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Temperature is a critical environmental factor that plays a vital role in plant growth and development. Temperatures
below or above the optimum ranges lead to cold or heat stress, respectively. Temperature stress retards plant
growth and development, and it reduces crop yields. Jasmonates (JAs) are a class of oxylipin phytohormones that

play various roles in growth, development, and stress response.

heat stress temperature stress jasmonates

| 1. Introduction

Plants are unable to move and thus have to cope with various adverse environmental factors, such as extreme
temperatures, drought, salinity, and heavy metal toxicity 12, Being a critical environmental factor, temperature
plays a dominant role in plant growth and development 2, and it determines the geographical distribution of plant
species . As global climate change intensifies, the magnitude and frequency of extreme temperatures are
increasing. Extreme temperatures cause various forms of damage at different stages during plant growth and
development. The general consequences of heat and cold stress include impaired photosynthesis, excessive
accumulation of reactive oxygen species, broken plasma membranes, and altered phytohormone levels BIBIZIEIS]
[20IL1] Eventually, heat and cold stress inhibit plant growth and cause losses in crop yields, posing a serious threat
to food security 22341151 A syrvey showed that wheat, rice, maize, and soybean yields would decrease by
6.0%, 3.2%, 7.4%, and 3.1% on average, respectively, if the global temperature rises by 1 °C M6l | ow
temperatures adversely affect plant growth and development and reduce crop production L2IL7IL8I For jnstance,

it has been estimated that in temperate and high-elevation regions, cold stress accounts for 30—-40% of yield losses
in rice (41201,

Unlike animals, plants are sessile organisms and thus are unable to escape unfavorable temperature conditions.
Instead, plants have evolved a set of sophisticated strategies enabling them to survive under temperature stress.
Plant hormones play a vital role in the initiation of temperature stress response by integrating temperature stimulus
and endogenous signals. For instance, jasmonates (JAs), abscisic acid (ABA), and brassinosteroid (BR) positively
regulate plant response to both heat and cold stress [21[22]123124](25][26] jasmonates (JAs) are a typical class of
phytohormones. The term “jasmonates” generally refers to jasmonic acid and its derivatives, typically including
jasmonyl isoleucine (JA-lle) and methyl jasmonate (MeJA) [Z. In addition to its well-known role in growth and
development, and in defense against pathogen attack and insect herbivory [28129801311132] 5 growing number of

studies have highlighted the vital role of JA in the response to a variety of abiotic stresses, including drought,
salinity, heat, and cold stress response [33][341[35][36][37][38][39][40][41][42][43]
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| 2. JA Biosynthesis and Signaling

The JA biosynthetic pathway and the major enzymes involved have been well characterized and extensively
reviewed [271[291[44]145[46]147][48]  jA biosynthesis starts with polyunsaturated fatty acids released from plastid
membranes through the action of phospholipase (PLA) 49, Current evidence supports the assertion that JA is
derived via the o-linolenic acid (a-LeA, C18:3) pathway and the hexadecatrienoic acid (HTA, C16:3) pathway B9,
As the a-LeA pathway is dominant in the biosynthesis of JA, researchers focus on this pathway to explain JA
biosynthesis (Figure 1A). Overall, four major enzymes are engaged in JA biosynthesis from a-LeA, comprising
lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC), and oxophytodienoic acid
reductase (OPR) BLB2, |n plastids, LOX catalyzes the first step of JA biosynthesis. a-LeA is converted to 13(S)-
hydroperoxy-octadecatrienoic acid (13-HPOT) by LOXs. In Arabidopsis, four LOXs—LOX2, LOX3, LOX4, and
LOX6—are able to oxygenate a-LeA B3l Each LOX may function differentially depending on the types of external
stimuli. For instance, LOX6 is predominantly involved in JA production upon wounding and drought stress [B4155],
Subsequently, 13-HPOT is catalyzed by AOS to produce 12,13(S)-epoxy-octadecatrienoic acid (12,13-EOT). AOS
is a cytochrome P450 enzyme, which uses oxygenated fatty acid hydroperoxide substrates as oxygen donors.
There is only one AOS gene in Arabidopsis, and mutation in AOS leads to disrupted JA biosynthesis in response to
wounding 81, 12,13-EOT is further converted to 12-oxo-phytodienoic acid (12-OPDA), catalyzed by AOC. Four
AOC genes have been identified and found to act redundantly in the biosynthesis of JA in Arabidopsis BZ. Next,
12-OPDA is translocated by the transporter COMATOSE (CTS1) to the peroxisome 8. In the peroxisome, OPDA
is reduced by OPDA reductase (OPR) to produce OPC-8:0. OPRs are encoded by six OPR genes in the
Arabidopsis genome; however, only OPR3 acts on OPDA. OPC-8:0 is then subjected to three rounds of (-
oxidation by acyl-CoA oxidase (ACX), L-3-KETOACYLCOA THIOLASE (KAT), and multifunctional protein (MFP)
B9 Finally, JasmonoylCoA, which is generated through B-oxidation reaction, can be further cleaved by
THIOESTERASE (TE) to produce (+)-7-iso-JA, which is then transported to the cytoplasm. In the cytoplasm,
various JA derivatives are formed, including methyl jasmonate (MeJA) and JA-isoleucine (JA-lle) BYEL The
conjugation of (+)-7-iso-JA with isoleucine produces JA-lle, and the reaction is catalyzed by jasmonate-amido
synthetase (JAR1). The jarl mutant was identified as the first JA-insensitive mutant, and the JA-lle level in mutant
plants is severely reduced 2. The methylation of JA forms MeJA, with catalysis by jasmonate methyl transferase
(IMT). JA-lle and MeJA are active forms of JA, and they can be converted to inactive 12-OH-JA by jasmonate-

