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Alzheimer’s disease (AD) is the most common cause of dementia, characterised by a marked decline of both

memory and cognition, along with pathophysiological hallmarks including amyloid beta peptide (Aβ) accumulation,

tau protein hyperphosphorylation, neuronal loss and inflammation in the brain. Additionally, oxidative stress caused

by an imbalance between free radicals and antioxidants is considered one of the main risk factors for AD, since it

can result in protein, lipid and nucleic acid damage and exacerbate Aβ and tau pathology. Green tea, and its main

bioactive compound, epigallocatechin-3-gallate (EGCG), have been targeted as a plausible option for the

modulation of AD. Specifically, EGCG acts as an antioxidant by regulating inflammatory processes involved in

neurodegeneration such as ferroptosis and microglia-induced cytotoxicity and by inducing signalling pathways

related to neuronal survival. Furthermore, it reduces tau hyperphosphorylation and aggregation and promotes the

non-amyloidogenic route of APP processing, thus preventing the formation of Aβ and its subsequent accumulation.

Alzheimer’s disease  EGCG  neuroprotection

1. Introduction

Dementia consists of a neurological syndrome characterized by memory, behaviour and language impairment that

progressively builds up, leading to an inability to perform activities of daily living . Alzheimer’s disease (AD), an

eminently multifactorial neurodegenerative disorder, is considered to be the most frequent cause of dementia .

AD mainly manifests through short-term memory deficits, along with other cognitive, affective, psychosocial and,

less frequently, motor impairments .

Current frameworks establish that, temporally, pathophysiological evidence of AD can be found 20–30 years before

the beginning of symptoms that constitute the clinical phase of the disease, with molecular, cellular, biochemical,

and functional alterations that have been linked to the development of symptoms later in life .

The main histopathological hallmarks of the disease are the accumulation of amyloid beta (Aβ) in the form of

extracellular plaques, the aggregation of hyperphosphorylated tau protein, conforming intracellular neurofibrillary

tangles, as well as evidence of neurodegeneration associated with amyloid and tau pathologies forming neuritic

plaques . All these are accompanied by other factors, including inflammation that implies astrocyte and

microglial involvement and less specific mechanisms, such as Lewy bodies and vascular alteration . The

multifactorial nature of AD, together with the diffuse timeline differentiating preclinical and clinical stages and the

fact that some of the predominant signs of the disease are shared by other, unrelated disorders, constitute the
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main causes that explain the current lack of efficient treatments to cure, delay or palliate the effects of this terrible

disease .

Faced with this disheartening lack of therapeutic resources, several authors have proposed alternative approaches

to the modulation of Alzheimer’s disease and other neurodegenerative disorders, by intervening in environmental

and lifestyle factors such as encouraging physical exercise, avoiding alcohol and drug consumption, lowering

stress levels, maintaining cognitive stimulation or promoting a healthy, balanced diet .

In this line, dietary modulation has been promoted as one of the more accessible interventions to promote and

maintain health during people’s lifespan . As one of the most extensively consumed beverages, only

second to water, and due to the bioactive nature of its components, tea has acquired some popularity in recent

years as a source of potentially beneficial compounds to help tackle complex pathophysiological processes .

Tea is obtained from the leaves of Camellia sinensis, a plant species native to East Asia that has been consumed

for more than 4000 years . Different varieties of tea can be obtained from the desiccated leaves of the plant,

depending on the processing . Green tea is obtained by steaming and drying freshly harvested leaves, which

grants a composition virtually identical to that of the leaves and a higher concentration of bioactive molecules with

potential benefits .

Green tea comprises several bioactive compounds, such as polyphenols, caffeine and amino acids . Green

tea polyphenols, often referred to as catechins, amount to around 30% of the dry weight of the leaves and have

been proposed to mediate several health benefits . Epigallocatechin gallate (EGCG), an ester of gallic acid

and epigallocatechin, is the most abundant catechin within green tea, constituting up to 65% of total catechin

content and displaying the highest biological activity , including neuroprotective and antioxidative effects

reported in the literature .

