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Swarm exploration by multi-agent systems relies on stable inter-agent communication. However, so far both

exploration and communication have been mainly considered separately despite their strong inter-dependency in

such systems. By a semantic communication design, communication efficiency in terms of latency, required data

rate, energy, and complexity may be improved. 

distributed exploration  probabilistic factor graphs  machine learning  semantic communication

goal-oriented communication

1. Introduction

In hazardous or inhospitable environments, exploration, and monitoring tasks impose high risks on human

operators. Typical examples include emergency scenarios caused by nuclear or toxic accidents, as well as

exploration scenarios in extraterrestrial environments . Here, the use of mobile robotic systems is required.

Cooperation in a multi-agent system, such as a swarm, is able to accelerate such reconnaissance missions or

mapping tasks significantly . An example of swarm exploration on an extraterrestrial surface, e.g., on Mars, is

shown in Figure 1: Agents distribute and process sensed data along the arrows with the aim to reconstruct an

unknown physical or chemical process 𝑢(𝜹,𝑡)  of interest at position 𝜹  and time t or relevant parameters of such

processes in the domain ΩΩ. For instance, a process of interest can be the spatio-temporal distribution of gas

concentration. There, a relevant process parameter is the location of gas sources.
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Figure 1. A swarm of autonomous agents explores an unknown physical process 𝑢(𝜹,𝑡) over spatial coordinate

𝜹 and time t in the spatial domain ΩΩ.

To achieve this goal, swarm exploration incorporates methods for distributed sensing, optimized (intelligent)

information gathering , and agent movement/action coordination (exploitation). In particular, it requires the

communication of locally and instantaneously available exploration measurements between agents. The underlying

communication network acts as a data exchange backbone and is the tool that eventually enables the “diffusion” of

local information to all agents and, hence, assists global decision-making. Communication is therefore always an

integral part of a swarm exploration.

Swarm exploration often considers reliable and error-free communications, i.e., ideal links. However,

communication systems do add uncertainty to the exchanged information. This means that studies so far paint an

optimistic picture of the exploration performance metric. For instance, communication uncertainty needs to be

considered when predicting new sampling positions for agents, since locations causing severe communication

degradation will be useless for distributed information processing/exploration purposes.

2. Distributed Multi-Agent Exploration

Distributed exploration requires cooperative computational techniques, which are also referred to as “in-network

processing” . The estimation is done such that each node conducts “local” computations and shares intermediate

results with its neighboring nodes. The key to these computations is a decomposition of a network-global objective

function into a sum of “local” sub-objectives, typically with additional constraints that ensure a network-wide

convergence to a specific solution. A special class of such algorithms is called consensus-based algorithms, see,

[4]
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e.g., . This class of algorithms enforces consensus over the whole network, i.e., each node converges

to the same solution. Here, the Alternating Directions Method of Multipliers (ADMM)  has gained popularity for

in-network processing due to its ability to handle different types of constraints on model parameters.

As an alternative, diffusion-based approaches (see e.g.,  and references therein) have been proposed that

estimate a quantity in a distributed fashion within a network without enforcing consensus. Such approaches are

also based on solving an optimization problem that permits a decomposability of the network objective function.

One of the applications of interest for swarm exploration is seismic imaging of subsurface structures. In particular,

distributed subsurface imaging techniques based on the full waveform inversion and the traveltime tomography

have been proposed recently that can be directly applied to decentralized multi-agent networks, s. . Full

waveform inversion is a high-resolution geophysical imaging method based on the wave equation . For a

distributed implementation of this method, a global cost function is decomposed over the receivers and local

gradients and subsurface images are computed. Following the diffusion-based information exchange, these

gradients, and images are exchanged among the receivers in order to obtain a global estimate of the subsurface

image.

For the exploration of complex physical processes that are described in terms of Partial Differential Equations

(PDEs), classical approaches typically do not provide a direct assessment of statistical information about the

quality of estimated parameters. In contrast, Bayesian inference methods postulate randomness of the parameters

of interest and are from the domain of machine learning . As such, instead of a point estimate, parameter

distributions are computed. FGs can be used to describe probabilistic relationships between all model parameters

 and parameter estimation is then realized using message passing schemes . Bayesian tools have been used

in the past for inverse PDE problems (see, e.g., ). In , the authors use FGs for inverse PDE modeling in a

distributed setting and to localize gas sources based on concentration measurement samples. In essence, random

variables are used to represent the gas concentration distribution in each mesh cell of the discretized PDE. An FG

is then applied to capture temporal and spatial dependencies between concentration variables.

Having inferred the model parameters, one can then design a movement planning strategy that exploits the

statistics of the estimated model parameters to optimally guide agents to new, more informative sampling locations

to accelerate the exploration process. The work of  proposes information-driven approaches that guide agents

based on mutual information or entropy. Furthermore, some swarm exploration approaches make use of (deep)

Reinforcement Learning (RL) for the movement strategy of the agents . However, the success of these

methods relies heavily on the availability of suitable training data to learn an adequate movement strategy.

Especially in applications with scarce training data, such approaches are likely to fail or perform unreliably in real

environments: The use of synthetic training data introduces a model mismatch that is learned by the system.