induced oxygenases (JO) and jasmonic acid oxidases (JAO) [63][64],
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Figure 1. JA biosynthesis and signaling pathway. (A) A simplified JA biosynthesis pathway from a-linolenic acid (o-

LeA). JA and its derivatives are produced from o-LeA through several sequential steps, which are catalyzed by
lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC) in plastids; OPDA reductase
(OPR) in peroxisomes; and jasmonate-amido synthetase (JAR1) and jasmonate methyl transferase (JMT) in the
cytoplasm. (B) A simplified JA signaling pathway. Three main components are involved in JA signaling: the COI

receptor, the JAZ repressor, and the MYC2 transcription factor.

The JA signaling pathway has been well defined primarily in Arabidopsis and tomato. In brief, it consists of the
receptor CORONATINE INSENSITIVE 1 (COI1), the repressors JASMONATE ZIM-DOMAIN PROTEIN (JAZs), and
the master transcription factors MYCs (Figure 1B). Early genetic screens identified coronatine insensitive 1 (coil),
which is insensitive to the functional homolog of JA-Ile, coronatine. Later studies confirmed that COI1 acts as a
receptor that perceives active JA (63881 COQI1 is an F-box protein 7 that is able to associate with SKP1 and
CULLIN1 to form an E3 ubiquitin ligase complex, SCFO'1, In search of the substrate for SCFCO!, researchers
from three independent laboratories discovered JASMONATE ZIM-DOMAIN (JAZ) proteins, which are repressors
of JA signaling 88169701 jaAZs belong to the plant-specific TIFY family, possessing a core TIF[F/Y]XG motif within
the ZIM (ZN-FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM) protein domain. There are 12
JAZ proteins that have been identified in Arabidopsis 816971l These JAZs are distinct from other proteins in the
TIFY family as they contain a C-terminal Jas motif, SLX2FX2KRX2RX5PY A28l The interaction of COI1 with
the Jas domain of JAZ proteins forms the co-receptor complex 2473 TOPLESS (TPL) and TPL-related proteins
(TPRs) are corepressors that interact with JAZ proteins through the ETHYLENE RESPONSE FACTOR (ERF)-
ASSOCIATED AMPHIPHILIC REPRESSION (EAR) motif. MYC2, a bHLH transcription factor, is the master
regulator of JA signaling and mediates a variety of biological processes. MYC2 is repressed by JAZ proteins and is
released following the degradation of JAZs BSITE Eventually, MYC2 activates various downstream JA-
responsive genes BT8O My C2 plays multifaceted roles in growth and development, defense against biotic

stress, abiotic stress response, and regulation of secondary metabolite biosynthesis. MYC3 and MYC4 are two
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close homologs of MYC2. MYC2 forms dimers with MYC3 and MYC4 to modulate the transcription of various

target genes by binding to the G-box or its variants within the promoters [E281],

| 3. The Role of JA in Cold Stress Response

Cold stress generally refers to two types of stresses: chilling stress, with a temperature ranging from 0 °C to 15 °C,
and freezing stress, with a temperature below 0 °C. Cold stress is one of the most severe environmental stresses
in plants. Cold stress inhibits plant growth and development and threatens crop productivity. To cope with cold
stress, plants have evolved a wide variety of mechanisms. JA, a classical phytohormone, positively mediates plant
cold response. Plenty of studies have shown that JA production is increased in plants in response to cold stress,
which implies the potential role of JA in the response to cold stress. For instance, upon cold stress, JA
accumulation is markedly enhanced in Arabidopsis, tomato, and rice [82I83I[84I85] Consistent with increased JA
accumulation, the expression of JA biosynthesis genes is induced by low temperatures. As observed in rice, cold
stress triggers the expression of OsLOX2, OsAOC, OsAOS1, and OsAOS2 and promotes endogenous JA levels
831 Similarly, in Artemisia annua, higher levels of JA and increased expression of JA biosynthesis genes were
observed following cold treatment 221, Furthermore, the application of exogenous MeJA potentiates cold tolerance
in a variety of species, including banana, tomato, loquat, orange, guava, mango, and peach [24I8I87]88][89][90] |

these results support the assertion that JA is involved in plant cold stress response.