In accordance with this, several epidemiological studies in the Asian population have linked green tea consumption

and a decreased risk for neurodegenerative disorders, such as AD, Parkinson’s disease and other dementias. The

effects of EGCG and its abundance within green tea, together with the fact that it can be efficiently absorbed in the

intestine , constitute two key points of the potential therapeutic use of EGCG. In addition, since AD

pathophysiology occurs mainly in the brain, the ability to cross the blood–brain barrier is a necessary feature of any

potential therapeutic agent. In this regard, EGCG has been proven to cross the blood–brain barrier even at very

low concentrations , which positions this catechin as a potential mediator with beneficial properties for

Alzheimer’s disease and other forms of neurodegeneration .

2. Antioxidative Effects of EGCG

All the previous evidence allows people to conclude that there is a complex relationship between AD and oxidative

stress that implies a positive feedback loop between both and poses oxidative stress and the mechanisms

mentioned above as potential targets in efforts to mitigate AD pathology. Thus, antioxidants such as green tea
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catechins could potentially offer interesting incorporations to therapeutic arsenal. Assuredly, catechins have proven

to be able to act as antioxidative systems, neutralising ROS and RNS and other free radicals, such as nitric oxide,

peroxyl, peroxynitrite, carbon and lipidic radicals or 1,1-diphenyl-3-picrylhydrazine derivatives  (Figure 1 (8)).

Figure 1. Antioxidant activity of EGCG. The antioxidant compound EGCG binds to antioxidant regulatory elements

(ARE), inducing the expression of stress response genes (1) such as haem oxygenase (2) and glutathione-S-

transferase (3) enzymes, counteracting oxidative stress processes (4). Additionally, EGCG enhances the activity of

SOD and catalase (5), which reduce oxidative stress (4). Thanks to its hydroxyl groups, EGCG harbours chelating

properties (6) that exert antioxidant activity, promoting neuroprotective effects (7). Also, EGCG can inhibit the

production of ROS/RNS and 3-Hydroxykynurenine effect due to this antioxidant capacity (8), avoiding oxidative

stress (9).

EGCG has been proven to exert a greater antioxidative effect than other green tea catechins such as epicatechin

or epigallocatechin, greater even than that of potent antioxidants such as vitamins E and C , linked to its

structure that leaves several hydroxyl groups free to sequester radicals (Figure 1 (6)).

In addition, EGCG and other flavonoids, together with phenolic antioxidants found in green tea, can also activate

endogenous antioxidative systems, thus exerting an indirect protective effect . Namely, flavonoids promote

the expression of stress response genes, including those coding for the enzymes haem oxygenase and

glutathione-S-transferase , by binding to antioxidant regulatory elements (ARE) in the promoter of said genes 

 (Figure 1 (1–3)). Furthermore, under oxidative stress conditions, the activation of these genes seems to be

accompanied by the modulation of MAPK’s function, promoting the activity of transcription factors Nrf1 and Nrf2

and increasing their nuclear binding to ARE sequences .

Moreover, EGCG showed an antioxidative effect in vitro in neuronal primary cultures, where it inhibited the toxic

effects of 3-hydroxykynurenine, a metabolite of tryptophan that acts as a potent endogenous neurotoxin, increasing

oxidative stress and promoting ROS production . Upon EGCG-mediated inhibition, oxidative stress and ROS

were reduced and caspase activation and apoptosis were diminished consequently  (Figure 1 (8)).
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Synergically with all these effects, EGCG enhanced the activity of SOD and catalase, two of the most relevant

endogenous antioxidative systems, which proved to be enough to reduce oxidative stress in C57BL mice 

(Figure 1 (5)).

3. Iron-Chelating Effects of EGCG

The capability of EGCG and other catechins to bind metal ions poses another exciting overlap between oxidative

stress, AD and the neuroprotective effects of catechins. More specifically, catechins have proven to be exceptional

iron and copper chelators , which is especially relevant, given that iron metabolism alterations have been

proposed to be a common link between several neurodegenerative disorders  (Figure 2 (16,17), Figure

1 (6,7) and Figure 2 (6,7)).

Figure 2. Effect of metal chelation mediated by EGCG in Alzheimer’s pathology. In an AD brain, iron accumulation

promotes amyloidogenic processing (1), increasing Aβ40/Aβ42 levels (2), leading to the accumulation of Aβ (3).

