3D bounding box and the orientation of the object for

constructing suitable 3D proposals, they proposed the fitting quality network (FQNet), which can predict

intersection over union (IoU) in the 3D space between the 3D bounding box and the target object using 2D cues,

as shown in Figure 7. Their motivation was that denoting the projections on the image domain can provide

additional knowledge to better understand the spatial relationship. Matching the object-rendered image with the

input image generates better results compared to the limited accuracy of direct regression. DeepIM  is a new
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refinement method that uses a deep neural network for matching 6D poses iteratively. Given an initial pose, a

relative transformation can be predicted by matching the rendered image with the observed image. As rendering

the object and estimating the 6D pose are complementary, the accuracy of pose estimation increases with iteration.

The separate representation of 3D position and rotation not only achieves accurate estimated poses but also

allows unseen objects to be refined. Experiments on commonly used benchmarks such as LM  and T-LESS 

demonstrated that the proposed method shows significant improvements over previous methods.

Figure 7. Overall pipeline of a deep fitting degree scoring network , which refines an initial bounding box using a

regression module and FQNet.

3.2.2. 2D–3D Correspondences

BB8  is based on the idea of using 2D–3D correspondences for 3D object localization. In the first step, a

network of object segmentation is applied to an input image for localizing the objects. Next, another network is

used to estimate the 2D projections of the interest points of the 3D boundaries around the target objects. The 6D

pose is estimated using the relationship between the 3D bounding box corners and the corresponding projected 2D

points. To handle the rotational symmetry, it restricts the pose ranges in the training stage and introduces a

classifier to estimate the pose ranges at run time. For the final refinement of the estimated poses, it includes a

feedback loop to compare the input image and the rendered object for better prediction of the 2D projected points.

This holistic approach showed more accurate results on the challenging T-LESS dataset .

SSD-6D  applies the SSD concept  to 6D pose estimation. As an extension of SSD for inferring the 3D

location and orientation, it predicts the corner points in the bounding boxes, classes, viewpoints, and in-plane

rotation. For better results, it tries to find a proper sampling for the space of rotation. Interestingly, SSD-6D is

trained using only a synthetic dataset, which can alleviate the difficulties of building a database for new target

objects. SSD-6D can treat depth as an optional modality for hypothesis verification and pose refinement.

[43] [45]

[73]

[75]

[45]

[29] [13]



Monocular 3D Object Detection Methods | Encyclopedia.pub

https://encyclopedia.pub/entry/8454 15/23

Tekin et al.  used the YOLO network  to predict the key points of corresponding objects. The network has a

regular grid to present feature maps spatially. In each cell, the 2D positions of the corner points corresponding to

the 3D bounding boxes are predicted. Then, the 6D pose can be computed using the PnP algorithm for the given

2D and 3D correspondences. However, the predicted 2D points may be insufficient for pose estimation when there

is severe occlusion. To overcome such problems due to occlusion or truncation, Hu et al.  proposed an image-

segmentation-based method to estimate an object’s 6D pose by aggregating numerous local pose estimates,

which can achieve more accurate key point estimations, even in cases of severe occlusion. To combine the pose

candidates into a more robust set of 3D and projected 2D correspondences, confidence measures are computed.

Even in the case of severe occlusion, because it generates precise results based on merging local pose estimates

robustly, it does not adopt an additional refinement process. The proposed algorithm was tested on the challenging

LM-O  and YCB-V  datasets. We believe the future goal of these 2D–3D correspondence approaches is to

incorporate the PnP step into the network to establish a complete, end-to-end framework.

The dense pose object detector (DPOD)  predicts dense multi-class 2D and 3D correspondence maps between

input images and possible 3D models. A 6D pose is computed on the basis of the PnP algorithm and RANdom

SAmple Consensus (RANSAC) for the correspondences. Then, the pose is refined from the initial pose estimation

using the refinement architecture. In contrast to the previous methods that regress projections of the object’s

bounding boxes  or formulate pose estimation as a discrete classification problem , DPOD shows more

robust and accurate 6D pose estimation owing to the dense correspondences. PVNet  also uses a denser key

point prediction method, as shown in Figure 8. Instead of using sparse key points by regression or prediction,

PVNet is used to predict pixel-level indicators corresponding to the key points. This flexible representation can

handle occlusion or truncated key points robustly. The RANSAC-based voting scheme provides the spatial

probability distribution of each key point for estimating 6D poses with an uncertainty-driven PnP algorithm.
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Figure 8. Overview of the keypoint localization in PVNet . The probability distributions of the keypoint locations

are estimated from hypotheses.

As the pose estimation problem belongs to the domain of geometric vision, it is essential to approach it as an end-

to-end optimization to seamlessly combine the geometrically relevant information with the deep learning process.

To this end, the BPnP  was proposed as an effective network module that computes the gradients of

backpropagation by guiding parameter updates in the network using a PnP solver. If the optimization block is

differentiable, the gradients of the PnP solver can be derived accurately via implicit differentiation. Although it

integrates a layer from the PnP solver, the proposed method can be effectively employed to learn feature

representations for various geometric vision problems such as structure from motion, geometric camera calibration,

and pose estimation. For pose estimation, a BPnP-based trainable pipeline achieves higher accuracy by

incorporating the feature map loss with 2D–3D reprojection errors.
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