Furthermore, the learned behavior cannot be easily corrected a-posteriori due to the structure of the Deep Neural

Network (DNN) that cannot be interpreted.

All aforementioned methods for distributed exploration and path planning heavily rely on agent-to-agent

communication of the exchanged data or messages. Hence, the quality of the inter-agent communication links has

[6][7][8][9][10][11]

[12]

[13][14][15]

[15][16]

[17]

[18]

[19] [20]

[3][21] [3]

[22]

[23][24][25]



Swarm Exploration and Communications | Encyclopedia.pub

https://encyclopedia.pub/entry/47357 4/9

a direct impact on the exploration result. However, the majority of state-of-the-art methods for distributed

exploration do not sufficiently take into account the erroneous nature of the communication links. Most studies

consider erroneous inter-agent links by integrating noise and link failures into the link model, see, e.g., . The

algorithmic solutions are then adapted to these erroneous communication links.

3. Machine Learning for Communications

The probabilistic view often used in exploration is vital for the field of communications. Since Claude Elwood

Shannon laid the theoretical foundation of communications and information theory , probabilistic models have

found their way not only into exploration but also into one prominent example of recent research interest: Artificial

Intelligence (AI), in particular its subdomain Machine Learning (ML).

In the last decade, ML saw the emergence of powerful (probabilistic) models known as Deep Neural Networks

(DNNs). Thanks to its ability to approximate arbitrarily well and to learn abstract features, it has led to several

breakthroughs in research areas where there is no explicit domain knowledge but data to be collected, e.g., pattern

recognition, generative modeling, and RL . Previously considered intractable to optimize, automatic

differentiation on dedicated Graphics Processing Units (GPUs) and innovative architectures now enable data-

driven training of DNNs.

The impressive results showing equal or superhuman performance have not gone unnoticed by the

communications community. Thus, much of the recent literature focuses on the data-driven design of the physical

layer with DNNs, e.g., for wireless, molecular, and fiber-optical channels . One prominent early example of such

an approach is the Auto Encoder (AE) where a complete communication system is interpreted as one DNN and

trained end-to-end .

In wireless communications, a number of channel models have been proposed and are widely used, so that key

gains from using ML are expected in approximating optimal algorithmic structures that are otherwise numerically

too complex (algorithm deficit) to be realized. For example, the computational complexity of Maximum A-Posteriori

(MAP) decoding of large block-length codes or MAP detection, e.g., in massive Multiple Input Multiple Output

(MIMO) systems, grows exponentially with code/system dimensions. In fact, e.g., using plain DNNs for decoding

enables lowering of decoding complexity while approximately maintaining MAP error rate . To improve

generalization and reduce training complexity, more recent works focus on the idea of deep unfolding . In

deep unfolding, the parameters of a model-based iterative algorithm with a fixed number of iterations are untied

and enriched with additional weights as well as non-linearities. The resulting DNN can be optimized for

performance improvements in MIMO detection  and belief propagation decoding . An example of an

algorithm deficit on a higher level beyond the physical layer is resource allocation, where it is difficult to analytically

express the true objective function or to find the global optimum. Thus, Deep RL has proven to be a proper means

.

Semantic Communication
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In contrast to wireless channels, a model deficit holds for molecular and fiber-optical channels. Note that it applies

in particular to the example of this article: integration of semantic context, here exploration, into communication

system design. The idea of semantic communication emerged in the early 1950s  but has seen a lot of

research interest only recently with the rise of ML application to the physical layer .

Its notion traces back to Weaver  who reviewed Shannon’s information theory  in 1949 and amended

considerations w.r.t. semantic content of messages. Oftentimes quoted is his statement that “there seem to be

[communication] problems at three levels” :

How accurately can the symbols of communication be transmitted? (The technical problem).

How precisely do the transmitted symbols convey the desired meaning? (The semantic problem).

How effectively does the received meaning affect conduct in the desired way? (The effectiveness problem).

Weaver saw the broad applicability of Shannon’s theory back in 1949 and argued for the generality of the theory at

Level A for all levels .

The generic model of Weaver was revisited by Bao, Basu et al. in  where the authors define semantic

information sources and semantic channels. In , the authors consider joint semantic compression and channel

coding at Level B with the classic transmission system, i.e., Level A, as the (semantic) channel. By this means, the

authors can derive semantic counterparts of the source and channel coding theorems.

Recently, drawing inspiration from Weaver, Bao, Basu et al.  and enabled by the rise of ML in

communications research, DNN-based natural language processing techniques, i.e., transformer networks, were

introduced in AEs for the task of text and speech transmission . The aim of these techniques is to learn

compressed hidden representations of the semantic content of sentences to improve communication efficiency, but

exact recovery of the source (text) is the main objective. This leads to performance improvements in semantic

metrics, especially at low Signal-to-Noise Ratio (SNR) compared to classical digital transmissions.

As a result, semantic communication is still a nascent field: It remains still unclear what this term exactly means

and especially its distinction from Joint Source-Channel Coding (JSCC) . As a result, many survey papers

aim to provide an interpretation, see, e.g., .
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