Moreover, brain iron accumulation produces an increase in tau hyperphosphorylation (4) that results in microtubule

destabilization and the accumulation of tau protein (5). As a consequence, iron produces neurodegeneration (6).

The metal chelator activity of EGCG (6) inhibits iron accumulation in the brain (7), therefore diminishing the

accumulation of Aβ (8) and tau protein (9). Moreover, EGCG can directly potentiate the expression of p21 (10) and

p27 (11), while diminishing the expression of cyclin D1 (12) and pRB (13), abolishing cell cycle re-entry (14). On

the other hand, EGCG can promote the activation of HIF-1α (15), inducing the expression of cell survival genes

(16). EGCG promotes the production of SAPPα (17) and the non-amyloidogenic processing of APP (18),

generating neuroprotection effects (19).
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Given the numerous pathways in which iron imbalance can modulate pathological mechanisms in Alzheimer’s

disease, iron chelation promises an interesting research avenue to explore. In fact, iron chelators have been

proposed as potential multi-target treatments for Alzheimer’s disease throughout the last decades . In this

regard, iron chelation exerts a direct neuroprotective effect in AD by avoiding the iron-mediated promotion of

amyloid and tau pathology, through the mechanisms detailed above . For instance, the use of iron

chelators to assert a neuroprotective effect relies on both the elimination of excess iron in the brain and the

prevention of its accumulation under oxidative stress conditions . For instance, a prolonged administration of

EGCG to C57BL mice in vivo was shown to diminish hippocampal APP without modifying APP mRNA, which

suggests a post-transcriptional level of intervention, such as intracellular iron chelation  (Figure 2 (6,8,9)).

Apart from that, one of the main neuroprotective effects arising from iron chelation is associated with the activation

of the hypoxia inducible factor 1α (HIF-1α) pathway that results in the stabilisation of the transcription factor HIF-1,

involved in the transcription of cell survival and oxidative stress response genes . A HIF-1α presence

depends on the activity of HIF-prolyl-4-hydroxylases, which are iron-dependent enzymes. In the face of an

overload of iron, these enzymes catalyse the hydroxylation of proline and asparagine residues within HIF that

target its degradation via the proteasome. Thus, under excess iron conditions, those oxidative-stress-response and

cell-survival genes’ expression is decreased . On the contrary, EGCG has been proven to act as a direct HIF-

1α activator, thus promoting cell survival genes and neuroprotection  (Figure 2 (7,15,16)).

Precisely, in relation to cell survival in neurons, intracellular iron modulation has been extensively proposed as a

means to avoid apoptosis and stop the cell cycle . In AD in particular, a dysregulation of the cell cycle has

been equally characterised, with consequences such as cytoskeleton phosphorylation, mitochondrial abnormalities,

and alteration in several transduction pathways, such as those of GSK3, CDK5 and ERK2 . The activation

of these pathways consequently produces aberrant tau phosphorylation, DNA replication and an increased

expression of cell cycle proteins such as cyclins (A, B, D and E) . Other reports show that control

mechanisms on phases G1 and S of the cell cycle cannot be correctly performed in AD, allowing neurons to

continue the cell cycle and progress to G2, even completing DNA replication, observing 3–4% of tetraploid cells 

. In line with this, some genes related to the cell cycle have been proven to be altered under oxidative stress

conditions such as the ones found in AD patients. For instance, PIN1, a gene with important implications in the

correct regulation of the cell cycle, has been proven to regulate age-dependent neurodegenerative processes,

including APP processing and tau dephosphorylation . In the context of Alzheimer’s disease and oxidative

stress, PIN1 can be inhibited, leading to either mitotic arrest or neuronal death . In the same line, BRCA1, a

gene with a role in cell growth and DNA repair, was overexpressed in neurons that possessed neurofibrillary

tangles in AD, which would entail an increased genome instability .