The role of JA in cold response is further substantiated by mutant or transgenic plants with altered JA biosynthesis.
Arabidopsis plants with mutations in AOS and LOX2 show impaired JA biosynthesis, and these plants are
hypersensitive to low temperatures 2. Another study showed that MaLBD5 (lateral-organ boundaries domain) is
associated with the JA-mediated cold response in banana fruits. MaLBD5 promotes JA biosynthesis by
transactivating the expression of MaAOC2 81, Furthermore, a genetic study showed that HAN1, a rice gene that
encodes an oxidase that catalyzes the active form JA-Ile to the inactive form 120H-JAlle, negatively regulates cold
tolerance 22, In addition, transgenic Arabidopsis plants overexpressing GLR1.2 (glutamate-like receptor) and
GLR1.3 display enhanced accumulation of JA by activating the expression of JA biosynthesis genes and increased

cold tolerance 231,

In an attempt to understand the underlying mechanisms of JA-mediated cold tolerance, numerous studies have
revealed that major components of the JA signaling pathway play a critical role in cold tolerance in plants. Being
the master regulator of JA signaling, MYC2 is of great importance in cold response. In Poncirus trifoliata, MYC2
targets a betaine aldehyde dehydrogenase gene (PtrBADH-I) and directly upregulates it, thereby increasing the
production of glycine betaine. A high level of glycine betaine confers cold tolerance in Poncirus trifoliata B4, In
tomato, MYC2 targets and upregulates ADC1, which is a putrescine biosynthesis gene, leading to enhanced
putrescine accumulation and decreased cold damage [83l. Under cold conditions, MYC2 directly stimulates the
expression of SIGSTU24, a JA-responsive glutathione S-transferase gene, and consequently alleviates cold-
induced oxidative stress 84, These results indicate that JA positively regulates cold response by promoting the

production of antioxidant enzymes and non-enzymatic cryoprotective compounds through MYC2.
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The module ICE (inducer of CBF expression)-DREB1/CBF (dehydration-response element-binding protein 1/C-
repeat binding factors) plays a vital role in cold response in plants 2326 DREB1/CBFs are AP2/ERF
(APETALA2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factors capable of binding to DREs
(dehydration-responsive element) in the promoters of target genes and acting as key regulators of COR (cold-
regulated) genes [E7B8I99  previous studies have identified three DREB1/CBF genes: DREBIA/CBF3,
DREB1B/CBF1, and DREB1C/CBF2 8811001 Co|d stress leads to rapid induction of these genes, and mutations in
them severely impair cold tolerance 221921 OQverexpression of CBF genes induces the expression of numerous
cold-inducible genes and confers cold tolerance [208I104] |CE1 is an MYC-like basic helix-loop—helix transcription
factor that acts as a master regulator in the DREB1/CBF pathway. In the past two decades, a large number of
studies have established the role of ICE1 in the expression of DREB1/CBF. However, recently, it has been reported
that repression of CBF3 in icel-1 mutant plants is due to DNA-methylation-mediated gene silencing caused by
inserted T-DNA, not by ICE1 mutation, and that ICE1 is not associated with CBF3 expression [202][106][107]

JAZs, the repressors of JA signaling, are important for the JA-mediated cold response, and the ICE-CBF module is
involved in this process. In Arabidopsis, JAZs interact with ICEs to repress the expression of CBFs. Upon cold
treatment, JA accumulation is increased, promoting the degradation of JAZs, thus releasing ICEs. ICEs then
activate CBFs, conferring cold tolerance in Arabidopsis 2. In apple, MdJAZ1 and MdJAZ2 interact with the
transcription factor BBX37 and suppress the transcription of MdCBF1 and MdCBF4. In response to cold stress,
increased JA leads to the degradation of MdJAZ1 and MdJAZ2, allowing BBX37 to activate MdCBF1 and MdCBF4
(208 |nterestingly, under cold stress, the expression of MaMYC2a and MaMYC2b is tremendously induced in
banana, and MaMYC2 physically interacts with MalCE1, thus triggering the expression of MaCBF1 and MaCBF2
(871 |n Arabidopsis, SFR6 (SENSITIVE TO FREEZING 6) controls the expression of cold-regulated genes by acting
on the CBF module [2OALI0I1LL Meanwhile, SFR6 is also involved in the regulation of JA responses [112]113]

These studies highlight the role of JA in cold response via the induction of CBFs.
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