Iron seems to carry out a regulatory function on the cell cycle, in that under iron deficiency conditions, cells cannot

advance from the G1 phase to S, a regulatory role directly related to D1 cyclin degradation , while iron

accumulation has been reported to disrupt the cell cycle, promoting abnormal progression through the cycle that

leads to apoptosis . All this is of vital importance due to the multiple cell cycle alterations found in AD

commented on above . In this regard, EGCG is capable of travelling across the blood–brain barrier and
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interferes with mitogenic signalling at the brain level, preventing the progression of an altered cell cycle in the

presence of excess iron . In addition, EGCG can directly potentiate the expression of p21 and p27, while

diminishing the expression of D1 cyclin and pRB, abolishing re-entry to the cell cycle thanks to a primary

antiproliferative action  (Figure 2 (10–14)).

It is worth mentioning that the antioxidant and iron chelating activity of EGCG may be useful to inhibit ferroptosis

cell death that, as mentioned before, is increased in an AD brain. In fact, there is evidence that supports that the

inhibition of brain ferroptosis protects from a brain haemorrhage . Additionally, it has been shown that EGCG

was able to inhibit ferroptosis after spinal cord injury through protein kinase D1 phosphorylation . Therefore,

several authors have suggested a potential protective role of EGCG by preventing ferroptosis in Alzheimer’s

disease as a therapeutic strategy  (Figure 2 (14,18)).

4. Modulating Effect of EGCG in Cell Signalling, Survival and
Death Pathways

As broadly commented on in previous sections, there are multiple intracellular signalling pathways related to

neuroprotection and cell survival in which Alzheimer’s disease and oxidative stress mechanisms can converge,

including protein kinase C, mitogen-activated protein kinases and phosphoinositide 3-kinase pathways . All of

them are related to several neuronal functions, such as plasticity, synaptic morphology, and protein synthesis,

which can in turn affect memory and neurodegeneration .

Briefly, EGCG has been reported to exert direct neuroprotective effects through the modulation of cell survival and

death, activating ERK, Akt/PKB, PI3K and PKC pathways that improve cell survival, while inhibiting p38 and JNK

ones, thus avoiding apoptosis .

4.1. EGCG and the PKC Pathway: Implications in Alzheimer’s Disease

Protein kinase C constitutes a family of kinases whose function is phosphorylating serine/threonine residues of

proteins, regulating their biological functions. Kinases from the PKC family are involved in the brain signalling

network through the regulation of cell signalling, cell growth, differentiation, and apoptosis, with direct

consequences on tumorigenesis, synaptic function, behaviour and cognition .

At least 12 isoforms can be found in mammals, classified in three subfamilies, according to their structure and

specific requirements of the second messengers: classical PKC (cPKC), with isoforms α, βI, βII and γ; atypical

PKC (aPKC), composed of isoforms ι, λ and ζ; and novel PKC (nPKC), which includes isoforms δ, ε, η, μ and θ .

Among these, α, γ, ε and ζ have been linked to signalling processes related to memory mechanisms and memory

deficits, which has earned them the nickname of memory kinases . PKC activators such as arachidonic acid,

aplysiatoxins or bryostatins can improve memory  and restore synaptic and network functions , exerting

anti-dementia effects . In fact, PKC activation by arachidonic acid is one of the main mechanisms of

astrocyte-induced synaptogenesis .
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From a broad perspective, PKC activation has a wide range of biological effects. On synaptic transmission, for

instance, it enhances the synthesis, vesicle replenishment and liberation of cholinergic, dopaminergic,

glutaminergic and GABAergic neurotransmitters . Relatedly, PKC has also been linked to synaptic

plasticity, promoting long-term potentiation (LTP) phenomena, with PKCζ having proven to be necessary and

sufficient to maintain hippocampal LTP  and having been associated with long-term memory , while PKCα,

PKCγ and PKCε have been related to memory and learning processes  (Figure 3 (2–5,8–12)).

Figure 3. Modulation of PKC-mediated pathways by EGCG in Alzheimer’s disease. EGCG can induce the

activation of PKC pathways (1), specifically the isoform PKCζ (2) that enhances long-term memory (3), PKCα (4)

that results in an increase in memory function (5) and PKCε (6) that activates BDNF factor (7), promoting

synaptogenesis (8), neuronal survival (9), Ca2+ liberation (10) and changes of synaptic structures (11), altogether

promoting neuroprotection (12). The generation of Aβ produces Aβ plaques (13), promoting neurodegeneration

processes (14). Aβ also inhibits the PKC pathway (15) and RACK (16), whose receptors are required to activate

PKC (17), and blocks BDNF (18). Moreover, the isoforms PKCα and PKCε activate α-secretase (19), promoting the

generation of sAPPα (20) that inhibits Aβ production (21). PKCε activates ECE1 (22), which degrades Aβ (21). The

activation of the PKC pathway inhibits GSK3β (23), which is involved in tau hyperphosphorylation (24) that finally
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leads to neurodegeneration processes (14). EGCG produces the reduction in protein Bax (25) and promotes the

degradation of protein Bad (26) through the proteasomal system (27).

In addition, different PKC isoforms have been reported to perform opposite functions regarding cell growth,

differentiation and apoptosis. Specifically, PKCθ and PKCδ promote apoptosis, while PKCα, PKCβ, PKCε and

PKCζ can avoid it and promote neurite growth instead . In addition, PKCε has been proven to directly

enhance the expression of brain-derived neurotrophic factor (BDNF), which can activate complex signalling

pathways, resulting in the repair of the synaptic structure and function and production of new brain cells 

(Figure 3 (6–12)).

Alterations in PKC signalling pathways have been found to contribute to Alzheimer’s disease pathogenesis and are

associated with memory deficits and learning difficulties , possibly establishing reciprocal interactions with

pathogenic mechanisms, since PKC isoforms are also sensitive to AD-related stress factors and amyloid plaques

. This can be linked to the anti-dementia effects mentioned for PKC activation . In the context of AD, PKC

activation has been proposed to stimulate LTP and cognitive improvement, by helping reduce the amyloid load 

. On top of that, PKC activation also inhibits glycogen synthase kinase 3 (GSK3), the main kinase involved in tau

phosphorylation, providing yet another confluence between PKC pathways and AD pathology  (Figure 3

(23,24,14)).

In turn, Aβ was shown to decrease PKC levels by directly binding PKC isoforms, effectively reducing their

phosphorylation and translocation, blocking their activation and inducing their degradation . Aβ peptides and

oligomers also inhibit RACK and intracellular receptors required in PKC activation, and actively block BDNF, which

specifically links it to PKCε . Indeed, PKCε has been associated with the activation of endothelin

converting enzyme 1 (ECE-1) , one of the main enzymes involved in amyloid β degradation and amyloid plaque

reduction , rendering PKCε activation and overexpression as effective methods to reduce amyloid pathology

. Parallelly, both PKCε and PKCα act as activators of α-secretase that mediate the non-amyloidogenic

processing of APP, contributing to alleviate amyloidogenic buildup and promoting the generation of sAPPα that also

acts as an Aβ inhibitor and exerts neuroprotective functions . In addition, PKCε may be able to

contribute to amyloid degradation by activating circulating serine proteases that can cleave Aβ  (Figure 3

(15,17–22))

All these intricate pathways play a role on the neuroprotective function exerted by EGCG and other catechins.

EGCG has been shown to contribute to PKC pathways through the direct activation of PKC by means of a fast

phosphorylation that promotes the beneficial, neuroprotective effects previously detailed . In vivo studies on

C57BL mice under a 2 mg/kg/day consumption schedule of EGCG proved that this catechin is also able to induce

a fast translocation of PKCα, which prevented PKCα depletion and counteracted the increase in the apoptotic

protein Bax in neurons . Synergically, EGCG has also been demonstrated to induce a rapid proteasomal

degradation of Bad, another proapoptotic protein, via PKC activation  (Figure 3 (1,25–27)).
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Moreover, the specific activation of PKCα and PKCε entails the stimulation of their anti-AD pathology pathways

described above. Hence, several studies using an in vivo mice model of AD such as Tg2576 and APP SWE

proved that EGCG induces PKCε-mediated ECE-1 activation and promotes the non-amyloidogenic processing of

APP through PKC activation, promoting sAPPα production and a significant reduction in Aβ and amyloid plaque

levels in the brain  (Figure 3 (19–22)).

4.2. EGCG and the MAPK Pathway: Implications in Alzheimer’s Disease

The mitogen-activated protein kinases’ pathway constitutes another crucial signalling cascade in terms of cell

proliferation, differentiation, apoptosis and survival, as well as inflammation and innate immunity. Mammal MAPK

are grouped in three categories: c-Jun N-terminal kinases (JNK), with three different isoforms termed JNK1, JNK2

and JNK3; p38 kinases, with isoforms α, β, γ and δ; and extracellular signal-regulated kinases (ERK), composed of

isoforms ERK1, ERK2 and ERK5 . All of them act as transductors of extracellular stimuli by unfolding a

phosphorylation cascade composed of, at least, three components: a MAPK kinase (MAP3K) that phosphorylates

and activates another MAPK kinase (MAP2K), which in turn phosphorylates and activates a MAPK . This

activated MAPK is then able to phosphorylate several targets, including transcription factors and antiapoptotic and

proapoptotic proteins .

Each individual MAPK signalling pathway is activated as a result of complex interactions between different kinase

components or through a signalling complex composed of several kinases and a scaffold protein . Broadly

speaking, researchers  can assert that ERK1/2-mediated pathways are activated by growth factors and stimulate

cell proliferation, migration, differentiation and survival , while p38 and JNK are activated by stress factors

such as oxidative stress or inflammation, and are therefore responsible for inflammatory and stress responses,

autophagy and apoptosis, although they can also participate in cell differentiation .

Given the myriad of pivotal processes in which these signalling pathways take part, it should not come as a

surprise that MAPK signalling is altered in multifactorial pathogenic processes such as AD and other

neurodegenerative disorders. In Alzheimer’s disease, Aβ-induced oxidative stress and microglial activation have

both proven to be mediators of MAPK p38 signalling , which promotes apoptosis but also acts as a

kinase of tau protein , further contributing to Alzheimer’s disease (Figure 4 (9,10)). In line with this, the

inhibition of IL-1β signalling during neuroinflammation in AD ameliorated tau pathology and improved cognitive

function in a p38-dependent manner . Other AD-related pathological changes, such as mitochondrial

dysfunction and mitochondrial dynamics alteration seem to be mediated by ERK pathways, since their blockage

has been shown to improve mitochondrial morphology and function and reverse alteration in the expression and

distribution of mitochondrial dynamics’ proteins such as DLP1 and Mfn2  (Figure 4 (8)).

695

[98]

[99][100]

[99]

[99][101]

[99]

[99][102]

[103][104][105]

[106][107][108]

[109]

[110]

[111]



Neuroprotective Effects of Epigallocatechin-3-Gallate in Alzheimer’s Disease | Encyclopedia.pub

https://encyclopedia.pub/entry/50578 10/21

Figure 4. Modulation of MAPK pathway by EGCG in Alzheimer’s disease. Upon oxidative stress, EGCG induces

antioxidant defences with the activation of the Keap1/Nrf2/ARE pathway (1) and increases ERK1/2 (2), promoting

cell survival (3) and neuroprotective effects (4). Conversely, EGCG inhibits the ERK (5), p38 (6) and JNK (7)

pathways whose effects contribute to mitochondrial disfunction and altered dynamics (8), induce tau protein

hyperphosphorylation and aggregation (9) and increase apoptosis (10) and inflammation (11), leading to cell death

(12). Therefore, EGCG can avoid this cell death (13).

As for the role of EGCG in relation to these signalling pathways, the green tea catechin was proven to preclude

ERK1/2 downregulation mediated by oxidative stress, which results in increased cell survival, both in nervous and

non-nervous tissue . In accordance with the antioxidative effect discussed before, EGCG was also shown to

induce antioxidant defence systems through the activation of the Keap1/Nrf2/ARE pathway and antioxidative

enzymes through Akt and ERK1/2 activation ; albeit EGCG seemed to be unable to exert any activating

effect on ERK1/2 in the absence of oxidative stress conditions  (Figure 4 (1–3)).

Additionally, EGCG delivers an orchestrated effect, by also inhibiting ROS-induced phosphorylation in MAPK from

the JNK and p38 pathways, which rendered them inactive , while also inhibiting hydrogen-peroxide-dependent

caspase 3 activation, thus avoiding apoptosis  (Figure 4 (6,10)).

4.3. EGCG and the PI3K/Akt Pathway: Implications in Alzheimer’s Disease

Another signalling pathway of paramount importance for cell survival and cell cycle progression, as well as

metabolism, cell motility and transcription, is the protein kinase B (PKB, also termed Akt) pathway. Mammals

display three PKB isoforms: α, β and γ (Akt 1, 2 and 3) , which are activated by phosphoinositide 3 kinase

(PI3K) to exert antiapoptotic functions  (Figure 5 (1)).
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Figure 5. Modulation of PI3K/Akt pathway mediated by EGCG. Akt/protein kinase B (PKB) is activated by

Phosphatidyl Inositol 3 Kinase (PI3K) (1), which catalyses the conversion of phosphatidyl inositol (4,5) biphosphate

(PIP2) into phosphatidyl inositol (3,4,5) triphosphate (PIP3), a process that is reversed by phosphatidylinositol

(3,4,5)-triphosphate 3-phosphatase (PTEM) (2). PIP3 also recruits phosphoinositide-dependent kinase 1 (PDK1) to

the plasma membrane, activating Akt (3). Akt phosphorylates glycogen synthase kinase 3 (GSK3), inhibiting its

function (4). Active GSK3 is able to phosphorylate Mcl-1 (5), which is targeted for proteasomal degradation (6),

liberating Bax and Bak proapoptotic factors (7). This causes the permeabilization of the mitochondrial outer

membrane, releasing cytochrome c (Cyt C) (8) that attaches to Apaf-1, generating the apoptosome (9), leading to

the activation of caspase 3 (10) that induces apoptosis (11). GSK3 also phosphorylates tau, inducing its

aggregation and subsequent neurodegeneration (12). EGCG can ultimately increase PI3K and Akt activity (13) and

inhibit PTEM in the presence of ROS (14), inhibiting apoptosis (15), phospho-Tau aggregation (16) and, therefore,

generating neuroprotection.

PI3K, in turn, can be activated by a number of stimuli, including trophic factors such as nerve growth factor (NGF),

insulin-like growth factor (IGF-1) or BDNF . Upon activation, PI3K catalyses the phosphorylation of

phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), while the

inverse reaction is catalysed by phosphatase PTEN (phosphatidylinositol (3,4,5)-triphosphate 3-phosphatase) 

. The latter recruits Akt and the serine/threonine kinase PDK1 (phosphoinositide-dependent kinase 1) to the

plasma membrane and promotes a signalling cascade that culminates with the activation of PKB/Akt 

(Figure 5 (1–3)).

The Akt pathway regulates different proteins from the Bcl-2 family, which includes proapoptotic (Bax, Bad…) and

antiapoptotic (Bcl-2) effectors. Akt can directly inhibit the apoptotic Bad proteins and caspases and indirectly inhibit
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the proapoptotic effects of GSK3 by increasing the levels of antiapoptotic proteins such as Bcl-2, effectively

blocking neuronal apoptosis . Relatedly, Akt is also a regulator of metabolism, with one of its main functions

being the inhibition of GSK3 via phosphorylation, which prompts the storage of glucose and glycogen and seems to

be in itself an antiapoptotic mechanism  (Figure 5 (4–11)).

In the context of Alzheimer’s disease, the Akt pathway plays a fundamental role as one of the most potent inhibitors

of GSK3, the main kinase that drives tau phosphorylation . Indeed, AD pathology seems to be mediated, at

least partly, by the dysregulation of this pathway that allows GSK3 overactivation, which consequently causes tau

hyperphosphorylation  (Figure 5 (12)).

Once again, EGCG is able to induce the activation of the PI3K/Akt pathway, consequently leading to increased cell

survival and apoptosis inhibition , which seems to be the mechanism by which it prevented oxidative-stress-

mediated cytotoxicity in PC12 cells in vitro . In addition, under oxidative stress conditions, EGCG inactivated

the phosphatase PTEN—what would prevent PIP3 transformation into PIP2—increasing PKB/Akt activation . In

any case, these mechanisms converge in the activation of Akt, which blocks GSK3, effectively inhibiting the

proapoptotic caspases’ route, preventing the liberation of cytochrome c by avoiding mitochondrial damage and

precluding tau hyperphosphorylation  (Figure 5 (13–16)).
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